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Abstract
Data augmentation techniques have been developed to address the challenge of acquiring large and diverse datasets for
training machine learning models. In this paper, the focus is on time series data and proposing a Generative Adversarial
Network (GAN) architecture based on Long Short-Term Memory (LSTM) for generating synthetic pseudo-time series data.
The dataset is preprocessed by normalizing the series lengths and then designing the LSTM-GAN architecture, which consists
of a generator network and a discriminator network. The generator network uses an LSTM layer to generate synthetic time
series data, while the discriminator network distinguishes between real and synthetic data. LSTM-GAN is trained using
an adversarial approach and update the network parameters iteratively. To evaluate the quality of the generated data, the
original and synthetic data are compared using metrics such as silhouette score, Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE). Our results show that the LSTM-GAN is capable of generating synthetic time series data that closely
resembles the real data, as evidenced by similar silhouette score and low MSE and RMSE values. This work contributes to
the field of data augmentation for time series data and demonstrates the effectiveness of GANs in generating realistic and
complex time series data.
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1. Introduction
Data plays a vital role in training machine learning mod-
els across various domains [1]. However, acquiring large
and diverse datasets can be challenging and expensive,
which can limit the performance and generalization abil-
ity of models. Data Augmentation (DA) techniques have
been developed to address this issue by generating new
training data from existing data, often through transfor-
mations such as rotation, translation, or cropping.

Over time, various techniques have been employed to
generate synthetic data. Among these, the autoencoder
(AE) [2] has been widely used. The AE architecture is
designed to learn an effective low-dimensional represen-
tation of the input data and then reconstruct it back to
its original form with maximum similarity. The AE mod-
els consist of an encoder and a decoder neural network.
Although AE has been successful in generating synthetic
data, alternative generative models have gained atten-
tion due to their ability to produce high-quality data and
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incorporate privacy protection mechanisms [3].
Recently, Generative Adversarial Networks (GANs)

[4] have emerged as a powerful tool for data augmen-
tation. GANs are generative models that can learn the
underlying distribution of a given dataset and generate
new realistic samples that are similar to the original data.
This makes them well-suited for generating new training
data that can augment smaller datasets and improve the
performance of machine learning models.

While GANs have primarily been used in computer
vision tasks such as image and video generation, there
has been a growing interest in applying GANs to time
series data. Time series data often have complex temporal
structures and dependencies that make them challenging
to model and generate. However, GANs have shown
promising results in generating realistic time series data
[5], imputing missing or corrupted data, and denoising
signals.

Generating and accessing time series or pseudo-time
series datasets can be challenging due to privacy concerns
and difficulty in obtaining balanced or large datasets.
This can pose a problem when training models with in-
complete or unbalanced data, which can affect the quality
of the output. Preprocessing techniques, such as subsam-
pling, can be used to address these issues, as well as DA
techniques, which are commonly used in datasets that
are not large enough.

This paper aims to develop a GAN architecture based
on Long Short-Term Memory (LSTM) that can generate
synthetic pseudo-time series data. In Section 2, a compre-
hensive review of relevant literature, which has inspired
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the proposed approach, is provided. Section 3 describes
the datasets used, the steps for applying the models, the
specific models employed, the procedures utilized and
the evaluation metrics. Section 4 presents the results
obtained and provides a detailed discussion of these out-
comes. Finally, in Section 5, the main conclusions drawn
from the study are presented as suggestions for future
work are provided.

2. Related Work
In recent years, there has been a surge in the publica-
tion of high-quality data augmentation papers [6, 7, 8].
However, it is noteworthy that a significant portion of
these papers primarily concentrates on well-established
domains such as image, video, or Natural language pro-
cessing (NLP). Nonetheless, there is an emerging interest
in investigating data augmentation techniques specifi-
cally tailored for time series data and pseudo-time series.
These data types pose distinctive challenges that set them
apart from other data formats. The evolving interest in
this area underscores the recognition of the need for
effective DA methods in addressing the unique require-
ments and complexities associated with time series and
pseudo-time series data.

