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Abstract

The global impact of the COVID-19 pandemic has been significant, which requires data analysis to understand trends and
patterns. However, this endeavor is challenging due to the complex transmission dynamics and diverse factors that influence
the virus’s spread. The data associated with COVID-19 is extensive and constantly evolving, and extracting meaningful
insights from it is difficult. Therefore, the objective of this study is to analyze the impact of COVID-19 in various European
countries, to identify common patterns, and to make predictions within the relevant context. To accomplish this, we used
clustering techniques to reveal patterns in COVID-19 cases among European countries. The implementation involved cluster
analysis to estimate labels based on cluster size and density while considering relevant background information. Subsequently,
a classification model was applied to the labeled dataset. Using the K-Prototypes algorithm and leveraging the Silhouette
score for identification, we determined the optimal number of clusters. These clusters were then combined based on density,
and the degree of sparsity was assessed. As a result, two clusters emerged: one labeled as "low chance of infection" and the
other as "high chance of infection.” Using these results, we implemented a classification algorithm, achieving an accuracy rate
of 90%. For this study, we gathered data from five different sources, consolidating them into a single dataset. Our findings
demonstrate that combining COVID-19 datasets with diverse features enables trend analysis, while the use of clustering
algorithms facilitates successful label identification in unsupervised learning scenarios involving unlabeled data. The density
and size of clusters prove valuable in estimating labels, enhancing our overall understanding of the data. Our code is publicly

available here.
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1. Introduction

The COVID-19 pandemic has had a profound impact on
the global population, causing significant disruptions in
healthcare systems, industries, and societies around the
world. To control the spread of the virus and alleviate
pressure on healthcare systems, numerous countries have
implemented strict measures. In Europe, like in other re-
gions, the COVID-19 outbreak emerged in January 2020
and quickly escalated, leading to a surge in cases and
fatalities in hospitals [1]. While some European coun-
tries are currently experiencing new waves of infections,
others are still dealing with a relatively low number of
COVID-19 cases. Throughout the epidemic, France, Italy,
Spain and the United Kingdom have documented a sig-
nificant number of cases and fatalities[2]. To combat the
virus, the European Union and many member states have
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implemented various measures such as decontamination,
curfews, travel bans, and vaccination campaigns.

As governments implement various containment and
social distancing measures, the demand for healthcare
systems has increased significantly. This poses a chal-
lenging problem in effectively managing infected pa-
tients in hospitals. Having an effective modeling method
that can identify patterns and predict the spread of the
virus within the population would be highly valuable for
preparing and formulating health and economic policies
for governments, administrators, and decision-makers.
This would aid in slowing down or halting the spread of
the virus. With the increase in cases of COVID-19 and
the availability of more data, several studies have utilized
mathematical models [3], [4], [5] to analyze the spread
of the virus. In addition, [6], [7] have also used LSTM
models to forecast. However, these models often rely
on outdated data from the same country, which limits
their effectiveness. In a cluster analysis study [8], simi-
larities were observed in the dynamics of the spread of
the disease between countries such as Italy, France, and
Germany, which implemented similar intervention strate-
gies. In another study [9], supervised machine-learning
approaches were used to predict the future of COVID-19.
Furthermore, [10] demonstrated the potential of Machine
Learning and cloud computing to improve the prediction
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of epidemic growth.

Most existing works are confined to forecasting within
specific countries or regions, overlooking the inclusion of
newly reported cases, recovery rates, and mortality num-
bers that vary across different countries and over time.
In this study, we utilized COVID-19 data from diverse
sources. We employed clustering techniques for pattern
recognition and applied the concept of estimating class
labels derived from the work of [11] for estimating class
labels. Subsequently, we applied classification methods
to develop, train, and assess a supervised model aimed at
predicting COVID-19 cases.

The remainder of this study is organized as follows.
Section 2 discusses the existing research conducted in
the relevant area, along with its limitations. Section 3
outlines in detail the proposed research methodology.
Section 4 presents information on the datasets used in the
research, along with the preprocessing and analysis steps
taken. Section 5 provides a comprehensive overview of
the conducted experiments. Finally, Section 6 presents
the conclusions drawn from the research and outlines
potential future work in the given research area.

