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Abstract 

An ability to extract hidden and implicit knowledge, their integration into a knowledge base,
and then retrieval of required knowledge items are important features of knowledge process-
ing for many modern knowledge-based systems. However, the complexity of these tasks de-
pends on the size of knowledge sources, which were used for extraction, the size of a knowl-
edge base, which is used for the integration of extracted knowledge, as well as the size of a
search space, which is used for the retrieval of required knowledge items. Therefore, in this
paper, we adapted the algorithm for the decomposition of homogeneous classes of objects,
within such knowledge representation model as object-oriented dynamic networks, to per-
form dynamic knowledge extraction and retrieval, adding additional filtration parameters. As
the result,  the algorithm extracts knowledge via constructing only semantically consistent
subclasses of homogeneous classes of objects and then filters them according to the attribute
and dependency queries,  retrieving knowledge.  To demonstrate some possible  application
scenarios for the improved algorithm, we provided an appropriate example of knowledge ex-
traction and retrieval via decomposition of a particular homogeneous class of objects. In ad-
dition, we developed algorithms for objects’ decomposition for their run-time usage and data-
base storage, which allow the generation of instances for subclasses created during the class
decomposition, and to perform knowledge extraction on the object level.
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1. Introduction

The extraction and retrieval  of  knowledge are important features of many modern knowledge-
based systems. Such systems are capable to extract new knowledge by analyzing relevant knowledge
sources, integrating it with previously obtained knowledge, and allowing users to search for necessary
knowledge items in the knowledge base. Depending on the chosen knowledge representation model,
the extraction of new implicit and hidden knowledge can be implemented in different ways. For ob-
ject-oriented knowledge representation models, knowledge extraction can be performed via universal
exploiters of classes, such as union, intersection, difference, and decomposition, which allow the con-
struction of new classes of objects based on the existed ones. 

In this paper, we study the decomposition of homogeneous classes of objects, within such knowl-
edge representation model as object-oriented dynamic networks, to demonstrate that the algorithm for
decomposition of classes can be used as a tool for knowledge extraction and retrieval. For this pur -
pose, we improved the algorithm for decomposition of homogeneous classes of objects, which was
proposed in [28], by adding more additional parameters, that allow adaptation of the algorithm, devel-
oped for knowledge extraction, to dynamic knowledge retrieval.  We also discovered that classical
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methods of formal concept analysis do not cover internal semantic dependencies among properties
and methods of homogeneous classes of objects. In addition, we show how the improved algorithm
can reduce the search space during the retrieval of implicit or hidden knowledge, which cannot be ob-
tained using standard methods of formal concept analysis.

2. Formal Concepts Analysis

Among the variety of formal systems for the analysis and processing of conceptual knowledge,
formal concept analysis is one of the most developed frameworks, which is based on the mathematical
theory of lattices. It provides tools for the construction, analysis, and processing of conceptual hierar-
chies, represented in terms of two isomorphic complete lattices of objects and attributes. Since lattices
consist of chains, which are posets, it allows inference and retrieval of new concepts within the corre-
sponding formal context. Let us consider the main concept of the formal concept analysis described in
[20, 21]. The first step is the definition of the formal context.

Definition 1. A formal context is a tuple , where  is a set of objects of the context, while
 is a set of its attributes, and  is a relation between  and , which express that an object

 has an attribute , i.e.  or .

Using this definition, any formal context can be represented by a corresponding cross table, where
columns mean attributes, while row mean objects. It allows considering a set of common attributes for
a set of objects, and a set of objects that have attributes from a set of common attributes.

Definition  2. A  set  of  common  attributes  for  selected  set  of   objects

 is a set , i.e. all attributes from the set  are common for all objects

from the set .

Definition  3. A  set  of  objects  with  the  common  attributes   is  a  set

, i.e. all objects from the set  have all attributes from the set .

Using these notions, we can define a formal concept based on a particular formal context

Definition 4. A formal concept of the formal context  is a pair  , where  is an

extent of the formal concept, while  is an its intent, and where , .

Such definition of the formal concepts, i.e. using the notions of an extent and an intent, is similar to
combination of two ways of set definition, described in [22]. In the first case, a set can be defined by
particular elements (tabular form), while in the second one, it can be determined using the attributes,
which must have all elements of the set (set builder from). In addition, according to [16], the notion of
a formal concept is also similar to a combination of two theoretical forms of class consideration – an
extensional and an intensional. From the first perspective, a class can be defined by the list of its ob-
jects, while from the second one it can be defined by the set of attributes. The definition of the formal
concept proposed in [20] combines these two perspectives into a single notion and provides an oppor-
tunity simultaneously to consider a particular formal concept using both of them.

Since a formal context can define a certain number of formal concepts, there is a sense to define a
set of all formal concepts.

Definition 5. A set of all formal concepts of the formal context  is a set .