Wen et al. [9] presented a comprehensive taxonomy
of data augmentation techniques for medical time series
leveraging GANs. Their taxonomy encompasses a spec-
trum of methods, from fundamental to more advanced
approaches. The authors also delve into deep generative
models, such as the Recurrent GAN (RGAN) and Recur-
rent Conditional GAN (RCGAN) proposed by Esteban
et al. [10]. These models demonstrate the capability to
generate real-valued multi-dimensional time series data.
This work contributes to the field by providing a system-
atic overview of GAN-based data augmentation methods
in the context of medical time series, while also highlight-
ing the relevance of deep generative models like RGAN
and RCGAN for generating realistic and complex time
series data.

In their study, Iglesias et al. [5] conducted an anal-
ysis of various GAN architectures and assessed their
effectiveness in handling time series data. The paper
specifically explores the utilization of recurrent neural
networks (RNNs) within GAN frameworks for time series
data. The authors introduce the Continuous Recurrent
Neural Networks (C-RNN-GAN) model, which incorpo-
rates LSTM blocks as the primary learning structure and
employs bidirectional recurrent networks in the discrimi-
nator. This approach aims to enhance the generation and
evaluation of time series data, shedding light on the po-
tential of utilizing RNN-based GAN architectures for time
series data generation and provides valuable insights into
the design of such models.

Brophy et al. [11] offer a comprehensive survey
of GANs, encompassing their challenges, variations,
and taxonomy. The paper extensively discusses dif-
ferent types of GANs, including discrete-variant and
continuous-variant GANs, and presents a detailed
overview of their taxonomy. Notable examples covered
in the paper include Quant GAN, Sequentially Coupled
GAN, and various other variants. This research serves
as a valuable resource for both researchers and practi-
tioners seeking to explore the application of GANs for
time series analysis. The insights provided in this paper
can aid in understanding the diverse landscape of GANs
and inform the design and implementation of GAN-based
approaches for analyzing time series data.

Farou et al. [12] and Singh et al. [13], even if work-
ing in different domains, cite problems of obtaining data
such as high cost, difficulty due to privacy or location,
these problems are inherent in research related to biolog-
ical processes, which are also the object of this paper’s
studies. GANs can be beneficial in these cases because
they have the ability to generate consistent data, where
these synthetic data maintain the distribution of the orig-
inals. Furthermore, it is interesting to generate data not
too far from decision boundaries, as points far from the
boundaries do not change much the classification models.

3. Materials and Methods
To achieve the proposed goal of developing a GAN archi-
tecture based on LSTM for generating synthetic data,
there are several steps, including data preprocessing,
model design, training, and evaluation. The LSTM-GAN
architecture is designed to generate synthetic time se-
ries data that closely resembles real data. The model
configuration is as follows:

• Generator: The generator network comprises
a single LSTM layer with 128 cells followed
by a fully connected layer and an output layer.
Dropout regularization is applied to mitigate over-
fitting and enhance generalization, thereby im-
proving the model’s performance.

• Discriminator: The discriminator network is
composed of one LSTM layer, also with 128 cells,
followed by fully connected layers and an output
layer. Dropout regularization is incorporated in
attempt to improve the model’s ability to distin-
guish between real and generated samples.

3.1. Dataset
The dataset used was obtained by transforming leaf im-
ages into pseudo time-series data [14], which refers to
series that have no time relationship between values,
this dataset was chosen because the general objective



of the project is to classify the vine varieties through
leaves images. In the aforementioned work, the images
were transformed into series, but for greater robustness,
the transformation is invariant to translation, rotation
or stretching, in addition to being dependent on color,
thus, the DA operations commonly applied in images
are not applicable in the original dataset, requiring the
DA operations being performed on the series instead of
images.

To ensure a focused analysis, dataset was divided into
class-oriented subsets, which allows single class focus,
where instead of generating data from all classes, the gen-
eration can happen in one class taking into account the
others (or one another). Following this, the dataset was
randomly split into training and testing sets, ensuring
that time series samples from the same source or category
are not present in both sets to prevent data leakage.

