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Abstract
Snarks, that is 2-connected cubic graphs admitting no 3-edge-colouring, provide a promising family of cubic graphs with
respect to many widely-open conjectures. They are often constructed by joining several building blocks which can be regarded
as cubic “graphs” with dangling edges allowed, formally called multipoles. Colouring properties of multipoles with at most
five dangling edges relevant for constructions of snarks are almost completely characterised. The remaining uncharacterised
class of such multipoles are so-called proper (2,3)-poles that can be obtained by severing an edge and removing a vertex from
a snark.

Therefore, in our work, we analyse the colouring properties of proper (2,3)-poles. To conduct our analysis, we explore
using a computer all proper (2,3)-poles resulting from nontrivial snarks with at most 28 vertices. This encompasses a total of
3,247 snarks and 3,476,400 proper (2,3)-poles. In our research, we provide various structures that can be utilized to expand
the colourability of proper (2,3)-poles. In the core of our work, we provide theorems regarding the colouring properties of
proper (2,3)-poles, specifically necessary and sufficient conditions for these properties. Additionally, we present the data and
observations from the analysis.
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1. Introduction
The study of snarks, that is 2-connected cubic graphs
that are not 3-edge-colourable, is important since they
are smallest possible counterexamples for several open
problems. One such conjecture is the Cycle Double Cover
Conjecture stating that each bridgeless graph has a family
of cycles, such that each edge appears in exactly two
of the cycles. To exclude trivial cases, some additional
properties are required from snarks like the following.

Let 𝐺 be a cubic graph and 𝑆 an edge-cut of size 𝑛. If at
least two components of𝐺−𝑆 contain a cycle, 𝑆 is said to
be an n-edge-c-cut. Generally, these edge-cuts are called
c-cuts. A cubic graph 𝐺 is cyclically n-edge-connected
if there is no c-cut with less than 𝑛 edges. Cyclic edge-
connectivity of a cubic graph 𝐺 having at least one c-cut
is the smallest number of edges of a c-cut of 𝐺. Another
measurement of nontriviality is the girth of a graph 𝐺
which is the minimum length of a cycle in 𝐺. If 𝐺 does
not contain a cycle, we set the girth to ∞.

Many authors (e.g. [1, 2]) require that snarks have
girth at least 5 and are cyclically 4-edge-connected. We
call such snarks non-trivial and the remaining ones trivial.
On the other hand, some authors allow snarks to contain
bridges [3].

According to our definition, the Petersen graph is the
smallest snark and it satisfies every standard definition
of a snark. Other notable snarks are the Blanuša snarks
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[4], or the infinite family of flower snarks discovered by
R. Isaacs [5]. The Isaacs snarks are denoted by 𝐽𝑘 , where
𝑘 is an odd integer 𝑘 ≥ 3.

Determining whether a given graph is a snark is an
NP-complete problem [6]. However, when creating a
cubic graph from some smaller building blocks, of which
we know their colouring properties, we also know the
colouring properties of the result. This may also include
if it is a snark or not. These building blocks are called mul-
tipoles (e.g. see [2]) and can be described as an extended
type of a graph that allows dangling edges. Multipoles
are useful for various constructions of snarks [3, 7] or
also for their structural analysis [8, 9].

This paper is structured as follows. First, we develop
the theory needed for our work. In Section 2, we define
multipoles and all notions related to them, and in Sec-
tion 3, we develop the theory for describing colouring
properties of multipoles. Section 4 is specifically devoted
to multipoles with five dangling edges while it explains
the relation of proper (2,3)-poles to them. In Section 5,
we introduce several classes of proper (2,3)-poles with re-
spect to their colouring properties. The rest of the paper
focuses on our results. Section 6 describes methods of
our computer-assisted analysis of proper (2,3)-poles con-
structed from small non-trivial snarks. In Section 7, we
provide multipoles that can be used to change colouring
classes of proper (2,3)-poles. Section 8 contains theoreti-
cal results on colouring properties of proper (2,3)-poles.
At the end, in Section 9, we summarise the results of our
computer-assisted analysis and in Section 10 we provide
problems for further research.

Definitions not provided in our work can be found in
[10]. We only clarify that all graphs considered in this
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Figure 1: Example of a multipole with both types of edges.

work are undirected, and while we permit multiple edges,
loops are not allowed. The distance between two vertices
𝑥 and 𝑦 in a graph 𝐺, denoted by 𝑑𝐺(𝑥, 𝑦), is defined as
the length of a shortest path between 𝑥 and 𝑦 in 𝐺. If
no such path exists, we set 𝑑𝐺(𝑥, 𝑦) = ∞. The distance
𝑑𝐺(𝑥, 𝑎𝑏) between a vertex 𝑥 and an edge 𝑎𝑏 is defined
as the smallest value between 𝑑𝐺(𝑥, 𝑎) and 𝑑𝐺(𝑥, 𝑏).

2. Multipoles
A multipole is a pair 𝑀 = (𝑉,𝐸) of distinct finite sets
of vertices 𝑉 and edges 𝐸, where every edge 𝑒 ∈ 𝐸 has
two edge ends, which may or need not be incident with
a vertex. The concept of multipoles was introduced in
[11].

A link is an edge incident with two distinct vertices
and a dangling edge is an edge with only one end incident
with a vertex. An illustration showcasing both types of
edges can be seen in Figure 1: there is a link 𝑎1𝑎2 and a
dangling edge from 𝑎1. We do not consider other types
of edges. The edge ends not incident with any vertex
are called semiedges. The semiedges in a multipole are
endowed with a linear order and we denote the tuple of
its semiedges as 𝑆(𝑀).

A multipole 𝑀 with 𝑆(𝑀) = (𝑎1, · · · , 𝑎𝑛) can also
be denoted as 𝑀(𝑎1, · · · , 𝑎𝑛). In our work, we will con-
sider cubic multipoles, i.e. multipoles where every vertex
is incident with precisely three edges. A multipole with
𝑛 semiedges is also called a n-pole.

Usually, it is convenient to partite 𝑆(𝑀) into pair-
wise disjoint tuples 𝑆1, · · · , 𝑆𝑛 called connectors. A
multipole 𝑀 with 𝑛 connectors 𝑆1, · · · , 𝑆𝑛, where 𝑆𝑖

has 𝑐𝑖 semiedges for each 𝑖 from 1 to 𝑛, is denoted by
𝑀(𝑆1, · · · , 𝑆𝑛) and is also called a (𝑐1, · · · , 𝑐𝑛)-pole.

