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Abstract. Information overload is a common problem in current In-
formation and Knowledge Based Systems. The Web, being the largest
public available information source, is particularly affected by this issue,
so several approaches to deal with it are being developed by Semantic
Web researchers. Most of them are based on using context knowledge
to delimit which information is significant to a user, such as the CDR
ontology design pattern, our previous contribution to handle relevance
depending on context in OWL ontologies. In this work, we extend this
proposal with fuzzy Description Logics formalisms in order to represent
vague knowledge about context and application-specific facts, and to
manage the degree of importance of a relevance relation. A main advan-
tage of our proposal is that current (non-fuzzy) standards and inference
engines can be used.

1 Introduction

Anyone who has been staring at his computer screen –INSPEC database, Google
Scholar and ScienceDirect on the web browser, in addition to Zotero with se-
lected papers and a couple of seven hundred pages pdf files with the last ESWC
proceedings–, hastening to find the right reference to complete a submission one
hour before the deadline, has an idea of what information overload is. This state
is more precisely defined in Information Systems [1], where information over-
load is described as the situation when a user is provided with more data than
he or she can digest, either because filtering it manually would take too much
time or simply because interesting facts cannot be told from useless, resulting
in unproductive decision processes and knowledge management failure.

Warding off this situation is one of the purposes of Semantic Web technolo-
gies. Agents in the Semantic Web use metadata to locate, discover and integrate
different information sources, which will drive eventually to provide users with
a considerable amount of data. Clearly, semantic agents must implement mech-
anisms that reduce the amount of information delivered to users, in such a way
that they supply just the just amount of data to them –these which users are
really interested in–, in order to avoid information overload. That means that,



when retrieving information to support users, only those segments of ontolo-
gies which are relevant or significant with respect to the current task should be
considered. This is known as selective activation of knowledge.

Hence it is necessary to represent which pieces of the available information
are relevant to carry out a task. In that regard, what is important depends on
(i) which is the problem to be solved, and (ii) other factors, somehow extrinsic,
as user environment, preferences, previous actions. etc. All these elements make
up, in a wide sense, the context of use of the system. In Semantic Web systems,
where knowledge is represented using ontologies, this context can be as well
represented using an ontology.

In a previous work, we developed an ontology design pattern to represent in
OWL this notion of relevance dependent on context [2]. The so-called Context-
Domain Relevance (CDR, read as cider) pattern defines a set of rules to build
a new OWL ontology where context descriptions and knowledge directly related
to the application domain are connected through qualified relations. In that pa-
per, we present a simple use case where this kind of ontologies are very useful.
We suppose a doctor who is attending to an unconscious person with a bleeding
wound out of the hospital. In order to carry out a proper treatment, it is very
valuable for the doctor to know certain facts about the clinical history of the
patient which should be taken into account according to the current patient sit-
uation –specifically if he has been previously diagnosed of blood borne diseases
or adverse reactions to anesthetic drugs administration–, but not every regis-
ter recorded in the Hospital Information System (HIS). The relevance or CDR
ontology represents the connections among context descriptions (the patient sit-
uation) and domain knowledge (the registers of the clinical database), making
possible to infer the latter given the former with the attached algorithm.

The relevance ontology resulting from applying the CDR pattern has two
main lacks. First of them, definitions of complex context concepts (respectively
for definitions of complex domain concepts) are crisp, which results in having a
context description either included or not in another context description. As a
result, it is not possible to represent directly vague contexts, e.g. “the patient is
slightly unconscious”, and partial similarity between contexts, e.g. “anaphylaxis
is quite similar to sepsis”. On the other hand, the relevance ontology only allows
the developer to associate which concrete information is interesting in a scenario,
but it does not measure how important this connection is, which is convenient in
some applications. Recalling the example of our doctor, it can be realized that
electronic registers about previous adverse drug events are more important in
this case and should be presented firstly to the doctor: avoiding an anaphylactic
shock is a major priority and medical protocols prevent the doctor from being in
contact with patients’ blood. Ranking the relevance relations would allow system
responses to be ordered by precedence and a threshold to be fixed in order to
retrieve only the top k most relevant domains.

In this paper, we propose an extension of the CDR design pattern to deal with
vague contexts and domains and to quantify relevance relations. Our approach
relies on Fuzzy Description Logics (fuzzy DLs), a logical formalism proposed in



the literature which combines Fuzzy Logic theory and classical Description Log-
ics in order to define a sound framework to represent and reason with imprecise
and vague knowledge in ontologies.

The contributions of this paper are the following. Firstly, we reassess the
original definition of the CDR pattern and, as a novelty, we demonstrate that
the reasoning procedure is complete. Secondly, as the main contribution, we
formulate an extension of the pattern which results in a fuzzy ontology. This ex-
tension allows imprecise context and domain descriptions to be represented and
relevance relations to be weighted. Though the fuzzy CDR ontology is not OWL
compliant, previous results can be applied to reduce it to a crisp representation
in order to use existing inference engines [3, 4].