3.2. Data Preprocessing
Data preprocessing is the first step in the presented ap-
proach. To ensure uniformity in the input data the LSTM-
GAN, series length normalization was applied by identi-
fying the smallest series length among all the time series
samples in the dataset, this reference length is denoted
as 𝑙. For each time series sample, 𝑙 points are randomly
selected from the series indices. This random selection
process guarantees that all time series have equal length
𝑙.

The indices are randomly generated, however the re-
sampling process maintains the series order, because,
even though, there is no time relationship among values
in the series, there is a neighborhood relationship, which,
in this way, is preserved.

Figure 1 visually depicts the shape of the original time
series with different length.

Figure 1: Original series with varying lengths.

On the other hand, Figure 2 shows series after they

underwent the length normalization process. The figures
exemplify how the overall shape of series are preserved
after the procedure, but resulting in series with the same
length.

Figure 2: Normalized series with uniform length.

This procedure, being based on the shortest series, also
helps to obtain shorter series from the other samples,
facilitating the algorithm’s performance.

3.3. Model Design
The LSTM-GAN architecture is specifically designed to
capture the long-term dependencies present in time series
data. This architecture consists of two key components:
a generator network (𝐺) and a discriminator network
(𝐷).

The generator network takes random noise 𝑧 ∈ R𝑛 as
input and employs an LSTM layer to generate synthetic
time series data. This LSTM layer is followed by fully
connected layers and an output layer, which collectively
transform the random noise into meaningful synthetic
data.

On the other hand, the discriminator network’s pri-
mary objective is to differentiate between real and syn-
thetic time series data. It also employs an LSTM layer,
followed by fully connected layers and an output layer,
which enable it to effectively discern the authenticity of
the input data.

In summary, the generator network utilizes the LSTM
layer and subsequent layers to generate realistic synthetic
time series data, while the discriminator network lever-
ages the same architecture to accurately classify whether
the input data is real or synthetic.

The two networks engage in a two-player minimax
game defined by the value function 𝑉 (𝐺,𝐷), where
𝐷(𝑥) represents the probability that 𝑥 comes from the
real data rather than the generated data:



min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = E𝑥∼𝑝data(𝑥)[log𝐷(𝑥)]

+ E𝑧∼𝑝𝑧(𝑧)[log(1−𝐷(𝐺(𝑧)))]

(1)

The objective function, presented in Equation 1, con-
sists of two terms, representing expectations over differ-
ent distributions:

• The first term, 𝐸𝑥∼𝑝data(𝑥)[log𝐷(𝑥)], represents
the expectation over real data samples (𝑥) drawn
from the real data distribution 𝑝data. The discrim-
inator 𝐷 aims to maximize this term by correctly
classifying real data instances and assigning a
high probability to real data samples.

• The second term, 𝐸𝑧∼𝑝𝑧 (𝑧)[log(1−𝐷(𝐺(𝑧)))],
represents the expectation over latent space sam-
ples (𝑧) drawn from the latent distribution 𝑝𝑧 .
The generator 𝐺 aims to minimize this term
by producing synthetic data (𝐺(𝑧)) that the dis-
criminator 𝐷 incorrectly classifies as fake, as
(1−𝐷(𝐺(𝑧))) represents the probability of the
discriminator 𝐷 classifying the generated data as
real.

The objective of the GAN framework is to find an
equilibrium where the generator produces synthetic data
that is indistinguishable from real data. This equilibrium
is reached when the generator minimizes the objective
function while the discriminator maximizes it, resulting
in the generation of high-quality synthetic data [4].

3.4. Training
The training phase involves iteratively updating the pa-
rameters of the generator and discriminator networks to
optimize their performance. The training process utilizes
an adversarial approach, where the generator strives to
deceive the discriminator by generating synthetic time
series data that closely resembles real data. Conversely,
the discriminator aims to effectively distinguish between
real and synthetic data.

The network parameters are updated using back-
propagation, which calculates the gradients based on the
discriminator’s feedback. These gradients are then used
to update the weights of the generator and discriminator
networks. The training continues until a convergence
criterion is met, such as achieving a desired level of per-
formance or reaching a maximum number of training
iterations.