Now, we describe the process of joining two multipoles
together. The junction of two distinct semiedges 𝑒 and 𝑓
corresponding to edges 𝑒′ and 𝑓 ′, respectively, is a new
link joining the remaining two edge ends of 𝑒′ and 𝑓 ′

different from 𝑒 and 𝑓 . The junction of two connectors
𝑆 = (𝑒1, · · · , 𝑒𝑛) and 𝑇 = (𝑓1, · · · , 𝑓𝑛) consists of 𝑛
individual junctions of semiedges 𝑒𝑖 and 𝑓𝑖 for 𝑖 from 1
to 𝑛. Similarly, the junction of two (𝑐1, · · · , 𝑐𝑛)-poles
𝑀(𝑆1, · · · , 𝑆𝑛) and 𝑁(𝑇1, · · · , 𝑇𝑛) consists of 𝑛 indi-
vidual junctions of connectors 𝑆𝑖 and 𝑇𝑖, for 𝑖 from 1

to 𝑛. The partial junction of 𝑀 and 𝑁 is a junction
of some semiedges (𝑎𝑖1 , · · · , 𝑎𝑖𝑘 ) and (𝑏𝑗1 , · · · , 𝑏𝑗𝑘 ),
where 𝑘 ≤ 𝑛 and 𝑘 ≤ 𝑚. In contrast to a normal junc-
tion of multipoles, which results in a graph, the partial
junction can still result in a multipole.

Let 𝐺 be a graph, 𝑎𝑏 its edge, and 𝑣 its vertex. By sever-
ing the edge 𝑎𝑏 in 𝐺, we mean removing 𝑎𝑏 and adding a
dangling edge to the vertices 𝑎 and 𝑏. Similarly, removing
the vertex 𝑣 involves the removal of 𝑣 along with all of its
incident edges, followed by adding a dangling edge to all
of the formerly neighbouring vertices of 𝑣. If we obtain a
multipole by removing some vertices and severing some
edges in a graph, there is a default way to divide the
resulting semiedges into connectors. When we remove a
vertex, all semiedges formerly incident with the vertex
are in a new connector. Similarly, when we sever an edge,
the two new semiedges are in a new connector.

To properly denote the multipoles resulting from a
graph by removing some vertices and severing some
edges, we will denote such multipoles as 𝑅(𝐺;𝑉 ;𝐸),
where 𝐺 is the former graph, 𝑉 is the set of removed
vertices, and 𝐸 is the set of severed edges. For example, a
multipole resulting from a snark 𝐺 by removing vertex 𝑣
and severing edge 𝑎𝑏 is denoted by 𝑅(𝐺; {𝑣}; {𝑎𝑏}) and
consists of two connectors, one with two semiedges and
one with three. In the case where a set contains only one
element, we can represent it without brackets, resulting
in this case in the notation 𝑅(𝐺; 𝑣; 𝑎𝑏).

3. Multipole Colouring
When considering 3-edge-colourings it is convenient to
regard the colours 1, 2, 3 as (0, 1), (1, 0), (1, 1), respec-
tively. In other words, we use the set of non-zero ele-
ments of the group Z2 × Z2, which we will denote as K.
Using the colours from K, it is easy to see that each 3-
edge-colouring of cubic graphs corresponds to a nowhere
zero (Z2 ×Z2)-flow and vice versa. Since each non-zero
element from this group is self-inverse, we need not as-
sign an orientation to the edges.

These colourings are also called Tait colourings. These
are widely used in many articles about snarks and 3-
edge-colourability in general mainly because of their
relation to nowhere zero flows. From now on, we only
say colouring or colourable instead of 3-edge-colouring
or 3-edge-colourable.

When discussing multipoles, the definition of edge-
colouring is the same. The colour of an edge end is the
colour of its respective edge. The colouring set of a 𝑘-pole
𝑀(𝑒1, · · · , 𝑒𝑘) is the set Col(𝑀) defined as

{(𝜑(𝑒1), · · · , 𝜑(𝑒𝑘)) | 𝜑 is a Tait colouring of 𝑀}.
For a connector 𝑆 = (𝑒1, · · · , 𝑒𝑛) of 𝑀 , the flow

through 𝑆 is the value 𝜑*(𝑆) =
∑︀𝑛

𝑖=1 𝜑(𝑒𝑖). A connec-
tor 𝑆 of a multipole 𝑀 is called proper if 𝜑*(𝑆) ̸= 0 for



each Tait colouring 𝜑 of 𝑀 . A multipole is called proper
if each of its connectors is proper.

In general, for any tuple of semiedges 𝑆 =
(𝑒1, · · · , 𝑒𝑛) and colouring 𝜑, we use the notation 𝜑(𝑆)
to represent the tuple (𝜑(𝑒1), · · · , 𝜑(𝑒𝑛)).

The fact that we can regard a colouring of a multi-
pole as a flow has a valuable consequence that will be
indispensable in our work. It is commonly known as the
Parity Lemma, introduced and proved by B. Descartes in
1948.

Lemma 1 (Parity Lemma [12]). Let 𝑀 be a 𝑘-pole, and
let 𝑘1, 𝑘2 and 𝑘3 be the numbers of semiedges of colour
(0, 1), (1, 0) and (1, 1), respectively. Then 𝑘1 ≡ 𝑘2 ≡ 𝑘3
mod 2.

By applying the Parity Lemma, we can conclude that
any cubic graph with a bridge is not colourable. Another
corollary of this lemma is that the minimum number of
vertices that must be removed from a snark to obtain a
colourable multipole is two [9]. The same applies to sev-
ering edges. The smallest number of edges to be severed
in a snark to obtain a colourable multipole is two. If only
one edge is severed, the resulting multipole contains two
semiedges, both of which must have the same colour for
it to be colourable because of the Parity Lemma. That
would mean the former graph resulting from the junction
of these two semiedges is not a snark since the colouring
of the multipole could be extended to the colouring of
the graph.

A key aspect when studying the colouring proper-
ties of multipoles derived from snarks is the removabil-
ity of pairs of vertices or edges. Let 𝐺 be a snark. A
pair of its distinct vertices {𝑢, 𝑣} is called removable if
𝑅(𝐺; {𝑢, 𝑣}; ∅) is not colourable; otherwise, it is called
unremovable. Similarly, for edges, a pair of distinct
edges {𝑎𝑏, 𝑐𝑑} is called removable if 𝑅(𝐺; ∅; {𝑎𝑏, 𝑐𝑑})
is colourable. Otherwise, it is called unremovable.