The paper is structured as follows. Section 2 recalls the CDR design pat-
tern from [2] and completeness and complexity of the reasoning algorithm are
discussed. Section 3, the core of the paper, defines the fuzzy extension of the
pattern, describes the reasoning process, and proves its utility with an example.
Section 4 describes some notable approaches in four areas related to this work:
ontology design patterns, contextualization of ontologies, ranking of interest in
ontologies, and fuzzy DLs. Finally, in Section 5 we summarize the results of this
work and point out some directions for future research.

2 Representation of context-dependent relevance
relations

2.1 Basics on DLs

We will use in this paper DLs notation, which can be directly translated to XML-
based OWL syntax. An introduction to DLs is provided next; further details can
be found in [5].

The signature (or vocabulary) of a description logic contains the symbols
used in it. Formally, the signature is the disjoint union S = R ] C ] I, being
R = {RA} the set of atomic roles (or properties), C = {CA} the set of atomic
concepts (or classes), and I = {a, b, . . .} the set of individuals (or instances).
From these atomic elements in S, new complex roles (noted Rol(S) = {Ri}),
concepts (Con(S) = {Ci}), and axioms (Ax(S) = {Oi}) can be composed (sub-
scripts will not be used when disambiguation is not needed). By extension, the
signature S(O) of an axiom (respectively for roles and concepts) is the set of
atomic elements of S which are included in O. Several logics are distinguished in
DLs depending on the constructors allowed to create new complex expressions;
each one is named using capital letters which denote the valid operators. Gen-
erally, having more constructors in a logic means that it is more expressive and,
consequently, the computational complexity of reasoning processes is higher.

A DL ontology is a triple K = 〈T ,R,A〉, where T (the TBox) contains
axioms about concepts, R (the RBox) axioms about roles, and A (the ABox)
axioms about individuals. The signature of an ontology S(K) is the union of all
the signatures S(O) of the axioms in K. The set of concepts (resp. roles) defined



in an ontology is noted Con(K) (resp. Rol(K)). Hereafter, we will use the basic
DL ALC unless otherwise indicated.

A TBox T consists of a finite set of general concept inclusion (GCI) axioms
of the form C1 v C2, which means that concept C1 is more specific than C2, i.e.
C2 subsumes C1. A concept definition C1 ≡ C2 (C1 and C2 are equivalent) is an
abbreviation of the pair of axioms C1 v C2 and C2 v C1. Concept expressions
for C1 and C2 can be derived inductively from atomic primitives using concept
constructors. Table 1 shows the constructors allowed for concepts and roles in
ALC. In more complex DLs, a RBox R consists of a finite set of role axioms
stating role properties such as inclusion, transitivity, etc. However, in ALC the
RBox is assumed to be empty and complex role expressions cannot be used
in concept and instance axioms. An ABox A consists of a finite set of axioms
about individuals. These axioms describe an individual with respect to a concept
(a : C, which means that a is an instance of C) or a pair of individuals with
respect to a role ((a, b) : R, which means that (a, b) is an instance of R).

Table 1. Syntax and semantics of complex concepts and roles in ALC.

Constructor Syntax Semantics

(atomic concept) A AI ⊆ ∆I
(top concept) > ∆I

(bottom concept) ⊥ ∅
(concept conjunction) C1 u C2 C

I
1 ∩ CI2

(concept disjunction) C1 t C2 C
I
1 ∪ CI2

(concept negation) ¬C ∆I \ CI
(universal quantification) ∀R.C {x :∀y, (x, y) /∈ RI or y ∈ CI}
(existential quantification) ∃R.C {x :∃y, (x, y) ∈ RI and y ∈ CI}
(atomic role) RA RIA ⊆ ∆I ×∆I

An interpretation I of an ontology K is a pair I = (∆I , ·I) where ∆I , the
domain of the interpretation, is a non-empty set, and ·I is a function which
maps every individual a onto an element aI ∈ ∆I , each concept in K with a
subset of ∆I , and each role in K with a subset of ∆I ×∆I . This interpretation
is conveniently extended for complex concepts.

An ALC interpretation I is a model of:

– a :C iff aI ∈ CI ,
– (a, b) :R iff (aI , bI) ∈ RI ,
– C1 v C2 iff CI1 ⊆ CI2 ,
– a KB K = 〈T ,R,A〉 iff it satisfies each element in T , R and A.

One of the main reasoning tasks in DLs is subsumption checking: C2 sub-
sumes C1 w.r.t. K (noted as K |= C1 v C2) iff CI1 ⊆ CI2 is verified for every
model I of K. Classifying an ontology K consists of computing for each pair of
concepts C1, C2 ∈ Con(K) if K |= C1 v C2.



2.2 Formulation of the CDR design pattern

The CDR design pattern defines constructively how to develop a new ontology
–the relevance or CDR ontology– built upon the domain-specific and the context
vocabulary sub-models.