Formal concept analysis has different applications within an area of knowledge processing. Ac-
cording to [31],  conceptual knowledge retrieval is one of the main categories among the variety of
methods of formal knowledge processing. On another side, these methods allow the implementation
of corresponding functionality within knowledge-based systems developed based on formal concept
analysis. In general, the knowledge retrieval task can be simply described as querying a knowledge
base to find the required knowledge items. According to [7, 9-11, 15, 17, 18, 31], the formal concept
analysis allows defining a formal context,  where the intent of the context is defined by pieces of



knowledge, for example, keywords or part of sentences, while the extent is defined by the list of docu-
ments, that contain or do not contain such knowledge items. The corresponding concept lattice, con-
structed based on the formal context, describes the search space, consequently, the retrieval process
can be interpreted as the matching of the search query with the formal concepts, which are represented
by lattice nodes, using different search strategies based on the relations of generalization and special -
ization defined between formal concepts. The performance of the retrieval process depends on the size
of the search space and the corresponding search strategy. Therefore, as was noted in [32], one of the
main goals for many retrieval algorithms is to reduce the search space as much as possible. Another
issue related to query matching is the correspondence level of each formal concept to the query, as it
can be rather partial than complete. Thus, in the many search strategies queries are described in a form
of inclusion conditions, which allow the handling of partial query matching within the concept lattice.

3. Morphology of Classes

Nowadays, there are a few approaches, which propose the application of the formal concept analy -
sis to studying dependencies within the procedural program constructions. One of such was proposed
in [30], the main idea of which is to construct the concept lattice of decomposition slices of the pro -
gram. It provides an opportunity to analyze groups of the ordered program statements, called decom-
position slices, related to a particular context, for example to a variable. In other words, each particu-
lar variable, which is a part of the program, depends on the corresponding ordered sequence of opera-
tors, which somehow use or change its state. However, the proposed approach was designed for pro -
cedural programs, but not for object-oriented ones. Consequently, it is more suitable for the structure
analysis of procedural knowledge than for the analysis of declarative knowledge represented in terms
of classes. A similar approach, but for the analysis of class methods cohesion, was proposed in [29].
The main idea is to consider dependencies between different program statements within a particular
method of a class and define the corresponding formal context using them, and then construct the con-
cept lattice called a cohesion lattice. However, the approach does not pay the attention to the external
dependencies of class attributes used in the method with other properties and methods of the class,
which are important for the decomposition of homogeneous classes of objects.

Usually, a formal context is defined using a set of attributes and a set of objects, where attributes
have corresponding values encapsulated in a particular object. However, a formal context can also be
determined using a set of classes and a set of attributes. This idea was used in [13, 14] to analyze the
structure of classes in the Java programming language, in particular, to consider the interrelation be-
tween methods call of a class and then optimize its structure. The embedded call graph provides addi -
tional information about the interaction between methods of the class, which is absent in the corre-
sponding concept lattice. However, such an approach covers only dependencies between methods of
the class and does not pay the attention to other kinds of dependencies, for example, between proper-
ties, properties, and methods of the class. Another application of the class formal context was pro -
posed in [23], which was used to analyze the class cohesion via the construction of the corresponding
concept lattice called cohesion lattice. They capture the cohesiveness of a class and its members,
which provides an opportunity to reorganize the class structure more efficiently, increasing cohesion.
However, cohesion metrics are rather quantitative measures of dependencies among class members,
than qualitative. Many approaches to class cohesion measurements pay the attention to dependencies’
existence but not to their semantics and consistency within a modeled domain, which is crucial for the
decomposition of homogeneous classes.

One of the known approaches, that considers dependencies between the attributes of an object, is
the detection of functional dependencies in relational databases. As it was noted in [4-6, 8, 32], a
functional dependency is defined as the implication over the relation pairs, determined on the set of
attributes, which are mapped into columns of particular tables. The main idea of functional dependen-
cies is to conclude that if two particular tuples of attributes in the relation contain a certain attribute

, which is called an antecedent, then they also contain another attribute , which is called a conse-
quent. Such facts can be considered new knowledge, which is hidden or implicit. In addition, there is
a generalized form of functional dependency called a similarity dependency [4-6, 8], the main idea of
which is the satisfaction of functional dependency for any two tuples in the relation. However, such



kinds of dependencies do not cover the internal semantic connection within classes and objects be-
cause they consider only the availability of a particular attribute for an object, rather how the different
attributes of the object are related to each other, or more precisely, how they depend on each other.
They do not consider how the presence or absence of one particular attribute for an object or a class
affects their semantic consistency.

An alternative approach to the analysis of dependencies between attributes of objects was pro-

posed in [25], according to which an attribute   depends on another attribute  , i.e.  ,

whenever the presence of  is not significant without the presence of , where  and  also

may be atomic, as well as conjunctive or disjunctive attributes. However, such an explanation of the
dependency between attributes is quite fuzzy because it is unclear how to verify that presence of one
attribute is not significant without the presence of another one, as well as what the term significance
should be meant here.

To consider what internal semantic dependencies of a class are, their kinds, and how they affect
the decomposition of the homogeneous classes of objects, let us consider the definitions of a homoge-
neous class of objects and its subclass within such knowledge representation model as object-oriented
dynamic networks (OODNs), which was proposed in [26, 27].