If we sever two adjacent edges, it is equivalent to the
removal of a single vertex with regard to colourability.
Therefore these pairs of edges are trivially removable
because at least two vertices are needed to be removed
from a snark to obtain a colourable multipole.

4. Colouring properties of 5-poles
To explore multipoles effectively, it is best to start with
the simplest ones and gradually move towards more com-
plex ones. That’s why we begin by examining the 𝑘-poles
starting from the smallest 𝑘. Specifically, the smallest
𝑘 for which it is interesting to explore the colourabil-
ity of 𝑘-poles arising from snarks with 𝑘-edge-cuts is 4.
The 1-poles are trivially uncolourable. For a 2-pole to
be colourable, both of its semiedges must have the same
colour. Similarly, for a 3-pole, all three of its semiedges

must have pairwise different colours. Also, the colouring
properties of 4-poles are already widely explored since
their colouring properties are limited as well [8]. The
analysis of the colouring properties of 5-pole comes from
the following ideas of P. J. Cameron, A. G. Chetwynd and
J. J. Watkins [13].

By the Parity Lemma, in each colouring 𝜑 of a 5-pole
𝑀 , three semiedges of 𝑀 have the same colour. We call
these edges sociable in 𝜑. The remaining two semiedges
of 𝑀 , called solitary in 𝜑, are coloured by the remaining
two colours. Because the colouring set of 𝑀 is closed
under a permutation of colours, it only matters which
semiedges of 𝑀 may be solitary. Using this, we can
visualize the colouring set of any 5-pole in the following
way.

For a 5-pole 𝑀(𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5) we denote by 𝑅𝑀

a graph with the vertex set 𝑉 = {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5}, in
which for each 𝑒𝑖, 𝑒𝑗 ∈ 𝑉 , the graph contains an edge
𝑒𝑖𝑒𝑗 if and only if the semiedges 𝑒𝑖 and 𝑒𝑗 are solitary
in some colouring of 𝑀 . The graph 𝑅𝑀 is called the
colouring graph of 𝑀 . The colouring graph 𝑅𝑀 of any
5-pole has no vertex of degree one [1]. We say that a
5-pole 𝑇 allows solitary cycle 𝑒1𝑒2 · · · 𝑒𝑛 if its colouring
graph 𝑅𝑇 contains the cycle 𝑒1𝑒2 · · · 𝑒𝑛.

From a case analysis in [1], it follows that if 𝑀 is a
5-pole that can be completed to a snark by performing
a junction with some colourable 5-pole, then colouring
graph 𝑅𝑀 of 𝑀 is a subgraph of:

• a 5-cycle, or

• the graph formed by two disjoint triangles shar-
ing a single vertex, or

• the complement of 𝐶3.

Accordingly, 5-poles whose colouring graphs are sub-
graphs of the mentioned graphs are called superpentagons,
negators and proper (2, 3)-poles, respectively. Note that
the introduced three classes of the 5-poles are not dis-
joint.

The colouring graph of a superpentagon is either
empty or the 5-cycle. The colouring graph of a nega-
tor is empty, consists of one triangle or consists of two
edge-disjoint triangles with a common vertex.

Máčajová and Škoviera characterised which negators
have which colouring graphs [3]. For proper (2, 3)-poles,
the situation is more diverse and their colouring graphs
have not been studied yet.

5. Proper (2,3)-poles
As it follows from the definitions in Section 2, a proper
(2, 3)-pole 𝑇 (𝐴,𝐵) is a multipole having two proper
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Figure 2: Creation of a proper (2, 3)-pole from a snark 𝐺.

connectors 𝐴 = (𝑎1, 𝑎2) and 𝐵 = (𝑏1, 𝑏2, 𝑏3). There-
fore, the colouring set of each proper (2,3)-pole is a subset
of the set

{(𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑏3) ∈ K5 | 𝑎1+𝑎2 = 𝑏1+𝑏2+𝑏3 ̸= 0}.

We will refer to this set only as 𝐶 from now on. Note
that in this definition, the terms 𝑎1 to 𝑏3 denote the
colours of the respective semiedges. The non-equality to
zero is evident because they are proper, and the equality
of flow through both connectors follows from the Parity
lemma.

This property implies that each proper (2, 3)-pole
𝑇 can be completed to a snark by the junction of the
semiedges in the connector of size two and joining the
semiedges from the connector of size three to a new ver-
tex. Conversely, for each snark, the result after removing
a vertex and severing an edge not incident with it will
always be a proper (2,3)-pole [9].

A visualisation of this process can be seen in Figure 2.
Now, we describe all possible colouring sets of proper

(2,3)-poles on their colouring graphs. Since there is no
rule on which semiedges are labelled 𝑏1, 𝑏2, 𝑏3 after re-
moving a vertex from a snark, we will divide the colour-
ing sets into classes, in which the colouring sets represent
colourings up to a permutation of colours and a permu-
tation of labels 𝑏1, 𝑏2, 𝑏3.

However, not each graph on these vertices represents
a possible colouring set. First, the colouring graph must
have no pendant vertex, as mentioned above. The second
restriction is that no edge is between two vertices from
{𝑏1, 𝑏2, 𝑏3}. Suppose there was an edge between 𝑏1 and
𝑏2 in some proper (2,3)-pole 𝑇 . This would mean that 𝑇
allows a colouring such that 𝑏1, 𝑏2 and 𝑏3 have pairwise
different colours and 𝑎1, 𝑎2 have the same colour. Thus
𝑇 could be extended to the former graph, which would be

Figure 3: Example of an uncolourable proper (2,3)-pole.

Figure 4: Example of a perfect proper (2,3)-pole.

colourable and therefore not a snark, which contradicts
the assumption.

This means there are only 12 different colouring sets
of proper (2,3)-poles, which can be divided into classes
in the following way. We denote the classes by a num-
ber representing how many vertices from {𝑏1, 𝑏2, 𝑏3}
are connected to {𝑎1, 𝑎2} with an edge in the colouring
graph, followed by A if the colouring allows an edge
between 𝑎1 and 𝑎2, or B otherwise. Resulting are six
colouring classes: 0B (uncolourable), 1A, 2B, 2A, 3B and
3A. Proper (2,3)-poles from Class 3A, that is those whose
colouring set coincides with 𝐶 , are also called perfect.
For each of them we have found an example, in this ar-
ticle we provide an example of an uncolourable proper
(2,3)-pole in Figure 3 resulting from the second Blanuša
snark and a perfect one in Figure 4 resulting from the
Petersen graph.