3.5. Evaluation with Post-Processing
A known problem in neural networks is the need for large
volumes of information. Karras et al. [15] explain that

small datasets make the feedback from the discriminator
to the generator to be irrelevant and the network would
diverge. Data augmentation would be a common tech-
nique for augmentation, but that, in this case, is exactly
the problem to be solved while applying the algorithm.

Karras et al. [15] also state that this leads to noise being
part of the generated data, so the application of filters
that manages to smooth out noise that can be caused by
the generator, which, even if not enough to confuse the
discriminator, generate behaviors that are not suitable
for series that describe shapes.

So, the quality assessment and evaluation of the gener-
ated synthetic data by the LSTM-GAN is performed after
applying a post-processing techniques to the generated
time series to make them resemble the original data more
closely. One such technique used was the Gaussian filter,
which helps smooth out the generated time series as it
incorporates the neighborhood relation present in the
series, which can be noisy due to the small amount of
data inherent in the problem.

After applying the post-processing techniques, metrics
that measure the similarity between the modified gen-
erated data and the real data were analyzed, to further
demonstrate the effectiveness of the generator.

The evaluation process involved comparing the silhou-
ette score between classes 1 and 2 for both the original
and modified synthetic time series data, which has origi-
nally close to one hundred samples each. The silhouette
score is a measure of cluster cohesion and separation,
which in this case is applied to differentiate classes rather
than clusters.

The silhouette score 𝑆𝑖 can be calculated for any data
point 𝑖 as follows:

𝑆𝑖 =
𝑏𝑖 − 𝑎𝑖

max(𝑏𝑖, 𝑎𝑖)

Here, 𝑏𝑖 represents the average distances 𝑑 of points 𝑗
belonging to classes 𝐶𝑘 different from the class assigned
to the point 𝑖:

𝑏𝑖 = min
𝑘 ̸=𝑖

1

|𝐶𝑘|
∑︁
𝑗∈𝐶𝑘

𝑑(𝑖, 𝑗)

On the other hand, 𝑎𝑖 represents the average distances
of points 𝑗 belonging to the same class 𝐶𝑖 as the gener-
ated point 𝑖:

𝑎𝑖 =
1

|𝐶𝑖| − 1

∑︁
𝑗∈𝐶𝑖,𝑖 ̸=𝑗

𝑑(𝑖, 𝑗)

The overall silhouette score is calculated as the average
of all scores in the dataset.

Ideally, silhouette values are close to one between
classes and close to zero between original and synthetic
data within the same class [16]. Negative values would



be values generated by one class but that actually should
belong to another (misclassification).

In addition to the silhouette score, the Mean Squared
Error (MSE) and Root Mean Squared Error (RMSE) were
calculated to quantify the dissimilarity between the mod-
ified generated data and the real data.

MSE is a commonly used metric that measures the
average squared difference between the predicted and
actual values. In the context of evaluating synthetic data,
MSE can be used to assess how closely the modified gen-
erated time series aligns with the real data. A lower MSE
value indicates a higher similarity between the two.

RMSE is the square root of MSE and provides a more
interpretable measure since it is in the same unit as the
original data. RMSE allows us to understand the average
magnitude of the prediction error in the original scale of
the data. Similar to MSE, a lower RMSE value signifies a
better alignment between the modified generated data
and the real data.

To calculate MSE and RMSE, each data point in the
modified generated time series is compared to its corre-
sponding real data point. The squared differences are
summed up and then divided by the total number of data
points to obtain the average squared difference (MSE).
Taking the square root of MSE gives us the RMSE value.

By applying post-processing techniques such as the
Gaussian filter and incorporating MSE and RMSE in our
evaluation, a comprehensive assessment of the similarity
between the modified generated time series and the real
data can be provided, complementing the silhouette score
measure.

4. Results
The quality of the data generated by the LSTM-GAN
model is evaluated by comparing it to the original data
and analyzing the characteristics of different classes.

4.1. Comparison of Original and
Synthetic Time Series

To assess the performance of the model, original and syn-
thetic time series data from classes 1 and 2 are compared.
Figures 3 show the original and synthetic time series of
class 1, while Figures 4 show the original and synthetic
time series of class 2.