The domain sub-ontology KD contains the knowledge required to solve the
concrete problem that the system is facing. We will use the notation Dj (“com-
plex domain”) to name concept expressions built using elements in KD (and
ontology constructs); that is, S(Dj) ⊆ S(KD). The context ontology KC con-
tains the knowledge required to express the circumstances or the surroundings
under which the domain knowledge will be used; it can be seen as a formal
vocabulary to describe these situations. We will use the notation Ci (“complex
context”) to name concept expressions defined using elements of KC (and ontol-
ogy constructs); that is, S(Ci) ⊆ S(KC).

Note that Dj and Ci are not part of the domain and the context ontology.
Actually, they are defined in the CDR ontology (KR), which is a new ontology

where Ci, Dj , and links between them are defined. These links, named profiles,
state that the domain-specific knowledge Dj ought to be considered in situation
Ci. A profile concept is a new concept representing a profile-connection, and
is defined with existential restrictions on the complex context and the complex
domain that it links (via properties R1 and R2). Then, the relevance ontology
KR contains new classes (the so called “profiles”) which relate complex contexts
Ci and complex domains Dj through quantified roles:

Definition 1. Let KD and KC be, respectively, the domain and the context sub-
ontologies, Ci a complex context such that S(Ci) ⊆ S(KC) and Dj a complex
domain such that S(Dj) ⊆ S(KD). The relevance ontology or CDR ontology
which relates the set of pairs {(Ci, Dj)} (i.e. states that Dj is interesting when
Ci happens) is a consistent ontology KR = 〈T R,RR,AR〉 where T R includes
definitions for the concepts P>, C>, D>, Ci, Dj , Pi,j, and satisfies:

1. P>, C>, D> are the superclasses Profile, Context and Domain:
– Pi,j v P>, Ci v C>, Dj v D>

2. R1 is the (new) bridge property linking profiles and complex contexts:
– P> v ∀R1.C>

3. R2 is the (new) bridge property linking profiles and complex domains:
– P> v ∀R2.D>

4. Pi,j is the profile linking the named context Ci and the named domain Dj:
– Pi,j ≡ ∃R1.Ci u ∃R2.Dj

Notice that none of Ci and Dj are part of the domain and the context sub-
models, respectively, but they are defined in the new ontology KR. Therefore,
S(KC)∪ S(KD) ⊆ S(KR), i.e. KR must import the axioms stated in KC and KD
to preserve the semantics of Ci and Dj .

Proposition 1. Let KR be a CDR ontology, Ci and Ci′ complex contexts de-
fined in T R, and Dj and Dj′ complex domains defined in T R. The ontology KR
satisfies the property: Ci v Ci′ ∧Dj v Dj′ ⇒ Pi,j v Pi′,j′



This proposition reflects the intuition that if a context and a domain are
connected through a profile, more general (i.e. subsuming) contexts and domains
will be connected through a more general profile.

Proof. The proof is immediate from the forth condition in Definition 1.
ut

In general, the reciprocal is not true. This formulation allows a consistent
relevance ontology to be created with Pi,j v Pi′,j′ , but Ci 6v Ci′ and/or Dj 6v
Dj′ .

The main reasoning task involving a relevance ontology consists on finding
all the concepts in the domain ontology which are worth to be considered in a
given context, that is, the domains that are associated through profiles with a
complex context expressed using the context vocabulary.

Definition 2. Given the ontologies KR, KD and KC (with their respective sig-
natures S

(
KR
)
,S
(
KD
)
,S
(
KC
)
) and a complex context E (S (E) ⊆ S

(
KC
)
),

the restricted domain of the scenario E w.r.t. KR, noted as D
(
E,KR

)
, consists

of the concepts I in KD such as:

D
(
E,KR

)
=
{
I | I ∈ Con(KD) ∧ (E v Cn) ∧ (Pn,m v P>) ∧ (I v Dm)

}
Algorithm 1. D

(
E,KR

)
can be computed in practice as follows:

1. {Cn} = {Cn v C>| E v Cn}
2. {Pk,l} = {Pk,l v P> | (Pk,l v ∃R1.Ck) ∧ (Cn ≡ Ck)}
3. {Dm} = {Dm v D> | (Pk,l v ∃R2.Dl) ∧ (Dm ≡ Dl)}
4. D

(
E,KR

)
=
{
I ∈ Con(KD) | I v Dm

}
The final output of the algorithm to the user is the set of simple domain

concepts of KD which are relevant to the query context E. Due to length re-
strictions, we refer the reader to our previous work in [2] for an example on the
use of the crisp pattern and the algorithm, and to Section 3.3 for an example of
the fuzzy counterparts.

Proposition 2. Algorithm 1 is complete, i.e. it finds all the concepts I related
with E through profiles.

Proof. From the expressions in the steps 1-4 of Algorithm 1, it can be trivially
realized that every Pk,l subsuming the (hypothetical) profile PE,I linking E and
I is retrieved. By definition, E v Cn v Ck ∀n, k and I v Dm v Dl ∀m, l.
Recalling Proposition 1, we get directly that PE,I v Pn,m v Pk,l. ut

The computational complexity of Algorithm 1 is asymptotically bounded by
ontology classification, which depends on the expressivity of KR. Since profile
declarations (from Definition 1) are included in ALC, KR complexity is condi-
tioned by complexity of Ci and Dj expressions and, subsequently, by complexity
ofKC andKD ontologies. In the simplest case, that isKR,KC andKD are inALC
(with general TBoxes), concept satisfiability in KR is ExpTime-complete [6].
This complexity might be reduced by restricting the allowed constructors for
the complex context and domain expressions.