Definition  6. The  homogeneous  class  of  objects   is  a  tuple  ,  where

 is a collection of properties which define the structure of the class  ,

while  is a collection of its methods, that define its behavior.

Definition 7. A homogeneous class of objects  is a subclass of homogeneous class of objects , i.e.

, if and only if  and , where ,  and , 

are specifications and signatures of the class  and , respectively.

Let us consider an example of a homogeneous class of objects and analyze its specification and
signature to understand how the properties and methods can depend on each other, creating internal
semantic dependencies. For this purpose, let us define a homogeneous class of objects , which de-
scribes a concept of a point on a plane, and has the following structure:

where   and   are quantitative properties, which mean coordinates   of a point  ;

 and  are methods, which return  and  coordinates of a point , respectively; 

and   are methods, which provide an opportunity to set a value of   and   coordinates of a

point , respectively. 
Now let us define another homogeneous class of objects , which describes a concept of a trian-

gle on a plane, and has the following structure:



where , , and  are quantitative properties, which mean vertices of a triangle, defined

as objects of the class ;  is a qualitative property, which means satisfiability of the triangle

inequality and is defined by the following verification function:

where , , and  are defined as follows:

 is a method, which returns the coordinates  for a vertex  of a triangle  in a form of

objects of the class  and is defined as follows ;  is a method, that set

coordinates  for a vertex  of a triangle  and is defined as follows 

 is a method, which returns a distance between  and  of a triangle , and de-

fined as follows:

 is  a  method,  which  returns  the  perimeter  of  a  triangle   and  is  defined  as  follows

, where , , and  are defined in the same way as in for the .

Let us consider the class  as a collection of properties and methods, i.e.

We denote an -th property of the class  by , and a -th method – by  for a more

compact representation of all statements noted below.
As it was noted in [32], for the class  we can construct  subclasses, which create

the power set lattice , which is a complete lattice and where  is a set

of all possible unique subsets of the set  . From the decomposition perspective, we



need to  consider  only   subclass,  which  are  nonempty  ones  and create  the  join-semilattice

,  which  describes  the  search  space  for  the  knowledge  retrieval.  This
semilattice is not a concept lattice, however as it was demonstrated in [28], it can crucially reduce the
space search for the solving decomposition constraint satisfaction problem.

To compare the opportunities provided by the join-semilattice of nonempty subclasses of the ho-
mogeneous class of objects  and the concept lattice of all its subclasses, let us define the formal
context of all possible subclasses of the class  and then construct the corresponding concept lattice.
For  this  purpose,  let  us  consider  the  formal  context

 and define the corresponding cross table for it.

We do not provide a full cross table here because of its size, however, Table 1 illustrates the basic in -

tuition for the definition of formal context . We use the symbol plus  to specify the pair of the

relation . An object  is defined as follows , , ,

where  is a -th subclass of the class , which has a cardinality of  and  is a bino-

mial coefficient, which is equal to a number of all possible unique subsets of the set , which have a
cardinality ; and where an attribute (property or method)  is defined as .

Now, let us construct the concept lattice for the formal context  using the Table 1. Analyzing

the results, depicted in Figure 1, we can see, that the constructed concept lattice has a big size and
contains all formally possible subclasses of the class  and all possible formal concepts of the con-

text . Considering the constructed concept lattice, we can ask a question about the semantic consis-

tency of all constructed subclasses of the class , as it was done in [28]. To clarify the problem and
then answer this question, let us consider in more detail the internal structure of the class  and how
it is related to the semantic consistency of its subclasses.

Table 1
Formal context, which defines all possible subclasses of the class .

Subclasses
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s

+ - - - +

- + - - +

- - + - +

- - - + +

- - - - +

- - - - +

- - - - +

- - - - +

According to the definition of the homogeneous class of objects, the class  consists of a collec-

tion of properties   called a specification, and a collection of

methods  called a signature. Analyzing definitions of properties

and methods of the class , we can find some internal dependencies among them. It is a common
practice for many object-oriented programming languages as well as knowledge representation mod-
els to define some properties and methods of a class using for this purpose other properties and (or)
methods of the class. Such practice allows us to avoid code duplication and provides instead of it code
reusability. However, it creates internal dependencies, which help to describe the modeled instance
more precisely to the corresponding entity from a particular domain. In addition, such dependencies



are important for the decomposition of classes because they define appropriate constraints for the
properties and methods of a class. Furthermore, since not all formally possible subclasses of a class
are semantically consistent, i.e., only some of them do not conflict with constraints imposed by the
dependencies, the decomposition of a class as the construction of all its subclasses is based on such
dependencies.

Figure 1: Concept lattice of the formal context .