The colouring graphs for each class can be observed
in Figure 5.

6. Methods of Analysis
All of the results in this chapter come from our analysis
conducted on several proper (2,3)-poles. For this reason,
we have created a simple program in C++ that helps us
get the desired results. The logic behind representing
graphs in the program and some basic operations on
them is done by the ba_graph library [14]. As input,
our program receives a list of snarks in graph6 format
[15], parses them, and performs the following operations
on each.
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Figure 5: Colouring graphs for class 1A (first three), 2B (last three in the first row), 2A (first three in the second row), 0B, 3B
and 3A.

Since the proper (2,3)-poles are multipoles resulting
from a snark by removing one vertex and severing one
edge, this is exactly what the program does: for each
vertex 𝑣 and edge 𝑒, where 𝑒 is not incident with 𝑣, it
removes 𝑣, severes 𝑒, and thus creates a proper (2,3)-pole.
Thus, we have multiple proper (2,3)-poles from one snark.

Let 𝑇 be the proper (2,3)-pole resulting from snark 𝐺,
after removing the vertex 𝑣 and severing the edge 𝑥𝑦,
𝑥 ̸= 𝑦 ̸= 𝑣 ̸= 𝑥. We compute or observe the following
properties for each proper (2,3)-pole:

• the resulting multipole in graph6 format;

• which edge and vertex were removed from the
former snark;

• in which colouring class it is (see Section 5);

• the distance between the removed vertex and sev-
ered edge;

• how many pairs of vertices from {𝑣, 𝑥}, {𝑣, 𝑦}
are removable;

• how many pairs of edges {𝑥𝑦, 𝑣𝑎}, {𝑥𝑦, 𝑣𝑏},
{𝑥𝑦, 𝑣𝑐} are removable, where 𝑎, 𝑏 and 𝑐 are
neighbours of 𝑣.

For the colouring classes, we observe whether the mul-
tipole permits four colourings: those in which the solitary
semiedges are 𝑎1 and 𝑏1, 𝑎1 and 𝑏2, 𝑎1 and 𝑏3, and 𝑎1

and 𝑎2, respectively. For instance, if it allows a colouring
where the solitary semiedges are 𝑎1 and 𝑏1, it also allows
a colouring with the solitary semiedges 𝑎2 and 𝑏1.

The sets of removable pairs of edges and vertices are
computed for the original snark, and then for the result-
ing multipole it is simply checked whether those pairs
are contained in the respective sets.

For each graph on input, these results are then saved in
a separate file containing a row for each proper (2,3)-pole
originating from it.

The source code of the program can be found at [16].

7. Obtaining perfect proper
(2,3)-poles

It may be convenient to modify some proper (2,3)-poles
by adding some vertices and edges to obtain perfect
proper (2,3)-pole. If we know in which colouring class
the proper (2,3)-pole is, then we can make a junction
with the specific constructions provided in this chapter
to obtain perfect colouring, of course, only if the former
(2,3)-pole is colourable.

7.1. Extending class 1A to 2B
Let 𝑇 (𝐴,𝐵) be a proper (2,3)-pole, whose colouring class
is 1A and let it allow a solitary cycle 𝑏𝑖𝑎1𝑎2 for some
𝑏𝑖 ∈ 𝐵. Now let𝑇 ′(𝐴,𝐵′), 𝐵′ = (𝑏′1, 𝑏

′
2, 𝑏

′
3) be a proper

(2,3)-pole obtained by the partial junction of 𝑇 with the
6-pole 𝑀 shown in Figure 6. In this partial junction we
connect the connector 𝐵 and the connector (𝑐1, 𝑐2, 𝑐3)
such that it contains a junction of 𝑏𝑖 and 𝑐1. We prove
that the result is a proper (2,3)-pole from colouring class
2B, which allows solitary cycle 𝑏′2𝑎1𝑏

′
3𝑎2.

Without loss of generality, let the semiedge 𝑏𝑖 be 𝑏1.
Let this colouring of 𝑇 be 𝜑. Using a colouring 𝜑1 of
𝑀 where 𝜑1(𝑏

′
1, 𝑏

′
2, 𝑏

′
3) = (3, 3, 2) and a colouring 𝜑2

of 𝑀 where 𝜑2(𝑏
′
1, 𝑏

′
2, 𝑏

′
3) = (3, 2, 3), in both cases

𝜑1(𝑐1, 𝑐2, 𝑐3) = 𝜑2(𝑐1, 𝑐2, 𝑐3) = (2, 1, 1). After the
mentioned partial junction of 𝑇 and 𝑀 , we can colour
the rest of 𝑇 ′ by the colouring 𝜑. We can see that the
colouring graph of 𝑇 ′ allows a solitary cycle 𝑏′2𝑎1𝑏

′
3𝑎2.

No more colourings can be obtained since, as it can be
seen, 𝑏′2 and 𝑏′3 must have different colours, so one of
them is always solitary and we cannot obtain classes
2𝐴, 3𝐵, and perfect.

It is the smallest such 6-pole, considering the number
of vertices, which extends class 1A to 2B.



𝑐1

𝑐2

𝑐3

𝑏′1

𝑏′2

𝑏′3

Figure 6: A 6-pole used to create colouring class 2B from 1A.

7.2. Extending class 2B to 2A
Let 𝑇 (𝐴,𝐵) be a proper (2,3)-pole whose colouring class
is 2B. Let 𝑏𝑖, 𝑏𝑗 , 𝑖 ̸= 𝑗 be the two semiedges from 𝐵,
for which there exists a solitary cycle 𝑎1𝑏𝑖𝑎2𝑏𝑗 . Now
let 𝑇 ′(𝐴,𝐵′), 𝐵′ = (𝑏′1, 𝑏

′
2, 𝑏

′
3) be a proper (2,3)-pole

obtained by the partial junction of 𝑇 with the 6-pole
on Figure 7 by the junction of semiedges 𝑏𝑖 to 𝑐1, 𝑏𝑗 to
𝑐2 and the last semiedge to 𝑐3. The result 𝑇 ′ is from a
colouring class 2𝐴 and allows solitary cycle 𝑎1𝑏

′
1𝑎2𝑏

′
2𝑎1.