2. Related Works

Clustering techniques have been utilized by researchers
since the initial spread of COVID-19 cases. These tech-
niques have been instrumental in grouping and identi-
fying distinct patterns to discern differences or similar-
ities among country-specific cases. Cheema et al. [12]
proposed the implementation of the K-Means algorithm
to establish diverse patterns among countries based on
various features such as disease prevalence, health sys-
tems, and environmental indicators. The elbow method
was employed to determine the optimal number of clus-
ters, considering the sum of squared distances between
samples and their closest cluster centers. Their study
successfully demonstrated the reliability of Centroid-
based Partition clustering in identifying patterns among
country-specific cases. However, some limitations of this
research include the need to consider both categorical
and numerical features, as K-Means may not be the most
suitable choice in such cases. Additionally, as the data
only covers the year 2021, it may not accurately reflect
the current situation for further analysis. Gohari et al.
[13] also employed the K-Means algorithm to analyze lon-
gitudinal patterns of change in quantitative COVID-19
incidence and mortality rates. They utilized dimension-
reduction techniques to identify correlations between
features, which enhanced the model’s performance. The
research successfully identified three distinct patterns
through experiments and compared different trajectories.
Although this research presents an innovative approach
in the field, it is limited to quantitative data and does not

consider qualitative data, which can influence the spread
of the disease.

In the study conducted by Lai et al. [14], the authors
analyzed the incidence and mortality rates of 57 countries
in 2020. They used Spearman’s rank-order correlation to
examine the relationship between cases and deaths. How-
ever, this research overlooked trends and patterns, which
can be crucial for further analysis. Several other research
works have focused on clustering COVID-19 cases for
different countries, employing the same K-Means algo-
rithm.

Labeling unlabeled data has been a significant area of
research, with various ideas and approaches proposed.
According to Fredriksson et al., [15], approximately 80%
of engineering tasks in a machine learning (ML) project
involve data preparation and labeling. Data preparation
and labeling often require extensive effort due to incom-
plete datasets or the lack of labels for some or all in-
stances. Moreover, even when labels are available, they
may not be of good quality, leading to incorrect or par-
tially correct labels for data points. High-quality labels
are crucial for successful supervised machine learning,
as the model’s performance during operations is directly
influenced by the quality of the training data.

Different techniques have been suggested by previous
researchers to address the labeling challenge. Cui et al.
[16] proposed an approach where samples are divided
into clusters, and classification models are applied to
each cluster based on the dataset’s behaviors. The results
from each cluster are then combined. To improve clas-
sification performance, the swarm algorithm was used
for clustering, classification, and ensemble learning. The
cluster-based ensemble learning method proved effective
with cross-validation practices. However, this research
only utilized labeled samples and did not consider unla-
beled ones.

In another study by Kusumaningrum et al., [17], Chi-
Square was used for labeling with the assistance of K-
Means clustering. The homogeneity test was conducted
using the Silhouette coefficient, followed by employing
the Chi-Square Test for automatic cluster labeling in gen-
eral.

In the study conducted by Yogesh [9], the aim was to
develop an LSTM (long-short-term memory) model for
forecasting COVID-19 deaths and cases, specifically for
Italy and the United States. The model was subsequently
evaluated using data from Germany, France, Brazil, India,
and Nepal. On the other hand, Zeroual et al. [18] con-
ducted a comparative study of five deep learning methods
(RNN, LSTM, BILSTM, GRU, and VAR) to forecast the
number of new cases and recovered cases. However, it
should be noted that both researchers focused on a lim-
ited set of features during their investigation, potentially
limiting the scope and comprehensiveness of their find-
ings.The work by [19] introduced the concept of creating



a transmission dynamics predictor that exploits tempo-
ral variations among different countries in relation to
the disease’s spread. This is significant because certain
countries encountered outbreaks before others. How-
ever, it’s important to note that the data collected by the
researchers spanned only a duration of three days.

3. Methodology

3.1. Pattern Recognition

Associating a classification with a label is known as recog-
nition. Pattern recognition, as the science of drawing
conclusions based on data, aims to categorize items or
events into groups based on shared characteristics. In
our work, we are utilizing clustering, which falls under
unsupervised learning, to create patterns and uncover
commonalities among the data. Clustering is an effective
technique for identifying inherent structures or group-
ings within a dataset without the need for pre-existing
labels or categories.