Let us consider examples of semantically consistent and inconsistent subclasses of the class , to
understand the problem more specifically. One of the semantically consistent subclasses of the class

 is the subclass  because the property  is defined indepen-

dently from other properties and methods, and it is required for the execution of methods  and

, which are determined based on this property. In other words, subclass   defines a

point on a plane with the ability to get and set its coordinates. One of the semantically inconsistent

subclass of the class   is a subclass   because as in the previous

case, the property   is defined independently from other properties and methods, and it is re-

quired for the invocation of the method , however, the correct invocation of the method 

demands one more property similar to . In other words, subclass  defines a point on a

plane with the ability to get its coordinates, but the invocation of the method , which computes

the distance between two points on a plane, will cause an error because the subclass  deter-

mines only one point on a plane. Therefore, it is inconsistent one. Using this fact, we can conclude

that the constructed concept lattice of the formal context   contains semantically consistent con-

cepts, as well as inconsistent ones. This fact is important for knowledge retrieval since it is avoiding
the consideration of semantically inconsistent subclasses and reduce the search space.

To formalize the internal dependencies of a class, concepts of structural and functional atoms, as
well as structural and functional molecules of the homogeneous class of objects, were introduced in
[28]. Since properties and methods of a class can be defined independently of other properties and (or)
methods of the class, as well as using them, they are similar to chemical atoms and molecules. Indeed,
independent properties and methods are similar to atoms, which are the smallest indivisible particles,



while dependent ones are similar to molecules, which are groups of atoms or smaller molecules some-
how connected with each other. As the properties of a class define its structure, while the methods de-
fine its behavior, the corresponding atoms and molecules of the class can be classified as structural
and functional ones. Let us consider the definitions of both kinds of atoms and molecules of a class, as
well as some of their examples, using the class .

Definition  8. Structural  atom  of  a  homogeneous  class  of  objects   is  a  singleton  collection

, where  is a property defined without using any other properties and

(or) methods of the class , where  is its specification.

To analyze the specification of the class , we can observe, that quantitative properties ,

, and , which mean the vertices of a triangle, are defined without usage of any other prop-

erty or method of the class  . Therefore, these three properties define structural atoms  ,

, and , respectively, i.e.

Definition  9. Functional  atom  of  a  homogeneous  class  of  objects   is  singleton  collection

, where   is a method defined without using any other properties and

(or) methods of the class , where  is its signature.

The signature of class  does not contain any methods defined independently from other properties
and methods.

Definition  10. A  functional  molecule  of  a  homogeneous  class  of  objects   is  a  collection

 where  ,   is a method defined based

on the other methods and (or) properties  which form structural and

(or)  functional  atoms,  and  are  parts  of  smaller  molecules  of  the  class  ,  where

,  and   is  a  specification of  the  class  of  objects  ,  while

 is its signature.

To analyze the structure and behavior of the class , we can observe that methods  and ,

which get and set the coordinates of vertices of a triangle, operate by a particular vertex of the figure.

Thus, they define functional molecules , and , i.e.

In addition, method , which computes the length of a particular side of a triangle, uses a corre-

sponding pair of its vertices. Therefore, it determines a functional molecule , i.e.

And finally, method  , which calculates the perimeter of a triangle, uses methods   and

 to compute the length of each figure’s side. As the result, it defines a complex structural mole-

cule , which includes the elements of smaller molecules  and , i.e.

Definition  11. A  structural  molecule  of  a  homogeneous  class  of  objects   is  a  collection

 where ,   is a property defined based

on the other properties and (or) methods  , which form structural



and  (or)  functional  atoms,  and  are  parts  of  smaller  molecules  of  the  class  ,  where

,  and   is  a  specification of  the  class  of  objects  ,  while

 is its signature.

The class  has qualitative property , which means the satisfiability of the triangle inequality,

and uses methods  and  to compute the length of each figure’s side. Hence, it determines a

complex structural molecule , which includes the elements of smaller molecules 

and , i.e.

Since all molecules contain a property or method which is dependent on all other properties and (or)
methods of the molecule, we can define a concept of dependency root, which describes such elements.

Definition 12. The dependency root of the molecule  of a homoge-

neous class of objects  is a property or method  which is defined based on other properties and

(or) methods of the class , which are atoms or parts of smaller molecules.

All detected internal dependencies within the class   describe some semantic connections among
the different properties and methods of the class, which express the internal nature of the modeled en -
tity from a particular domain if such a model is correct.

Definition 13. Internal semantic dependencies of a homogeneous class of objects , which defines
type of objects , is a set of structural and functional atoms and molecules of the class , i.e.

where ,  and ,  are structural and functional atoms of the class ,

while  ,   and  ,   are its structural and functional molecules re-

spectively.

All considered atoms and molecules of the class  define its internal semantic dependencies, which
can be represented in the following way:

Let us construct the concept lattice of all internal semantic dependencies of the class . For this pur-

pose,  let  us define the formal context   using

the corresponding cross table. Since, each of the functional molecules  ,  ,  and

 has three different contexts within the class , we let us split them onto separate condi-

tions. We colored cells of Table 2, which means dependency roots of molecules of the class , using

the gray color. Now let us construct the concept lattice for the formal context , using Table 2. Ana-

lyzing the results, depicted in Figure 2, we can see that constructed concept lattice contains  nodes,
which means formal concepts, however not all of them are semantically consistent ones. We used the
green border to highlight the consistent concepts, which do not contradict any internal semantic de-
pendency of the class . Indeed, if we consider, for example, the concept , which defined as fol-
lows

we can see that the intent   of the concept is semantically inconsistent because it

contradicts  the  internal  semantic  dependencies  defined  by  functional  molecules  ,



, and . In other words, the concept  defines a point on a plane, however, it

has a method , which computes the distance between two points on a plane, but the concept de-

fines only one point, that means if we invoke this method, it will raise an error.