The proof is similar to the one in extending class 1A to
2B.

𝑐1

𝑐2

𝑐3

𝑏′1

𝑏′2

𝑏′3

Figure 7: A 6-pole used to extend multiple colouring classes.

It must be noted that this construction produces proper
(2,3)-poles which may not be contained in a nontriv-
ial snark, since it contains a quadrilateral. If we would
need to extend some proper (2,3)-pole to obtain a specific
colouring class and require the extended proper (2,3)-pole
to be contained in a nontrivial snark, we would need to
use other, more complex constructions.

7.3. Extending proper (2,3)-poles from
class 2A to perfect

To extend a proper (2,3)-pole from the colouring class 2A
to a perfect one, the same 6-pole can be used as before,
just with a different junction. Let 𝑇 (𝐴,𝐵) be a proper
(2,3)-pole whose colouring class is 2B. Let 𝑏𝑖, 𝑏𝑗 , 𝑖 ̸= 𝑗
be the two semiedges from 𝐵, for which there exists a
solitary cycle 𝑎1𝑏𝑖𝑎2𝑎1𝑏𝑗𝑎2. Now let 𝑇 ′(𝐴,𝐵′), 𝐵′ =
{𝑏′1, 𝑏′2, 𝑏′3} be a proper (2,3)-pole obtained by the junc-
tion of 𝑇 with the 6-pole in Figure 7 by the junction of
semiedges 𝑏𝑖 to 𝑐2, 𝑏𝑗 to 𝑐3 and the last semiedge to 𝑐1.
The result 𝑇 ′ is a perfect proper (2,3)-pole, which can be
proved similarly to before.

7.4. Extending proper (2,3)-poles from
class 3B to perfect

Let 𝑇 (𝐴,𝐵) be a proper (2,3)-pole whose
colouring class is 3B. Let 𝑇 ′(𝐴,𝐵′),
𝐵′ = (𝑏′1, 𝑏

′
2, 𝑏

′
3) be a proper (2,3)-pole obtained

by the partial junction of 𝑇 with the 6-pole on Figure 7,
performing the junction of 𝐵 to (𝑐1, 𝑐2, 𝑐3). Then 𝑇 ′ is
perfect, which can be proved similarly to before.

It is possible to incrementally modify each colourable
proper (2,3)-pole to obtain a perfect one. For example,
from class 1A it is possible to get class 2B, then 2A and
finally perfect. It is evident that extending uncolourable
multipoles to obtain colourable is impossible.

8. Theorems
Definition 1. Let 𝑀 and 𝑁 be multipoles. We say that
𝑀 is a submultipole of 𝑁 , denoted by 𝑀 ⊆ 𝑁 if a
multipole 𝐽 exists such that 𝑁 is a partial junction of 𝑀
and 𝐽 .

In other words, 𝑀 is a submultipole of 𝑁 if it can be
extended to it by adding vertices, edges and semiedges
and connecting them. The following lemma applies to
the colourings of submultipoles; thus is essential when
proving some propositions in this chapter.

Lemma 2. Let 𝑀 and 𝑁 be multipoles such that 𝑀 ⊆ 𝑁 .
If 𝑁 is colourable, then 𝑀 is colourable as well.

Proof. Since 𝑀 ⊆ 𝑁 , so 𝑁 is a result of the junction
of 𝑀 and some multipole 𝐽 , there is an edge cut 𝑋
splitting 𝑁 into 𝑀 and 𝐽 . Let 𝜑 be the colouring of 𝑁 .
After removing the edge cut 𝑋 , the exact colouring can
be applied to colour 𝑀 .

This also means that if 𝑀 is uncolourable, 𝑁 is un-
colourable as well.

Let 𝑀 and 𝑁 be multipoles, both constructed from
a snark 𝐺. Since we often consider the intersection
𝐸(𝑀) ∩ 𝐸(𝑁), we clarify that:

• A link 𝑎𝑏 of 𝐺 is included in the intersection if
and only if it is present in both multipoles.

• A dangling edge originating from a vertex 𝑎
which originated from an edge 𝑎𝑏 of𝐺 is included
in the intersection if and only if it is present in
both multipoles.

Since when creating a proper (2,3)-pole from a snark,
we are removing a vertex and severing an edge, we cannot
look at the removable vertices per se since only one vertex
is removed. However, we may look at the end vertices of
the severed edge.



Proposition 1. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its edge
where 𝑎 ̸= 𝑣 and 𝑏 ̸= 𝑣 and 𝑇 (𝐴,𝐵) a proper (2,3)-pole
𝑅(𝐺; 𝑣; 𝑎𝑏). If at least one of the pairs {𝑣, 𝑎} and {𝑣, 𝑏}
is removable, then 𝑇 (𝐴,𝐵) is uncolourable.

Proof. Let the removable pair be {𝑣, 𝑎}, meaning
that 𝑅(𝐺; {𝑣, 𝑎}; ∅) is uncolourable. We see that
𝑅(𝐺; {𝑣, 𝑎}; ∅) ⊆ 𝑇 (𝐴,𝐵), so because of Lemma 2 the
proper (2,3)-pole 𝑇 (𝐴,𝐵) is uncolourable.

It must be noted, though, that the converse impli-
cation does not hold. There are several uncolourable
proper (2,3)-poles, resulting from a snark, in which both
of the pairs of vertices are unremovable. One of them is
the mentioned example in Figure 3.

Another interesting attribute in the question of
colourability is the edge removability. Since the removed
vertex in the creation of a proper (2, 3)-pole has three
neighbours, we can look at the removability of all three
in pairs, along with the severed edge in the creation.
One interesting proposition is also connected to the un-
colourable proper (2,3)-poles.

Proposition 2. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its edge
where 𝑎 ̸= 𝑣 and 𝑏 ̸= 𝑣 and 𝑇 (𝐴,𝐵) a proper (2,3)-pole
𝑅(𝐺; 𝑣; 𝑎𝑏). Let 𝑥, 𝑦, 𝑧 be the neighbouring vertices of 𝑣
in 𝐺. 𝑇 (𝐴,𝐵) is uncolourable if and only if all three pairs
{𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧} are removable.