3 A fuzzy extension of the CDR pattern

3.1 Basics on fuzzy DLs

Fuzzy Sets theory and Fuzzy Logic are aimed at managing imprecise and vague
knowledge [7]. Fuzzy DLs extend DLs by letting concepts to denote fuzzy sets
of individuals and roles to denote fuzzy binary relations [8]. The notion of inter-
pretation is extended to the fuzzy case, in such a way that an individual of the
domain may belong to a concept with some degree in [0, 1] (analogously for a pair
of individuals and a role). The semantics of the constructors used to build non
atomic concepts and roles are conveniently extended; e.g. the semantics of the
concept conjunction are given by a t-norm function. Axioms are also extended
to the fuzzy case, holding to a degree; e.g. given two fuzzy concepts, a termi-
nological axiom may be asserted to define a fuzzy inclusion relation between
them.

In a fuzzy DL we can define, for instance, TomFavouriteGroups as the set of
bands that Tom (from MySpace) likes, with radiohead completely belonging to
it (degree equals to 1), while the cardigans may also belong but with less degree
(equals to 0.7). Similarly, two individuals can be partially related through a role:
radiohead isSimilarTo the cardigans with degree 0.6. Other axioms may be as
well fuzzified, e.g. GCIs: AcidJazz is a subset of Funk with degree 0.7; then,
an AcidJazz-lover (an individual with membership degree equal to 1) can be
inferred to be interested in Funk to some extent (degree equal to 0.7).

In [4], a fuzzy extension of SHOIN –the DL underlying OWL– is precisely
described. The syntax and the semantics of the constructors and the axioms
of this fSHOIN are extensively discussed along that paper. The most inter-
esting contribution of that work is the definition and the implementation of a
transformation process that reduces reasoning with a fuzzy ontology to reason-
ing with an equivalent crisp ontology. According to this result, it is possible to
reuse current inference engines, so no new reasoners need to be developed. This
work is completed in [3], where a similar description and reduction for a fuzzy
extension of SROIQ –the DL underlying OWL 1.1, the most likely successor of
the current standard– is developed.

As mentioned in Section 2.2, in the crisp case, the new profile classes of
the relevance ontology are ALC concepts, whereas no special restrictions are
considered for Ci and Dj –at the most, they are expected to be in SHOIN (D).
Consequently, in this fuzzy extension we will consider fALC to define the new
fuzzy profiles; additionally, more complex fuzzy DLs for Ci and Dj expressions
may be contemplated, for instance these fSHOIN and fSROIQ. Next, the
fuzzy DL fALC is reviewed.

Let B = {≥, >}, C = {≤, <}, and α ∈ [0, 1]. A fALC TBox consists of
fuzzy GCIs, which constrain the truth value of a GCI, i.e. they are expressions
of the form 〈C vBα D〉. A fALC RBox is empty. A fALC ABox consists of a
finite set of fuzzy assertions. A fuzzy assertion can be an expression of the form
〈a :C B α〉, 〈a :C C α〉 or 〈(a, b) :R B α〉. Note that negative GCIs or negative
role membership axioms are not allowed.



A fALC interpretation maps every individual a onto an element aI ∈ ∆I ,
every concept C onto a function CI : ∆I → [0, 1], and every role R onto a
function RI : ∆I × ∆I → [0, 1]. For a t-norm ⊗, a t-conorm ⊕, a negation
function 	 and an implication function ⇒, Table 2 summarizes the syntax and
the semantics of the interpretation of concept, roles and axioms. We will use
Gödel implication for GCIs: α ⇒ β = {1, if α ≤ β || β, if α > β}; and Zadeh
family of functions for the remaining operators: t-norm α ⊗ β = min{α, β},
t-conorm α⊕ β = max{α, β},  Lukasiewicz negation 	α = 1− α.

Table 2. Syntax and semantics of complex concepts and roles in fALC.

Constructor Syntax Semantics

(top concept) > 1
(bottom concept) ⊥ 0
(atomic concept) CA CIA(x)
(concept conjunction) C uD CI(x)⊗DI(x)
(concept disjunction) C tD CI(x)⊕DI(x)
(concept negation) ¬C 	CI(x)
(universal quantification) ∀R.C infy∈∆I{RI(x, y)⇒ CI(y)}
(existential quantification) ∃R.C supy∈∆I{RI(x, y)⊗ CI(y)}
(atomic role) RA RIA(x, y)

A fuzzy interpretation I satisfies (is a model of):

– 〈a :C B α〉 iff CI(aI) B α,
– 〈a :C C α〉 iff CI(aI) C α,
– 〈(a, b) :RB α〉 iff RI(aI , bI) B α,
– 〈C vBα D〉 iff infx∈∆I{CI(x)⇒ DI(x)}B α,
– a fKB fK = 〈T ,R,A〉 iff it satisfies each element in T , R and A.