Table 2
Formal context, which defines internal semantic dependencies of the class .

Properties and methods
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Summarizing all noted above, we can conclude that classical methods of formal concept analysis
have some gaps related to the semantic consistency of formal concepts, which are constructed within
a formal context of decomposition of homogeneous classes of objects. Since, the definition of a for-
mal context does not consider the internal semantic dependencies of a class, defined by its atoms and
molecules, the knowledge retrieval or reasoning within a corresponding concept lattice, constructed
using such formal context, becomes inconsistent too because its result can contain inconsistent con-
cepts.

4. Decomposition of Classes and Objects

Since a homogeneous class of objects consist of structural and functional molecules, which define
the restrictions over the class specification and signature, the decomposition of the class can be con-
sidered as the constraint satisfaction problem (CSP) [28]. According to [3, 12, 19], the CSP can be de-

fined  as  a  tuple  ,  where  ,   is  a  finite  sequence  of  variables,

 is a set of domains, and ,   is a finite set of constraints. Vari-

ables from the set  are defined on domains from the set , i.e. , and each do-

main defines a range of values for the respective variable, i.e. , , . Every

constraint  from  the  set   is  defined  as  a  pair  ,  ,  where

 is a scope of the constraint and   is a relation de-



fined over the  ,  , and   is the arity of the constraint  . The tuple

 satisfies the constraint   on the variables   if

and only if . If the tuple  satisfies , then it

is a solution of the CSP.

Figure 2: Concept lattice of the formal context .

However, a particular subclass  of a homogeneous class of objects  can satisfy or not sat-

isfy a constraint defined by a molecule . Therefore, in contrast to the classical definition of the

CSP, the constraint defined by the molecule  is applicable only to some subclasses of the class

. For example, the constraint defined by functional molecule   is not applicable to any

subclass of the class , which have a cardinality lower than the molecule itself. In such cases, we
can conclude that the subclass does not contradict the constraint defined by the molecule, since the
constraint is not applicable to it. To summarize these facts, let us introduce the following definition.

Definition 14. A subclass  of a homogeneous class of objects  does not contradict molecu-

lar internal semantic dependency , if and only if one of the follow-

ing conditions is true:

1. it contains all elements of the molecule, i.e. , ;

2. it does not contain any element of the molecule, i.e. , ;

3. it does not contain the dependency root of the molecule, but it contains some of its other ele-

ments, i.e. , and , ;

where ,   is a property or method defined based on the

other  properties  and  (or)  methods   of  the  class  ,  where



, and ,  and ,  are specifications and sig-

natures of the class  and  respectively.

Using this notion, we can define the decomposition of the homogeneous classes of objects.

Definition 15. A decomposition of a homogeneous class of objects , which defines a type of objects

,  is  a  set  of  semantically  consistent  subclasses  ,  where  subclasses

 do not contradict any molecular internal semantic dependency of the class .

Now, let us compute the full decomposition of the homogeneous class of objects  , using the
corresponding algorithm, which was proposed in [28], and the set of internal semantic dependencies

, which defines a collection of decomposition constraints. As the result of decomposition we
obtained the collection of 49 semantically consistent subclasses of the class  , where three sub-
classes of the cardinality of 1, i.e.

nine subclasses of the cardinality of 2, i.e.

thirteen subclasses of the cardinality of 3, i.e.

twelve subclasses of the cardinality of 4, i.e.

six subclasses of the cardinality of 5, i.e.

three subclasses of the cardinality of 6, i.e.



and three subclasses of the cardinality of 7, i.e.

Now let us construct the concept lattice for all semantically consistent subclasses of the class . For

this purpose,  let  us consider the formal context  

using the structure of semantically consistent subclasses of the class  noted above. As we can see,

the concept lattice for the formal context , depicted in Figure 3, contains 70 formal concepts, while

the amount of all semantically consistent subclasses constructed by the decomposition algorithm is
equal to 49. It means that some formal concepts in the lattice are semantically consistent, while other
ones are inconsistent. For example, the formal concept 44 is semantically inconsistent because its in-

tent contradicts internal semantic dependencies , , and , similarly to

the case of concept 15 in formal context  . It happens because the algorithms for constructing of

concept lattices compute the part of extents as the intersection of those extents which can be extracted
from the formal context cross table [21]. They do not consider internal semantic dependencies within
the classes and objects, consequently, they escape a question about the existence of such concepts
within a modeled domain, rather compute only intersection among objects or classes to obtain sets of
common attributes as new concepts. 

Figure 3: Partially annotated concept lattice of the formal context .