Proof. Suppose on the contrary that 𝑇 (𝐴,𝐵) is un-
colourable and at least one pair from {𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦},
{𝑎𝑏, 𝑣𝑧} is unremovable, say {𝑎𝑏, 𝑣𝑥}. This means that
𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}) is colourable. However, 𝑇 (𝐴,𝐵) is
a submultipole of 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}) and since 𝑇 (𝐴,𝐵)
is uncolourable, 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}) must also be un-
colourable because of Lemma 2, leading to a contradic-
tion. Therefore, if 𝑇 (𝐴,𝐵) is uncolourable, all three
pairs {𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧} are removable.

Now for the proof of the second implication, suppose
that all three edge pairs are removable and 𝑇 (𝐴,𝐵) is
colourable. Let the semiedge 𝑏1 be from the dangling
edge from 𝑥, 𝑏2 from 𝑦 and 𝑏3 from 𝑧. By the defi-
nition of colouring classes, it is evident that 𝑇 (𝐴,𝐵)
must allow a colouring, among others, where the soli-
tary semiedges are 𝑎1 and some semiedge 𝑏𝑖, say 𝑏1. It
is now possible to use this colouring, say 𝜑, to colour
𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑦}). Let us denote 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑦}) by
𝑅. We define a colouring 𝜑′ of 𝑅 as follows: For each
edge 𝑒 ∈ 𝐸(𝑅)∩𝐸(𝑇 (𝐴,𝐵)), the colour 𝜑′(𝑒) is equal
to 𝜑(𝑒). The only edges not in this intersection are 𝑣𝑥, 𝑣𝑧
and the dangling edge from 𝑣, let us denote it by 𝑑. We
can set 𝜑′(𝑣𝑥) = 𝜑(𝑏1), 𝜑′(𝑣𝑧) = 𝜑(𝑏3). These two
colours are different, since in 𝜑, the semiedge 𝑏1 is soli-
tary and 𝑏3 sociable. Thus we can colour the last edge, 𝑑,
with the colour different from 𝜑′(𝑣𝑥) and 𝜑′(𝑣𝑧). Since

{𝑎𝑏, 𝑣𝑦} is removable, 𝑅 is uncolourable, leading to a
contradiction.

Before the following proposition, we shall prove that
for these pairs of edges, it cannot happen that exactly
two are removable.

Lemma 3. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its edge where
𝑎 ̸= 𝑣 and 𝑏 ̸= 𝑣. Let 𝑥, 𝑦, 𝑧 be the neighbouring vertices
of 𝑣 in 𝐺. It is not possible that exactly two of the pairs
{𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧} are removable.

Proof. We prove that if one of the pairs is unremovable,
then at least one of the remaining pairs is unremovable
as well. Let {𝑎𝑏, 𝑣𝑥} be unremovable, meaning that 𝑅 =
𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}) is colourable, let the colouring be 𝜑.
Let 𝑎1, 𝑎2 be the semiedges resulting from severing the
edge 𝑎𝑏 and 𝑐1, 𝑐2 from severing 𝑣𝑥, such that 𝑐1 is part
of the edge from 𝑥 and 𝑐2 of the edge from 𝑣. Because
of the Parity Lemma and the fact that 𝐺 is a snark, 𝑎1

must have a different colour than 𝑎2, and 𝑐1, 𝑐2 must be
coloured with the same colours as them, also different
from each other. The colours in 𝜑 of edges incident with
𝑣 are all different, meaning that one of the edges, say 𝑣𝑦,
is coloured by the same colour as 𝑐1. It cannot be the
dangling edge, since 𝜑(𝑐1) ̸= 𝜑(𝑐2).

Now we can colour 𝑅′ = 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑦}) with a
colouring 𝜑′. For each edge 𝑒 ∈ 𝐸(𝑅)∩𝐸(𝑅′), 𝜑′(𝑒) =
𝜑(𝑒). The only edges from 𝑅′ not in this intersection are
the edge 𝑣𝑥, the dangling edge from 𝑦 and the dangling
edge from 𝑣. Let us denote the dangling edges by 𝑑, 𝑒,
respectively. We will colour them the following way:
𝜑′(𝑣𝑥) = 𝜑(𝑐1), 𝜑

′(𝑑) = 𝜑(𝑣𝑦), 𝜑′(𝑒) = 𝜑(𝑐2). Since
𝜑(𝑐1) ̸= 𝜑(𝑐2), all three colours of edges incident with
𝑣 in 𝜑′ will indeed be different. This means, that the pair
{𝑎𝑏, 𝑣𝑦} is also unremovable.

The statement that exactly two of the pairs
{𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧} are removable is equivalent
to the statement that exactly one of them is unremovable.
However, we have proved that this is impossible,
since the presence of an unremovable pair implies the
existence of another unremovable pair.

Proposition 3. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its
edge where 𝑎 ̸= 𝑣 and 𝑏 ̸= 𝑣 and 𝑇 (𝐴,𝐵) a proper
(2, 3)-pole 𝑅(𝐺; 𝑣; 𝑎𝑏). Let 𝑥, 𝑦, 𝑧 be the neighbouring
vertices of 𝑣 in 𝐺. The proper (2,3)-pole 𝑇 (𝐴,𝐵) is
from the class 1A if and only if exactly one of the pairs
{𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧} is removable.

Proof. Suppose that 𝑇 (𝐴,𝐵) is from the class 1𝐴 and
not exactly one of the pairs {𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧}
is removable. If all three pairs were removable, then
by Proposition 2, 𝑇 (𝐴,𝐵) would be uncolourable. Also,
there cannot be exactly two removable, as we have proved
in Lemma 3. That means we can only explore the cases



where none of the pairs is removable. Let the semiedge
𝑏1 be from the dangling edge from 𝑥, 𝑏2 from 𝑦 and 𝑏3
from 𝑧.

Let 𝑇 (𝐴,𝐵) allow a solitary cycle 𝑎1𝑏1𝑎2, implying
it allows a colouring where the solitary semiedges are 𝑎1

and 𝑏1. Therefore 𝑇 (𝐴,𝐵) does not allow a colouring
where one of the solitary semiedges is 𝑏2 or 𝑏3.