We assume that there are not fuzzy axioms of the form τ ≥ 0, τ ≤ 1 (which
are tautologies), τ > 1 and τ < 0 (which are obvious inconsistencies).

An axiom τ is a logical consequence of a knowledge base K, denoted K |= τ
iff every model of K satisfies τ . The greatest lower bound (glb) of a fuzzy axiom
τ is defined as the sup{α : K |= 〈τ ≥ α〉}.

3.2 Formulation of the fuzzy design pattern fCDR

The fuzzy CDR ontology extends the original proposal by letting contexts, do-
mains and profiles to be defined using fuzzy GCIs. Thus, complex context and
domain concepts can be stated to be partially similar using fuzzy GCIs, whereas
the degree of subsumption in a profile definition represents the importance value
of the connection between the involved context and domain.



Definition 3. Let KD and KC be, respectively, the domain and the context
subontologies, Ci a complex context such as S(Ci) ⊆ S(KC) and Dj a com-
plex domain such as S(Dj) ⊆ S(KD). The fuzzy relevance ontology which re-
lates the set of pairs {(Ci, Dj)} with degree αi,j (i.e. states that Dj is inter-
esting with rank αi,j when Ci happens) is a consistent fuzzy ontology fKR =
〈T R,RR,AR〉 where T R includes (non-exclusively) definitions for the fuzzy con-
cepts P>, C>, D>, Ci, Dj , Pi,j, and satisfies:

1. P>, C>, D> are the superclasses Profile, Context and Domain:
– Pi,jv≥1P>, Civ≥1C>, Djv≥1D>

2. R1 is the (fuzzy) bridge property linking profiles and complex contexts:
– P>v≥1∀R1.C>

3. R2 is the (fuzzy) bridge property linking profiles and complex domains:
– P>v≥1∀R2.D>

4. Pi,j is the (fuzzy) profile which links the named context Ci and the named
context Dj:
– Pi,jv≥αi,j

∃R1.Ci u ∃R2.Dj

It is interesting to note that the context ontology KC and the domain on-
tology KD may be fuzzy or not. However, both Ci and Dj are fuzzy concepts
defined with fuzzy GCIs. The example in Section 3.3 shows a fuzzy relevance
ontology built upon two crisp ontologies KC and KD.

By extension of the crisp case, the domain restricted by a context w.r.t. a
fuzzy relevance ontology contains all the (fuzzy or crisp) concepts of the domain
sub-ontology which are relevant in a given (fuzzy) context and the degree of
interest. It is formally defined as a set of pairs (domain concept, degree), where
“domain concepts” are the domains relevant to the context of the query (i.e.
related through profiles) and “degree” is a number computed on αi,j values.

Definition 4. Given the ontologies fKR, KD y KC (with their respective sig-
natures S

(
fKR

)
,S
(
KD
)
,S
(
KC
)
) and a complex context E ((S (E) ⊆ S

(
KC
)
),

the ranked restricted domain of the scenario E w.r.t. fKR, noted as D
(
E, fKR

)
,

consists of the pairs (I, αi,j) such as:

– I ∈ Con(KD) ∧ (E v>0 Cn) ∧ (Pn,m v>0 ∃R1.Cn u ∃R2.Dm) ∧ (Iv>0Dm)
– αi,j = glb(E v Cn)⊗ glb(Pn,m v ∃R1.Cn u ∃R2.Dm)⊗ glb(I v Dm)

The algorithm to calculate the ranked restricted domain of a scenario is a
fuzzy extension of Algorithm 1.

Algorithm 2. D
(
E, fKR

)
can be computed in practice as follows:

1. Get the complex contexts subsuming the query context (and their degree):
Z1 = {(Cn, βn) | (E v>0 Cn) ∧ (βn = glb(E v Cn))}

2. Get the profiles which involve the retrieved contexts (and their degree):
Z2 = {(Ck, Pk,l, βk) | (Pk,l v>0 ∃R1.Ck) ∧ (βk = glb(Pk,l v ∃R1.Ck)) ∧
(Ck ≡ C [Z1]

n )}



3. Get the complex domains involved by the retrieved profiles (and their degree):
Z3 = {(Pk,l, Dl, βl) | (P [Z2]

k,l v>0 ∃R2.Dl) ∧ (βl = glb(Pk,l v ∃R2.Dl))}
4. Combine the partial degrees of the retrieved profiles using a ⊗:

Z4 = {(Ck, Dl, βk,l) | ((Ck, Pk,l, βk) ∈ Z2) ∧ ((Pk,l, Dl, βl) ∈ Z3) ∧ (βk,l =
βk ⊗ βl)}

5. Aggregate all the degrees which a domain has been retrieved with using a ⊕:
Z5 = {(Dm, βm) | (βm =

⊕
(Ck,Dm,βk,l)∈Z4

(βk,l ⊗ βn))}
6. Get the I ∈ Con(KD) more specific than the retrieved complex domains (and

their degree):
D(E, fKR) = {(I, αi,j) | (I v Dm) ∧ (αi,j = βm ⊗ glb(I v D[Z5]

m ))}

(for simplicity, we assume that Cn, Ck v C>, Pk,l v P>, Dm, Dl v D>)

The output of the algorithm is a set of pairs containing all the I v Dm and
their degree of importance. A concept I can be retrieved with more than a degree
through different profiles, so these values should be conveniently aggregated,
using a t-conorm ⊕, in order to provide the user with an only final relevance
value. Therefore, the final output of the algorithm to the user will be a set of
pairs (simple domain concept, degree) which are the concepts of the domain
relevant to the context of the query.