We think that it is an important restriction for the usage of formal concept analysis, in particular, for
knowledge retrieval and reasoning, since there is an ability to retrieve or infer concepts, which are in -
consistent, and therefore unreal within a modeled domain.

Let us compare the amount of semantically consistent subclasses of the class  with the amount
of all possible subclasses, splitting them according to antichains of join-semilattice created by all sub-
classes.



Table 3
Quantitative analysis of subclasses of the class .

Cardinality 1 2 3 4 5 6 7 Total

Possible subclasses 8 28 56 70 56 28 8 254
Consistent subclasses 3 9 13 12 6 3 3 49

Decomposition consistency 38% 32% 23% 17% 11% 11% 38% 19%

Analyzing Table 1, we can see that among all 254 formally possible nonempty proper subclasses of
the homogeneous class of objects , only 49, i.e. 19%, are semantically consistent ones, i.e. they do
not contradict any of the internal semantic dependencies of the class. This coefficient allows us to es-
timate how the search space can be reduced by avoiding the consideration of all semantically incon-
sistent subclasses of the class . Therefore, let us introduce the corresponding definition for it.

Definition 16. Decomposition  consistency  of  a  homogeneous  class  of  objects   is  a  coefficient
 computed in the following way

where   is a set of all  semantically consistent subclasses of the class  , while   is a
power set of its all possible subclasses.

Since , it means that we can reduce the knowledge search space for the class  ap-
proximately by  times, i.e. .

All data given in Table 1 can be represented graphically, that provides an opportunity to estimate
the search space for the knowledge extraction from another perspective. Figure 4 illustrates elements
of the power set lattice, where each element is a subclass of the homogeneous class of objects .

Figure 4: Tower of the subclass lattice of the class .

Circles depicted by lime color mean semantically consistent subclasses, while yellow circles with
numbers mean a particular antichain of the lattice, or in other words, a set of subclasses of the corre-
sponding cardinality. We also can see, that each element of this lattice, which has a cardinality bigger
than 2, and lower than the class itself, can be also decomposed into subclasses, where some of them
are semantically consistent, while others are not so. We also depicted in Figure 4 towers of subclass
lattice for particular semantically consistent subclasses of cardinality from 2 to 7, which illustrates
that the subclass lattice tower of the class  contains towers of subclass lattices. The graphical rep-
resentation of the complete lattice, illustrated in Figure 4, is not a typical or common way to the de -
piction of lattices, such as the Hasse diagram, for example. However, as you can see the power set lat -
tice of the class  contains 256 elements and, as was noted in [32],  connec-



tions, which makes the corresponding Hasse diagram complicated. Instead of this, for the quantitative
analysis of semantically consistent subclasses of a particular homogeneous class of objects, we can
depict only elements of the lattice’s antichains. Since the geometrical form of such representation re-
minds a tower, we called it a tower of the power set lattice or a tower of subclass lattice.

However, not only classes of objects can be decomposed to extract new knowledge. Since the
main purpose of the definition of classes is creating objects, which also can be decomposed based on
semantically consistent subclasses constructed by Algorithm 1. Therefore, let us define the notion of
object decomposition.

Definition 17. A decomposition of an object  of a homogeneous class of objects , which defines a

type of objects , is a set of objects , where the object ,  belongs to the

semantically consistent subclass  and , where  and  are

properties of objects. 

Considering the fact, that objects can exist during the program run-time and can be stored in the data-
base or knowledge base, their structure in each of these states can be different. Based on this idea and
using the notion of object decomposition, we developed Algorithm 1 and Algorithm 2 for the decom-
position of objects oriented on their run-time representation, and their storage in a database, respec -
tively.

Algorithm 1. Run-time decomposition of objects.

Require: , 

Ensure: 

1:

2: for  do

3:     

4:     for all  do

5:         

6:     

7: return .

Analyzing Algorithm 1, we can see that it generates the set of objects  for the subclass 

constructed during the decomposition of the homogeneous class of objects  based on the set of its

objects . The algorithm creates a particular object for the subclass  initializes each its prop-

erty by corresponding value, which is got from the corresponding object of the class .

Algorithm 2. Database-oriented decomposition of objects.

Require: , 

Ensure: 

1:

2: for  do

3:     

4:     for all  do

5:         if  then

6:             

7:         if  and  then



8:             

9:     

10: return .

Algorithm 2 also generates the set of objects  for the subclass  constructed during the

decomposition of the homogeneous class of objects  based on the set of its objects . However, in

contrast to Algorithm 1, it generates an extended representation of objects by storing the results of the
invocation of methods, which are available for them in the class . Since methods of the class
can return different values as the result, their correct storage in the database can require additional
processing, depending on the type of returned result.

Now let us consider some examples of objects’ decomposition, using Algorithm 2. Let us define
and decompose a number of objects of the class , which represent particular triangles on a plane.
For this purpose, let us define the collection of points on a plane via creating objects of the class 
(see Table 4).

Table 4

Points on a plane represented by objects of the class .