Let 𝑅 = 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}) and let us denote the
semiedges resulting from severing the edge 𝑣𝑥 by 𝑐1, 𝑐2,
such that 𝑐1 is part of the dangling edge from 𝑥 and 𝑐2 of
the dangling edge from 𝑣. Since each pair is unremovable,
a colouring 𝜑 of 𝑅 exists. We see that 𝜑(𝑣𝑦) ̸= 𝜑(𝑣𝑧)
and 𝑇 (𝐴,𝐵) is a submultipole of 𝑅. We can now con-
struct a colouring 𝜑′ of 𝑇 (𝐴,𝐵) the following way. For
each edge 𝑒 ∈ 𝐸(𝑇 (𝐴,𝐵)) ∩ 𝐸(𝑅), 𝜑′(𝑒) = 𝜑(𝑒). The
only edges from 𝑇 (𝐴,𝐵) not in this intersection are the
dangling edges containing 𝑏2 and 𝑏3. We will colour
them with 𝜑′(𝑏2) = 𝜑(𝑣𝑦) and 𝜑′(𝑏3) = 𝜑(𝑣𝑧). How-
ever, since 𝜑(𝑣𝑦) ̸= 𝜑(𝑣𝑧), the colour of 𝑏2 is different
from the colour of 𝑏3, thus one of them is solitary in this
colouring along with 𝑎1 or 𝑎2. This leads to a contra-
diction, since we suppose that 𝑇 (𝐴,𝐵) does not allow
a colouring where one of the solitary semiedges is 𝑏2 or
𝑏3.

Now we can prove the second implication. Assume
that exactly one of the pairs {𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧}
is removable, let it be {𝑎𝑏, 𝑣𝑥}, meaning that the pairs
{𝑎𝑏, 𝑣𝑦} and {𝑎𝑏, 𝑣𝑧} are unremovable. As in the proof
of the previous implication, let the semiedge 𝑏1 be from
the dangling edge from 𝑥, 𝑏2 from 𝑦 and 𝑏3 from 𝑧. Based
on Proposition 2, 𝑇 (𝐴,𝐵) is colourable, so we can ex-
plore which semiedges from 𝑏1, 𝑏2, 𝑏3 can be in its soli-
tary cycle.

Suppose 𝑏2 is in the solitary cycle of 𝑇 (𝐴,𝐵), imply-
ing the existence of a colouring 𝜑2 in which the soli-
tary semiedges are 𝑎1 and 𝑏2. This would mean that
𝜑2(𝑏2) ̸= 𝜑2(𝑏1), 𝜑2(𝑏2) ̸= 𝜑2(𝑏3), 𝜑2(𝑏1) = 𝜑2(𝑏3).
From this colouring we can now construct a colour-
ing 𝜑𝑥 of 𝑅𝑥 = 𝑅(𝐺; ∅; {𝑎𝑏, 𝑣𝑥}): for each edge 𝑒 ∈
𝐸(𝑅𝑥)∩𝐸(𝑇 (𝐴,𝐵)) the colour will be 𝜑𝑥(𝑒) = 𝜑2(𝑒).
The only edges from 𝑅𝑥 not included in the intersection
are 𝑣𝑦, 𝑣𝑧 and the dangling edge from 𝑣, let us denote it as
𝑑. We can then set 𝜑𝑥(𝑣𝑦) = 𝜑2(𝑏2), 𝜑𝑥(𝑣𝑧) = 𝜑2(𝑏3)
and 𝜑𝑥(𝑑) as the remaining colour, different from the two
colours already set for 𝑣𝑦 and 𝑣𝑧. Since {𝑎𝑏, 𝑣𝑥} is re-
movable, the assumption that 𝑏2 is in the solitary cycle
leads to a contradiction.

Now suppose 𝑏3 is in the solitary cycle of 𝑇 (𝐴,𝐵),
implying the existence of a colouring 𝜑3 in which the
solitary semiedges are 𝑎1 and 𝑏3. This would mean that
𝜑3(𝑏3) ̸= 𝜑3(𝑏1), 𝜑3(𝑏3) ̸= 𝜑3(𝑏2), 𝜑3(𝑏1) = 𝜑3(𝑏2).
From this colouring we can now also construct a colour-
ing 𝜑𝑥 of 𝑅𝑥 as before: for each edge 𝑒 ∈ 𝐸(𝑅𝑥) ∩
𝐸(𝑇 (𝐴,𝐵)) the colour will be 𝜑𝑥(𝑒) = 𝜑3(𝑒). The only
edges from 𝑅𝑥 not included in the intersection are 𝑣𝑦, 𝑣𝑧

and the dangling edge from 𝑣, let us denote it as 𝑑. We
can then set 𝜑𝑥(𝑣𝑦) = 𝜑3(𝑏2), 𝜑𝑥(𝑣𝑧) = 𝜑3(𝑏3) and
𝜑𝑥(𝑑) as the other colour from the two colours already
set for 𝑣𝑦 and 𝑣𝑧. Since {𝑎𝑏, 𝑣𝑥} is removable, the as-
sumption that 𝑏3 is in the solitary cycle also leads to a
contradiction.

Because 𝑇 (𝐴,𝐵) is colourable and as we have shown,
𝑏2 and 𝑏3 cannot be in its solitary cycle, it must contain
𝑏1, implying the existence of colouring where the solitary
pairs are 𝑎1, 𝑎2; 𝑎1, 𝑏1; 𝑎2, 𝑏2; which coincides with the
colouring class 1A.

Based on this we can provide an interesting corollary
for the other classes, implied by Proposition 2, Lemma 3
and Proposition 3.

Corollary 1. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its edge
where 𝑎 ̸= 𝑣 and 𝑏 ̸= 𝑣 and 𝑇 (𝐴,𝐵) a proper (2, 3)-pole
𝑅(𝐺; 𝑣; 𝑎𝑏). Let 𝑥, 𝑦, 𝑧 be the neighbouring vertices of 𝑣 in
𝐺. 𝑇 (𝐴,𝐵) is perfect or from the class 2A, 2B or 3B, if and
only if all three of the pairs {𝑎𝑏, 𝑣𝑥}, {𝑎𝑏, 𝑣𝑦}, {𝑎𝑏, 𝑣𝑧}
are unremovable.

Proposition 4. Let 𝐺 be a snark, 𝑣 its vertex, 𝑎𝑏 its edge
where 𝑎 ̸= 𝑣, 𝑏 ̸= 𝑣 and the distance between 𝑎𝑏 and 𝑣 is
1, that means 𝑎 or 𝑏 is a neighbour of 𝑣. Let 𝑇 (𝐴,𝐵) be
a proper (2, 3)-pole 𝑅(𝐺; 𝑣; 𝑎𝑏). Then 𝑇 (𝐴,𝐵) is either
uncolourable or its colouring set is from the class 1A.