3.2. Label Estimation

Labeling data for COVID-19 manually is a time-
consuming task that demands significant human re-
sources. However, our proposed approach tackles this
challenge by estimating relevant labels for data points,
enabling supervised learning without the need for ex-
plicit user-provided labels.

When it comes to defining the exact formula for small
clusters, it is important to note that there is no univer-
sally accepted formula. In our approach, we consider the
number of data objects within a cluster to determine its
size. Let us assume that we have k clusters and a cluster
set C' containing N data points.

Let the number of data points in each cluster be % and
a be the parameter used to determine whether a cluster
is considered small or not. a cluster c is considered small
if

N
|Ci|<a'; 1)

where |c;| is the number of data points of the cluster. For
example, =0.2 indicates that if a cluster contains less
than 20% then the cluster is considered small. As a next
step, we are exploring whether the cluster is sparse or
dense. For partitioning-based clustering, we used the
sum of squares within the cluster e.

In order to find the degree of sparsity, we have /3, and
we assume that the cluster is sparse when:

€; < [ - median(E) (2)

where F is the set of ¢; for all i. As a result, if 8 =2.0
means that € of a cluster is greater than 2.0 - median(E)
and it is sparse.

In our research, we aimed to assess the prevalence of
specific clusters and determine their commonality. To
achieve this, we utilized the k-prototypes clustering tech-
nique, which is suitable for both categorical and numer-
ical data. We manipulated the size and density of the
clusters by varying the values of parameters « and 3. By
applying the k-prototypes clustering algorithm, we were
able to cluster the data effectively. Following the clus-
tering process, we assigned a class label to each cluster
based on the features it contained. In COVID-19 cases,
infections are categorized as high or low chance of infec-
tion. We assign labels to clustered dataset points using
two rules: (1) Dense or sparse clusters are designated
as "high chance," and (2) while others are categorized as
"low chance." This involves classifying clusters into "low"
or "high" likelihood of infection groups based on their
characteristics. As a result, both the cluster and the data
points contained within it are assigned identical labels,
reflecting their infection likelihood.

In general, if a cluster exhibits high density or sparsity,
it is labeled as having a high chance of infection. On the
other hand, if a cluster is not extremely dense or sparse,
it can be labeled as having a low chance of infection. This
approach allows us to categorize clusters based on their
characteristics and assign relevant infection likelihood
labels accordingly.

3.3. Context Prediction

To separate the instances in the training data into appro-
priate classes, SVM is used. SVM utilizes a hyperplane
defined as w” z; + b = 0, where w is the weight vector
and b is the bias term. The marginal hyperplanes, H1
and H2, are given as [20]:

Hi:(w 'z +b)=1
H2: (w'z; +b) = -1

Thus, correctly classified points satisfy the inequality:
Yi (wTﬂci +b)>1

In SVM, the margin refers to the distance between
the marginal hyperplanes, also known as the decision
boundary. Specifically, for a linear SVM, the margin is

equal to 2, where w represents the weight vector of

the hyperlple‘mes. Support vectors are the data points that
lie on either the H1 or H2 hyperplanes, which define
the margin. These data points play a crucial role in de-
termining the position and orientation of the decision

boundary.



4. Dataset

4.1. Dataset Description

The datasets used in this paper were collected from the
European Centre for Disease Prevention and Control
'and [2] Our World in Data 2. In total, five datasets were
used for our investigation.

The primary dataset used is titled "Data on the daily
number of newly reported COVID-19 cases and deaths
by EU/EEA country." This dataset covers the period from
February 2020 to October 2022 from 30 European coun-
tries. The second dataset contains vaccination infor-
mation, providing details on the COVID-19 vaccination
progress across different countries. The third dataset in-
cludes information on the Gross Domestic Product (GDP)
of countries impacted by COVID-19. The fourth dataset
focuses on travel restrictions implemented by each coun-
try. The fifth dataset concentrates on school restrictions
in European countries. It considers different levels and
time periods of school closures, reopening, and other
related restrictions. Finally, we created a comprehensive
compilation of all five datasets, resulting in a final dataset
with a total of 2,246,240 entries. This comprehensive
dataset serves as the basis for our analysis and research
findings. It encompasses a diverse range of numerical
and categorical units with varying scales.