0 0

0 5

2 10

5 9

6 3

8 0

10 2

Now let us determine triangles on a plane, creating objects of the class  and using the above-de-
fined points as vertices of figures (see Table 5). Since objects are containers, which encapsulate prop-
erty values of particular instances of a class, all objects of the class  are defined by the following

four  properties:  ,  ,  ,  and  ,  where  .  Such

structure for objects of the class is commonly-used for their representation in the program run-time.

For the storage in a database, we can use results computed by methods  and , where the

first one computes the length of the triangle’s sides while the second one computes the perimeter of
the figure. Consequently, we can consider at least two scenarios of objects’ lifetime and their usage,
therefore Table 5 contains both representations.

Table 5
Triangles on a plane represented by objects of the class .

1 5.0 6.32 6.71 18.03

1 6.71 3.61 8.0 18.32

1 10.3 6.08 6.71 23.09

1 5.39 2.83 5.0 13.22

1 5.0 1.41 6.4 12.81



1 10.2 11.66 8.0 29.86

1 6.08 3.61 9.49 19.18

1 1.41 9.49 8.94 19.84

As the result of the full decomposition of the class , Algorithm 1 constructed 49 semantically con-
sistent subclasses. It means that if we need to perform a decomposition of all objects of the class ,
we should do it for each constructed subclass. Due to the big number of subclasses, let us consider the

decomposition of all objects of the class , but only for some of its subclasses, e.g. for ,

,  ,  and  .  According  to  the  definition  of  the  class  ,  its  subclass

 has the following representation

To decompose objects of the class , represented in the Table 5, for its subclass  we need

to set for the Algorithm 2 the following configuration , where  is a

set of all  objects of the class  . As the result,  the algorithm constructed objects of the subclass

 (see Table 6). Each of them defines a point on a plane with the ability to get its coordinates

as objects of the class .

Table 6

Objects of the class .

Subclass  has the following representation

To decompose objects of the class , represented in the Table 5, for its subclass  we need

to set for the Algorithm 2 the following configuration . As the result,

the algorithm constructed objects of the subclass  (see Table 7). Each of them defines three

points on a plane, where each point is an object of the class .



Table 7

Objects of the class .

Subclass  has the following representation

To decompose objects of the class , represented in the Table 5, for its subclass  we need

to set for the Algorithm 2 the following configuration . As the result,

the algorithm constructed objects of the subclass  (see Table 8). Each of them defines two

points on a plane with the ability to get their coordinates as objects of the class , as well as to com-
pute the distance between them.

Table 8

Objects of the class .

5.0

6.71

10.3

5.39

5.0

10.2

6.08

1.41

Subclass  has the following representation



To decompose objects of the class , represented in the Table 5, for its subclass  we need

to set for the Algorithm 2 the following configuration . As the result,

the algorithm constructed objects of the subclass  (see Table 9). Each of them defines three

points on a plane with the ability to get their coordinates as objects of the class , as well as to com-
pute the distance between any two of them.

Table 9

Objects of the class .

5.0 6.32 6.71

6.71 3.61 8.0

10.3 6.08 6.71

5.39 2.83 5.0

5.0 1.41 6.4

10.2 11.66 8.0

6.08 3.61 9.49

1.41 9.49 8.94

As we can see, the decomposition of objects of the class   is based on the decomposition of the
class itself. It guarantees that all generated objects of any semantically consistent subclass of the class
will be also semantically consistent ones. Object decomposition allows us to generate instances for the
subclasses created during the class decomposition, and to perform knowledge extraction on another
representation level.

5. Knowledge Extraction and Retrieval

One of the approaches to knowledge retrieval was proposed in [24], according to which a formal
context can be matched by its formal sub-context constructed using three main kinds of incidence re-

lations , , and ,

that allows the cauterization of the formal context. However, such an approach requires constructing
additional concept lattices, to perform their matching with the main concept lattice creating clusters,
that can affect the performance of knowledge extraction. Therefore, let us consider another approach.

As we can see, the algorithm for decomposition of homogeneous classes of objects, proposed in
[28], can be used for knowledge extraction of semantically consistent subclasses of a class. However,
it also can be adapted for knowledge retrieval, by adding additional filtration parameters, which will
provide new functional opportunities for conceptual knowledge retrieval and speed up the retrieval
process itself. For this purpose, let us add the parameter



which means the list of subclass cardinalities and allows the algorithm to construct only those seman-
tically consistent subclasses of a class , whose cardinality is matched with one of the list . It al-
lows us to further reduce the search space for the algorithm if we know the exact cardinality of the se -
mantically consistent subclasses of the class , that we want to retrieve. In addition, we can add pa-
rameter 

which means the attribute query and allows the algorithm to construct only those semantically consis -
tent subclasses of the class , whose contain and do not contain properties and (or) methods from the
include and exclude list respectively. It also helps the algorithm to reduce the number of constructed
subclasses, if we know useful information about them, i.e. which properties and (or) methods they
should and should not contain. Finally, we can add parameter

which means the dependency query and allows the algorithm to construct only those semantically
consistent subclasses of the class , whose contain and do not contain properties and (or) methods
that are parts of internal semantic dependencies, from include and exclude lists respectively. Similar
to the attributes, it also helps the algorithm to reduce the number of constructed subclasses, if we
know other useful information about them, i.e. elements of which structural and (or) functional mole-

cules they should and should not contain. Parameters   and   are filters, which allow us to re-

trieve semantically consistent subclasses of the class  according to particular structural and behav-
ior features. Using all these filtration parameters, we can improve the algorithm for the decomposition
of homogeneous classes of objects in the following way.