Proposition 3. Algorithm 2 is complete, i.e. it finds all the concepts I related
with E through profiles and the degree of this connection.

Proof. From the expressions of Algorithm 2, it can be realized that the retrieved
Pk,l, Cn, Dm are the same as in the crisp case. The only difference with the
previous algorithm is the computation of β values.

Therefore, based on proof of Algorithm 1 and Definition 4, we have just to
prove that βk,l = βk ⊗ βl is equal to glb(Pk,l v ∃R1.Ck u ∃R2.Dl), the degree of
the relevance relation between Ck (a superclass of E) and Dl (a superclass of I).

Using the properties of fuzzy sets, we know that (A⇒ B ⊗ C) ≥ α implies
(A⇒ B) ≥ α and (A⇒ C) ≥ α, for some t-norm and its residuum-based impli-
cation (for example, for min t-norm and Gödel implication). Applying this ex-
pression to our GCI, Pk,lv≥βk,l

∃R1.Ck u ∃R2.Dl ⇒ Pk,lv≥γ1∃R1.Ck(γ1 ≥ βk,l)
and Pk,lv≥γ2∃R2.Dl(γ2 ≥ βk,l). From Algorithm 2, we have the glbs βk and βl.
Since they are the greatest lower bounds, βk ≥ γ1 ≥ βk,l and βl ≥ γ2 ≥ βk,l.
Consequently, βk ≥ βk,l ⇒ βk,l ≤ βk ⊗ β′, for any β′, and βl ≥ βk,l ⇒ αk,l ≤
βl ⊗ β′′, for any β′′. On the other hand, for min t-norm and Gödel implication,
(A⇒ B) ≥ α1 and (A⇒ C) ≥ α2 imply (A⇒ B ⊗ C) ≥ α1⊗α2. Applying this
expression to the GCIs of Algorithm 2, Pk,lv≥βk

∃R1.Ck and Pk,lv≥βl
∃R2.Dl,

we have Pk,lv≥βk⊗βl
∃R1.Ck u ∃R2.Dl. By definition, βk,l≥ βk ⊗ βl.

Consequently, βk,l≤ βk ⊗ βl and βk,l≥ βk ⊗ βl, so necessarily βk,l= βk ⊗ βl.
ut

An upper bound for the computational complexity of the reasoning proce-
dure can be deduced from the works [3, 4], where fuzzy ontologies in fSHOIN



and fSROIQ have been proved to be reducible to crisp ontologies. These con-
tributions show that the complexity of this reduction for a fSROIQ ontology
with Zadeh operators and Gödel implication for GCIs –the top complexity level
considered in this work– is, in general, quadratic (in space) with regard to the
number of degrees used in the ontology, and that it can be reduced to lineal if
a fixed number of degrees is assumed. Therefore, the complexity of subsump-
tion tests with a fuzzy significance ontology is asymptotically bounded by the
complexity of this reduction plus the complexity of the reasoning in the crisp
ontology. Under certain conditions (new axioms do not introduce new atomic
concepts, new atomic roles, or new degrees of truth), this reduction can be per-
formed only once, so this overhead can be avoided.

Besides subsumption tests, Algorithm 2 also calculates a considerable number
of glbs (exactly, one for each retrieved concept in Steps 1-4), needing each of them
at most log(N) (beingN the number of degrees) additional subsumption tests [9].
In the simplest case, that is, with a fALC relevance ontology (consequently, the
context and domain submodels are fALC ontologies too), a fixed number of fuzzy
degrees, and no reduction of the fuzzy ontology is needed, the overall complexity
of each step is upper-bounded by |Con(fKS)| × log(N) times the subsumption
test complexity (ExpTime).

3.3 Example

Currently, we are using the CDR design pattern to build a relevance ontology
for a medical application [10]. More precisely, we are developing a knowledge
base stating which registers from a Hospital Information System (HIS) ought to
be checked by a doctor attending to a patient. We are proving the benefits of
the crisp and the fuzzy CDR patterns, which fit perfectly to this situation.

In this application, we have clearly separated the context and the domain
ontologies, being both of them crisp. The context ontology is a vocabulary to
describe clinical situations of the patients. There exist several medical ontologies
which can be reused for this purpose; our context ontology is strongly based on
the OWL translation of the Galen ontology1, a well-known and sound termi-
nology intended to be used in the implementation of clinical decision support
systems [11]. Ci are fuzzy descriptions of patient states defined with the Galen
vocabulary. The domain ontology, in turn, abstracts patients’ information stored
in the HIS, i.e. electronic registers with previously diagnosed diseases and treat-
ments. This ontology has been developed manually from the specifications of
ARCHiiMED [12], the HIS of the University Hospital “San Cecilio” in Granada.
Di are fuzzy descriptions of the information items represented in the HIS, though
in this case they have crisp semantics.