4.2. Exploratory Data Analysis

Figure 1 presents the changes in COVID-19 cases over
time. In the beginning of 2021, the overall number of
cases across countries was relatively low, and this trend
continued throughout the year. Towards the end of 2021,
there was a notable increase in cases, reaching its peak
in late 2021 and remaining consistently high throughout
2022. However, there was a significant decrease in cases
towards the end of 2022, indicating a decline in COVID-
19 cases. Figure 2 shows the overall death figures caused
by the spread of COVID-19 from 2021 to 2022. Initially,
during the early stages of this period, the number of
deaths was notably high. This could be attributed to the
limited knowledge and understanding of the pandemic,
and the lack of effective solutions and methods to handle
it. However, as vaccinations and other measures were
implemented, the number of COVID-19 deaths began to
decline. Nevertheless, in 2022, there were still consider-
able rates of deaths reported. Towards the end of 2022,
there was a significant decrease in these rates, as several
decisive steps were taken in response to the increased
severity of the pandemic.

'www.ecdc.europa.eu
“www.ourworldindata.org
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Figure 1: COVID-19 cases over time.
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Figure 2: COVID-19 deaths over time.

5. Experimental Setup

5.1. Data Preprocessing

During the data preprocessing phase, we encountered
missing values in some features of the dataset. To address
these missing values, we applied imputation techniques,
which involve estimating the missing values based on
the available data. In our case, we found that median and
mode imputation were suitable approaches. Therefore,
we performed median or mode imputation wherever nec-
essary, substituting the missing values with the median
or mode of the corresponding feature. Additionally, we
opted to drop insignificant missing values to ensure the
integrity of the data.

Lastly, to ensure data integrity, we conducted a check
for duplicate columns in the dataset. Any duplicate
columns identified were removed from the dataset to
avoid redundancy. Additionally, we applied normaliza-
tion and standardization techniques to scale the data
within specific ranges using Z-score standardization.
These pre-processing steps help to enhance the quality
and comparability of the data for further analysis.

Z-score can be defined as follows:



Where z represents standardized version of original
value, x is the dataset we want to normalize y represents
mean of dataset or column and o demonstrates standard
deviation of column or dataset.

5.2. Data Analysis

Figure 3 shows the direct impact of vaccination on
COVID-19 cases during the entire period of analysis. The
results were obtained by calculating the total number of
vaccinations, which involved summing the administered
doses. We further analyzed the percentage of the popula-
tion that received at least one dose of the vaccination.
In Figure 4, we observed a correlation between the
daily new COVID-19 cases and vaccination rates. When
the daily new cases were high, the percentage of vac-
cinated individuals remained low. Conversely, as the
vaccination rates increased, the number of new cases
decreased. As time progressed, with a gradual decline
in the number of COVID-19 cases, the demand for vacci-
nations also decreased. These findings demonstrate the
significant role vaccination plays in curbing the spread of
COVID-19 and reducing the number of cases over time.
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Figure 3: Vaccination Vs COVID-19 cases

In cluster analysis, various methods can be utilized,
such as Chi-Square, ExtraTreeClassifier, Forward Feature
Selection, and Correlation-based Feature Selection [21].
For our analysis of the clustering method, we employed a
correlation graph, specifically utilizing the Pearson Cor-
relation Coefficient. This coefficient is a measure of the
strength of the relationship between different features.
The Pearson correlation coefficient ranges between -1
and +1. A value close to +1 indicates a strong positive
correlation between features. In such cases, if one feature
increases, the other feature is also likely to increase, and
vice versa. Conversely, a value close to -1 indicates a
strong negative correlation. In this scenario, when one
feature increases, the other feature tends to decrease, and

vice versa. By utilizing the Pearson correlation coeffi-
cient and examining the correlation graph, we can gain
insights into the relationships between different features
and identify patterns within the data. This assists in un-
derstanding the underlying structure and dependencies
among the variables, thereby aiding the cluster analysis
process [21].
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Figure 4: Heatmap for COVID-19 confirmed cases.