From the figures, it is possible to observe that the syn-
thetic time series data closely resembles the patterns and
characteristics of the original data. The synthetic time se-
ries of class 1 (Figure 3) exhibits similar trends, peaks, and
fluctuations as the original data. Similarly, the synthetic
time series of class 2 captures the distinctive patterns and
variations present in the original data (Figure 4).

Figure 3: Original and Synthetic series of class 1.

Figure 4: Original and Synthetic series of class 2.

These results indicate that our LSTM-GAN model suc-
cessfully learns the underlying patterns and structures
of the original time series data and generates synthetic
data that preserve these characteristics.

4.2. Evaluation Metrics
To quantitatively assess the quality of the synthetic time
series data, three evaluation metrics were computed,
mean squared error (MSE), root means squared error
(RMSE), and silhouette score. These metrics measure
the similarity between the original and synthetic data,
providing insights into the accuracy and fidelity of the
generated time series.

Table 1 presents the evaluation metrics for the com-
parison between the original and synthetic time series of
different classes.

The evaluation metrics demonstrate that the synthetic
time series data achieves low MSE and RMSE values,



Table 1
Evaluation metrics for original and synthetic time series.

Class MSE RMSE

Class 1 0.0286 0.0326
Class 2 0.0326 0.0326

indicating a close resemblance to the original data.

Figure 5: Comparison of silhouette score between original
and synthetic data for class 1 and class 2.

From Figure 5, the fact that silhouette scores for both
the original and synthetic data are consistently close to 0,
when comparing classes 1 and 2, suggests a high degree
of overlap and limited separation between these classes
in both the real and synthetic time-series data. It can be
observed that the values have the same behavior even
with the original series.

The presence of overlapping classes in the original
data explains the similar silhouette scores obtained with
the synthetic data. The model captures this inherent
overlap during the data generation process, resulting in
synthetic data that faithfully reflects the characteristics
of the original data.

An important characteristic to be observed by the sil-
houette scores is that the comparisons between classes
generated with originals are smaller, consequently closer
than between classes (original or generated). That is, the
generation preserves the distribution with some overlap-
ping, even having some distance from the original points,
which is required for synthetic data.

Thus, as classes have overlapping, shown by the values
between original classes 1 and 2, the synthetic data will
also have some overlapping, not necessarily generating
fully separable values. So, what is expected from syn-
thetic data is that they can reinforce their classes, but
not create data that, even if beneficial if fully separable,
would not represent their respective classes well.

The post-processing of the series indicates that the
general shape of the series is more important for its iden-
tification than specific points, since the Gaussian filter did

not deteriorate the series, nor did it cause large distances
between original and synthetic data.

5. Conclusion
In this paper, experiments were conducted to develop an
LSTM-GAN architecture for generating synthetic pseudo-
time series data. The experiments involved dataset prepa-
ration, model configuration, training, post-processing,
and evaluation. The results indicate that the LSTM-GAN
can successfully generate synthetic time series data that
closely resemble the real data. These findings contribute
to the field of time series data generation and showcase
the potential applications of GANs in this domain.

Overall, the experiment chapter provides insights into
the development and evaluation of an LSTM-GAN archi-
tecture, laying the foundation for further advancements
in synthetic time series data generation.

While the silhouette scores may be low, it is crucial to
emphasize that the synthetic data still carries valuable
information and can be effectively utilized in various ap-
plications, such as data augmentation or training robust
classifiers. Despite the overlapping nature of the classes 1
and 2, the synthetic data serves as a valuable resource for
enhancing the diversity and quantity of available data,
contributing to the overall performance and generaliza-
tion capability of models trained on it.

These results confirm that our LSTM-GAN model suc-
cessfully generates synthetic time series data that accu-
rately captures the patterns, trends, and characteristics
of the original data, making it a valuable resource for var-
ious applications in time series analysis and modeling.

Future research directions could focus on exploring dif-
ferent model architectures, incorporating additional com-
ponents like attention mechanisms, or applying transfer
learning techniques to leverage pre-trained models for
improved performance.
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