The (fuzzy) profiles in the relevance ontology connects (vague) descriptions of
patient clinical states and (concrete) descriptions of datasets of the HIS, asserting
which registers should we be checked in each situation. The degree of importance
of each of these associations is represented by using fuzzy GCIs.

1 http://www.co-ode.org/galen/full-galen.owl



The following fuzzy relevance ontology fKR is an excerpt of our test knowl-
edge base. This is indeed an fSROIQ ontology, so it includes some additional
constructors to the fALC described in this paper –e.g., number restrictions, used
in this example. This fuzzy DL is more extensively studied in [3].

Axioms which extend Galen ontology
〈Anaphylaxis v≥0.7 Shock〉 〈SepticShock v≥0.5 Anaphylaxis〉
〈Shock u ≥ 1hasComplication v≥0.8 EpinephrineAdministration〉

Definition of complex contexts
〈C1 v≥1 ∃hasComplication.Elderly〉 〈C2 v≥1 Anaphylaxis〉
〈C3 v≥1 EpinephrineAdministration〉

Definition of complex domains
〈D1 v≥1 EHRCurrentPrescription〉
〈D2 v≥1 EHRCurrentPrescription t EHRDrugIntollerance〉
〈D3 v≥1 EHRAntidepressives〉 〈D3 v≥1 D1〉

Definition of relations (for convenience)
〈R1 ≡ relSymptom〉 〈R2 ≡ relRegister〉

Definition of profiles
〈P1,1 v≥0.6 ∃R1.C1 u ∃R2.D1〉 〈P2,2 v≥0.5 ∃R1.C2 u ∃R2.D2〉
〈P3,3 v≥0.9 ∃R1.C3 u ∃R2.D3〉

Mandatory axioms
〈C1 v≥1 C>〉, 〈C2 v≥1 C>〉, 〈D1 v≥1 D>〉, 〈D2 v≥1 C>〉, 〈P1,1 v≥1 P>〉,
〈P2,2 v≥1 P>〉, 〈P> v≥1 ∀R1.C>〉, 〈P> v≥1 ∀R2.D>〉

Let us suppose the query context Anaphylaxisu∃hasComplication.Elderly.
Using Algorithm 2, we can retrieve the domains asserted to be interesting in this
context, that is, D

(
Anaphylaxis u ∃hasComplication.Elderly, fKR

)
.

– Step 1
Anaphylaxis u ∃hasComplication.Elderly v≥1 Anaphylaxis v≥0.7 Shock,
Anaphylaxis u ∃hasComplication.Elderly v≥1≥ 1hasComplication
⇒ Anaphylaxisu∃hasComplication.Elderly v≥0.7 Shocku ≥ 1hasComplication
Anaphylaxis u ∃hasComplication.Elderly v≥0.7 Shocku ≥ 1hasComplication,

Shocku ≥ 1hasComplication v≥0.8 EpinephrineAdministration
⇒ Anaphylaxisu ∃hasComplication.Elderly v≥0.7 EpinephrineAdministration
Z1 = {(C1, 1), (C2, 1), (C3, 0.7)}

– Step 2
P1,1 v≥0.6 ∃R1.C1 u ∃R2.D1 ⇒ P1,1 v≥0.6 ∃R1.C1

P2,2 v≥0.5 ∃R1.C2 u ∃R2.D2 ⇒ P2,2 v≥0.5 ∃R1.C2

P3,3 v≥0.9 ∃R1.C3 u ∃R2.D3 ⇒ P3,3 v≥0.9 ∃R1.C3

Z2 = {(C1, P1,1, 0.6), (C2, P2,2, 0.5), (C3, P3,3, 0.9)}

– Step 3
P1,1 v≥0.6 ∃R1.C1 u ∃R2.D1 ⇒ P1,1 v≥0.6 ∃R2.D1

P1,1 v≥0.6 ∃R2.D1 v≥1 ∃R2.D2 ⇒ P1,1 v≥0.6 ∃R2.D2



P2,2 v≥0.5 ∃R1.C2 u ∃R2.D2 ⇒ P2,2 v≥0.5 ∃R2.D2

P3,3 v≥0.9 ∃R1.C3 u ∃R2.D3 ⇒ P3,3 v≥0.9 ∃R2.D3

P3,3 v≥0.9 ∃R2.D3 v≥1 ∃R2.D1 ⇒ P1,1 v≥0.9 ∃R2.D1

P3,3 v≥0.9 ∃R2.D1 v≥1 ∃R2.D2 ⇒ P3,3 v≥0.9 ∃R2.D2

Z3 = {(P1,1, D1, 0.6), (P1,1, D2, 0.6), (P2,2, D2, 0.5), (P3,3, D3, 0.9),

(P3,3, D1, 0.9), (P3,3, D2, 0.9)}

– Step 4
Z4 = {(C1, D1,min(0.6, 0.6) = 0.6), (C1, D2,min(0.6, 0.6) = 0.6),
(C2, D2,min(0.5, 0.5) = 0.5), (C3, D1,min(0.9, 0.9) = 0.9),
(C3, D2,min(0.9, 0.9) = 0.9), (C3, D3,min(0.9, 0.9) = 0.9)}