In Figure 4, we observe and interpret the correlation
between various features. A positive correlation exists
between Covid-19 cases and deaths (textbf0.62), as well
as between Covid-19 cases and the Population feature
(textbf0.22). On the other hand, we find a negative correla-
tion between international school closures and Covid-19
cases (textbf-0.24). This indicates that when international
school closures are implemented, there is a reduction in
the number of Covid-19 cases. Similarly, a negative corre-
lation exists between travel controls and Covid-19 cases
(textbf-0.037), suggesting that as travel controls become
more stringent, the number of Covid-19 cases decreases.

These correlations provide valuable insights into the re-
lationships between different factors and Covid-19 cases,
deaths, and control measures. Understanding these con-
nections can aid in making informed decisions and for-
mulating effective strategies to manage and mitigate the
impact of the pandemic.

5.3. Experimentation

In our experiment, we employed two approaches: K-
Prototypes [22] and SVM [23]. For both approaches, we
utilized specific hyperparameters, which are listed in
Table 1. These hyperparameters were chosen to optimize
the performance and accuracy of the models.

Rather than using the default parameters for K-
Prototypes and SVM, we chose to determine the best
hyperparameters through grid search. The specific pa-
rameter values we chose are presented in Table 1.



Table 1
Hyperparameters
Algorithms Hyperparameters | Values
n_clusters 12
K-Prototypes init Cao
n_jobs 4
kernel linear
SVM C 0.001

5.4. Evaluation Metrics

In our clustering evaluation, we utilized the Silhouette
Score as a metric to assess the quality and effectiveness
of the clustering results. The Silhouette score can be
computed as follows:

. pP—q
*= nax(p, ) @

Where p is the mean distance to the points in the
nearest cluster And, ¢ is the mean intra-cluster distance
to all the points.

To assess the SVM model’s performance, we employed
metrics such as accuracy, precision, and recall.

Accuracy = TP+TN (5)
TP+TN+ FP+ FN
Precision = TPF:&—iPFP (6)
Recall = TP}—;—iPFN ()
6. Results

Based on the information provided in Table 2, we ob-
served the distribution of countries across different clus-
ters as follows. Cluster0, Clusterl, Cluster4, Cluster5,
Cluster7, and Cluster9 each consist of one country. Clus-
ter10 and Cluster11 contain three countries each. Clus-
ter6 is assigned to two countries and Cluster2 is assigned
to four countries. Cluster8 includes nine countries and
has the highest mean of confirmed cases. During the
Label Estimation phase, all twelve clusters were analyzed
based on their sparsity and density. As a result, it was
determined that Cluster2 and Cluster8 exhibited factors

Silhouette Score
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Figure 5: K-Prototypes clustering results.

Table 2
Clusters produced based on COVID-19 Cases

Cluster Cases in country

Cluster0 Austria

Cluster1 Austria

Cluster2 Austria, Belgium, Bulgaria, Cyprus
Cluster3 Germany, Belgium

Cluster4 Austria

Cluster5 Austria

Cluster6 Spain, Germany

Cluster7 Austria

Cluster8 Finland, Estonia, Greece, Denmark,
Cluster9 Belgium

Cluster10 | Spain, Germany, Belgium
Cluster11 | Spain, Germany, Greece

associated with a low risk of infection. The specific char-
acteristics of these clusters contributed to a lower risk of
COVID-19 infection.

On the other hand, the remaining clusters were com-
bined to represent the high-risk category. These clusters
likely had higher case densities and lower overall popula-
tion vaccinations, indicating a higher risk of COVID-19
spread in those regions. By categorizing the clusters into
high and low-risk categories, we gain valuable insights
into the different patterns of COVID-19 prevalence and
can further explore factors contributing to these vari-
ations. As indicated in Table 2, certain countries are
present in multiple clusters. This phenomenon can be
attributed to the fact that certain regions within a coun-
try pose higher risks, while other areas exhibit lower
risks. This pattern emerges due to variations in risk lev-
els across different parts of the same country.