Proof. Since the distance between 𝑎𝑏 and 𝑣 is 1, at least
one of the vertices 𝑎, 𝑏 is the neighbour of 𝑣; let it be
𝑎. Now there are two dangling edges from the vertex
𝑎; let their semiedges be 𝑎1 and 𝑏1. Because of this,
in each colouring of 𝑇 (𝐴,𝐵), the colours of 𝑎1 and 𝑏1
are different. This means that 𝑇 (𝐴,𝐵) does not allow
colourings where the solitary semiedges are 𝑎2 with 𝑏2,
or 𝑎2 with 𝑏3. It is evident that the only possible colouring
classes are 1A and uncolourable.

9. Data and observations
To clarify how we got the propositions or how the data
looks, we provide statistics about the explored snarks
and their resulting proper (2,3)-poles. In Table 1 is an
example of the output table for the Petersen graph.

As an input, we have used all non-trivial snarks with
at most 28 vertices, which is 3,247 snarks. There are
precisely 3,476,400 proper (2,3)-poles resulting from them.
Most of these results are perfect proper (2,3)-poles. The
proportions are in Table 2.

By analyzing proper (2,3)-poles, we found that 8.59%
of them are uncolourable, while 91.41% are colourable.
Based on Corollary 1 and its converse implication, we
examined the distribution of colouring classes when all of
the mentioned pairs are unremovable. This analysis led
to the observations presented in Table 3. We see that most



graph6 edge vertex colourings_class distance removable_vertices removable_edges

MAMBHB@_?OA?@??O? 1, 5 0 perfect 2 0 0
MAkBHB@_?GA?@??O? 1, 6 0 1A 1 0 1

...

Table 1
Example of the output table.

class percentage total number

perfect 66.13% 2,299,022
1A 20.73% 720,660

uncolourable 8.59% 298,720
2B 3.2% 111,139
3B 0.68% 23,630
2A 0.67% 23,229

Table 2
Proportion of colouring classes in explored proper (2,3)-poles.

of the proper (2,3)-poles are perfect, but the numbers are
also the same as in Table 2. The equivalence between all
proper (2,3)-poles from the classes perfect, 2B, 3B and
2A; and having all three pairs of edges unremovable is
proved in Corollary 1.

class percentage total number

perfect 93.57% 2,299,022
2B 4.52% 111,139
3B 0.96% 23,630
2A 0.95% 23,229

Table 3
Proportion of colouring classes for all three unremovable pairs
of edges.

Another interesting observation is that no proper (2,3)-
pole from the explored ones has precisely two of the
mentioned pair of edges removable. We have proved this
in Lemma 3. The proportions can be seen in Table 4

removable edges percentage total number

0 70.68% 2,457,020
1 20.73% 720,660
3 8.59% 298,720

Table 4
Proportion of number of removable edges.

Among the 3,247 explored snarks, only five produce
only colourable proper (2,3)-poles. One is the Petersen
graph, then one with 20 vertices, two with 22 and one
with 28 vertices. The ones with 20 and 28 vertices are
the Isaacs snarks 𝐽5 and 𝐽7 respectively. The two snarks
with 22 vertices are the Loupekine snarks. Because of
Proposition 1, each of the five mentioned snarks contains

no pair of removable vertices. Such snarks are called
bicritical.

Since removable pair of vertices affect colouring prop-
erties, we have explored all bicritical snarks with at most
32 vertices – precisely 278 of them. There are 306,396
proper (2,3)-poles resulting from them. The proportions
of their colouring classes is in Table 5.

class percentage total number

perfect 79.24% 242,784
1A 19.85% 60,830

uncolourable 0.59% 1,802
2A 0.32% 968
3B < 0.01% 10
2B < 0.01% 2

Table 5
Proportion of colouring classes in explored proper (2,3)-poles
from bicritical snarks.

As before, we can look at the proportions of the colour-
ing classes, but only for the proper (2,3)-poles with all
three of the mentioned edge pairs unremovable. The
results are in Table 6. We see, that almost every such
proper (2,3)-pole is perfect, however there is a small num-
ber of ones from the classes 2A, 3B, 2B. This may be an
interesting observation for the further research about
the sufficient conditions for a proper (2,3)-pole resulting
from a bicritical snark to be perfect. However, a proper
(2,3)-pole constructed from a bicritical snark is not always
perfect.

class percentage total number

perfect 99.6% 242,784
2A 0.4% 968
3B < 0.01% 10
2B < 0.01% 2

Table 6
Proportion of colouring classes for all three unremovable pairs
of edges in proper (2,3)-poles from bicritical snarks.

10. Problems
During the writing of our work, several problems arose,
which may be interesting for further research.



Problem 1. Suppose we only consider multipoles re-
sulting from snarks by severing an edge and removing
a vertex with a distance of more than 1, since adjacent
edges are trivially removable. Is a proper (2,3)-pole con-
structed from a snark without any removable pair of
edges always perfect?

There are only four such snarks from the ones we have
explored: the Petersen graph, the Isaacs snarks 𝐽5 and 𝐽7,
and the Double Star snark. All of the proper (2,3)-poles
resulting from these graphs, with the distance between
the removed vertex and the severed edge more than 1
are indeed perfect. However we have not proved this
statement, thus it can be explored in further research.

Problem 2. Construct multipoles used to extend colour-
ings of proper (2,3)-poles, which allow the resulting
proper (2,3)-poles to be contained in a nontrivial snark.

As mentioned in Section 7, one of the 6-poles contains
a quadrilateral, so each snark of which it is a part of is
trivial.

Problem 3. Construct an infinite family of snarks, that
produce only colourable proper (2,3)-poles.

We have found several snarks producing only
colourable proper (2,3)-poles: the Petersen graph, the
Isaacs snarks 𝐽5 and 𝐽7 and the two Loupekine snarks
of order 22. This may be helpful when exploring infi-
nite families of snarks producing only colourable proper
(2,3)-poles.

Problem 4. If we construct a proper (2,3)-pole from a
bicritical snark in such a way, that the distance between
the severed edge and the removed vertex is more than
one, and both are a part of a 5-cycle (not necessarily the
same), is the result always perfect?

If a counterexample is found, an additional require-
ment of being cyclically 5-edge-connected could be im-
posed for the snark.
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