– Step 5
Z5 = {(D1,max(min(0.6, 1),min(0.9, 0.7)) = 0.7),
(D2,max(min(0.6, 1),min(0.5, 1),min(0.9, 0.7)) = 0.7), (D3,min(0.9, 0.7) = 0.7)}

– Step 6
D

(
E, fKR

)
= { (EHRCurrentPrescription,min(0.7, 1) = 0.7),

(EHRCurrentPrescription,min(0.7, 1) = 0.7),
(EHRAntidepressives,min(0.7, 1) = 0.7),
(EHRDrugIntolerance,min(0.7, 1) = 0.7),
(EHRAntidepressives,min(0.7, 1) = 0.7),
(EHRAntidepressives,min(0.7, 1) = 0.7)}

If the outputs of the algorithm are aggregated, the final results provided to
the user are (EHRCurrentPrescription,max(0.7, 0.7) = 0.7),
(EHRDrugIntollerance, 0.7), (EHRAntidepressives,max(0.7, 0.7, 0.7) = 0.7).

These results mean that the system alerts the doctor to check the patient
information about current prescriptions, especially those concerning antidepres-
sive drugs, and past diagnoses about drug intolerance; all the recommendations
are equally important with degree 0.7. Moreover, these data could be retrieved
automatically from the hospital database, once the patient is identified, and the
doctor would know directly this information.

4 Related work

Ontology design patterns are concise guidelines which identify common knowl-
edge representation issues and propose advices to solve them. The work [13]
provide a good introduction to the use of design patterns during ontology life-
cycle. More recently, other approaches have developed techniques for automatic
selection of suitable design patterns [14].

Regarding to representation of relevance, a review of different perspectives
about implementation of context-sensitivity is presented in [15]. This work cites
the so called context-based selection functions, which are quite similar to our
contribution in [2]: these functions retrieve the submodel K ′ ⊂ K which is worth
considering when performing some task or acting in some environment. The



NeOn project2 is an on-going initiative which offers a similar solution capable of
handling degrees of uncertainty [16]. Nevertheless, to the best of our knowledge,
our work is the first attempt to represent and reason with context data and
context-dependant information using fuzzy DLs.

More general is the idea of contextualization of ontologies, which concerns
models which are satisfiable or not (instead of relevant) depending on some
circumstances. C-OWL is an extension to OWL to define mappings between
locally-interpreted and globally-valid ontologies [17]. Multi-viewpoint reasoning,
in turn, concentrates on the conditional interpretation of a model, i.e. how to
reduce an ontology depending on the viewpoint submodel [18].

Several fuzzy DLs can be found in the literature (some examples are enumer-
ated in [19]), including an fuzzy extension of OWL [20]. Fuzzy ontologies are not
part of the W3C standards, so new tools would be necessary to be developed.
As mentioned, thanks to the results [3, 4], a fuzzy ontology (a fuzzy relevance
ontology, in our case) can be reduced to an equivalent crisp one (in OWL or
OWL 1.1) and reason with it using existing inference engines (e.g. Pellet).

5 Conclusions and future work

In this work, we have reviewed the formulation of the CDR design pattern,
which defines a schema to represent relevance in OWL ontologies and a reasoning
algorithm to retrieve the domain information relevant to a concept. As a novelty,
this algorithm has been proved formally to be complete.

Based on this approach, this paper concentrates on an extension of the de-
sign pattern which allows imprecise context and specific-domain knowledge to be
managed –fuzzy concepts, relations and axioms may be used in context and do-
main expressions–, as well as connections between contexts and domains to have
a ranking degree. This extension relies on fuzzy DLs, a formalism that provides
a complete and sound framework to manage imprecise and vague knowledge
in ontologies. Previous contributions describing procedures to reduce reasoning
with fuzzy representations to reasoning with crisp ontologies are remarked in the
paper, since they avoid to implement new inference engines.

Pattern use is depicted with an example in the healthcare domain, which
corresponds to a real application being developed currently in a research project
at the University of Granada. Therefore, the main direction for future work is to
test the utility of the pattern in this real application in order to show its feasibil-
ity and to improve it, taking into account that the complexity of the reasoning
algorithm is quite high. Using the pattern in other domains and comparing it
with existing similar approaches will be studied as well. Development of sup-
porting tools is also a remarkable effort which will be faced. In this sense, a tight
integration with current and future versions of DeLorean [3] –our shell to reason
with fuzzy ontologies– will be very useful, because this would prevent users from
having to deal with some concrete details of the fuzzy representation.

2 http://www.neon-project.org/
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