For context prediction, we employed the Support Vec-
tor Machine (SVM) algorithm. We split the dataset into
a testing set comprising 25 percent of the data and a



training set comprising 75 percent. The table below dis-
plays the performance metrics of the model. The SVM
model achieved an accuracy of 0.84 , indicating that it
correctly predicted the context in 85 percent of the cases.
The precision, which measures the proportion of cor-
rectly predicted positive instances, was 0.90. The recall,
representing the proportion of actual positive instances
correctly identified, was 0.71. These metrics provide in-
sights into the performance of the SVM model for context
prediction.

Table 3
Performance report for SVM

Performance Metrics | Values in percent
Accuracy 84%
Precision 90%
Recall 1%

7. Discussion

Based on the results obtained from our experiments, it
is important to acknowledge and discuss the potential
challenges and areas for improvement in our work. One
significant challenge we encountered was obtaining posi-
tive results for the Silhouette Score, which is an important
measure to evaluate the quality of cluster grouping. Ini-
tially, we faced negative or low scores due to the lack
of appropriate scaling in our dataset. Scaling the data
correctly is crucial to ensure reliable and meaningful re-
sults. Going forward, it is essential to pay attention to
data scaling techniques and implement them effectively
to enhance the accuracy of our analysis.

Another challenge we faced was the labeling of the
dataset. Since the initial dataset did not include labels, we
had to undertake the task of labeling the data ourselves.
Accurate labeling is essential for cluster analysis, as it
provides meaningful interpretation and understanding
of the clusters. It required careful analysis of the features
of each country to assign appropriate labels. In future
research, it would be valuable to explore automated or
semi-automated labeling techniques that can expedite
the process and enhance the accuracy of labeling. Fur-
thermore, while label estimation techniques were not
the focus of our study, it is an aspect that could bene-
fit from improvement. Considering the specific features
of the dataset, exploring alternative label estimation ap-
proaches can provide more nuanced and detailed analysis
objectives. Incorporating advanced label estimation tech-
niques could improve the overall analysis and provide
more comprehensive insights into the patterns and dy-
namics of COVID-19 spread.

Addressing these challenges and limitations in our
research will contribute to further improvements in the

accuracy and effectiveness of our clustering analysis. By
refining data scaling, enhancing labeling techniques, and
exploring advanced label estimation approaches, we can
advance our understanding of COVID-19 patterns and
provide valuable insights for future studies in this field.

8. Conclusion and future work

COVID-19 data has garnered significant attention in vari-
ous research domains. However, to the best of our knowl-
edge, the integration of clustering techniques for pat-
tern estimation, label exploration, and context prediction
has not been previously investigated. We have success-
fully achieved our objective of grouping countries based
on various COVID-19 features, labeling the data using
data characteristics, and implementing context predic-
tion. However, there is still much more to be done in this
research. One crucial aspect that deserves consideration
is the integration of heterogeneity and coherence of the
clusters to enhance accuracy. Combining clustering re-
sults from multiple algorithms or incorporating ensemble
methods can lead to more robust and reliable clustering
outcomes.

In our work, we have utilized the K-Prototypes algo-
rithm for handling both numeric and categorical features.
However, there are other algorithms, such as the Cluster
Ensemble algorithm (CEBMC), that can handle both types
of features and may provide additional insights. Explor-
ing and implementing multiple algorithms can lead to a
comprehensive understanding of the data and improve
the analysis. Furthermore, to enhance the performance
of the model, we aim to incorporate multiple clustering
algorithms in a combined manner. Ensemble learning
techniques, where several clustering algorithms work
together, can produce more accurate and stable results.
Additionally, we seek to enhance the robustness of label
estimation to ensure more accurate results. Exploring
and implementing various label estimation techniques,
considering the characteristics of the dataset, can lead to
more meaningful clustering analysis.

Overall, our research has made significant progress in
the domain of COVID-19 data analysis using clustering
techniques. However, there are still exciting avenues to
explore and improvements to be made. By addressing
the limitations and considering the integration of multi-
ple algorithms and ensemble methods, we can advance
our understanding of COVID-19 patterns and contribute
valuable insights to the research community.

9. Online Resources

Our dataset and code are publicly available here. at https:
//github.com/Tsegaye-misikir/NCC.
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