Algorithm 3. Decomposition of homogeneous classes of objects.

Require: , , , , 

Ensure: 

1:
2: for  do
3:     

4:     for  do

5:         if  then

6:             for ,  do

7:                 if  then

8:                     

9:             satisfy  true;
10:             for all  do
11:                 if not  then
12:                     satisfy  false;
13:                     break;
14:             if satisfy then

15:                 if  and  then

16:                     

17:             

18: return .



As we can see, Algorithm 3 performs the decomposition of the homogeneous class of objects ,
resolving the corresponding constraint satisfaction problem (CSP), using the set of its internal seman-

tic dependencies , as well as the list of subclass cardinalities , attribute query , and

dependency query . Using the list of subclass cardinalities , the algorithm resolves the CSP only

for those subclasses, whose cardinality is matched with one of the list . The set of constraints  is
used by the procedure  to verify the satisfiability of the constraint  for

the subclass  ,  if  the constraint  is  applicable  to the  subclass.  In  other  words,  the  procedure

 resolves the CSP for particular subclass of the class  and if the CSP is sat-
isfiable, then the subclass is semantically consistent. It allows the algorithm constructs only semanti-
cally consistent subclasses of the class . For each such subclass of the class , the algorithm per-

forms the additional filtration according to attribute query  and dependency query , using for

this purpose the procedure . As the result, the algorithm constructs all semanti-
cally consistent subclasses of the homogeneous class of objects , which have a certain cardinality
and satisfy the attribute and dependency restrictions, if such subclasses exist. In general, Algorithm 3
performs two tasks, firstly, it extracts the conceptual knowledge via decomposition of homogeneous
classes of objects onto the set of semantically consistent subclasses, and secondly, it retrieves the par -
ticular subclasses, which satisfy the corresponding restrictions.

Procedure 1. 

Input: , 
Output: satisfy  {true, false, none}

1: satisfy  none;
2: if  then

3:     for  do

4:         for  do

5:             if  then
6:                 satisfy  true;
7:             else
8:                 satisfy  false;
9:                 break;

10:         if satisfy then
11:             return satisfy
12: return satisfy.

Procedure 2. 

Input: , 
Output: satisfy  {true, false}

1: for  do
2:     if  then
3:         return false;
4: for  do
5:     if  then
6:         return false;
7: return true.

Consequently,  there are  two different  scenarios  for the  organization of conceptual  knowledge re-
trieval. In the first case, we can construct all possible semantically consistent subclasses of the class

 and then store them in a database, using for this object-relational mapping. Indeed, according to [1-
2], each class will be mapped into the database as a corresponding table, where a particular subclass
property will be mapped in the corresponding column of the table. Following that, we can use SQL to
perform the information retrieval. However, such mapping is applicable only to properties of the class
that restricts the usability of the approach because methods can be parts of structural and functional
molecules of the class. In the second case, we can perform the information retrieval on the fly, via dy -
namic filtering of constructed semantically consistent subclasses. To perform the filtering, we can use
any query language, which is applicable for the querying over homogeneous classes of objects. How-
ever, in this case, we need either develop our own processor or adapt one of the appropriate ones to
convert the selected query language to object-oriented structures.

To filter semantically consistent subclasses during the retrieval stage, we propose to use attribute

query  and dependency query , which describe the inclusion of desired attributes and depen-

dencies,  as well  as the exclusion of undesired ones.  Let  us consider a few examples of dynamic
knowledge retrieval using the homogeneous class of objects  defined above. Suppose we want to



retrieve all semantically consistent subclasses of the class , which have a cardinality from 4 to 6,

and contain attributes  and , for this purpose we need to set for Algorithm 3 the following

configuration:

As  the  result,  we  received the following subclasses:  ,  ,  ,  ,

, , , , , , , and . Suppose

we want to retrieve all semantically consistent subclasses of the class , which have the same cardi-

nality as previously, and do not contain attributes  and , for this purpose we need to set for

Algorithm 3 the following configuration:

As  the  result,  we  received the following subclasses:  ,  ,  ,  ,

, ,and . Let us join configurations  and , i.e.

As the result we received the following subclasses: , ,  ,  , and

. Now let us assume that we need to retrieve all semantically consistent subclasses of the

class  ,  which  have  a  cardinality  from  4  to  6,  and  contain  functional  molecules  ,

, for this purpose we need to set for Algorithm 3 the following configuration:

In  this  case,  the  algorithm  returned  the  following  subclasses:  ,  ,  ,

,  ,  ,  ,  ,  , and  . If we need to re-

trieve all semantically consistent subclasses of the class , which have a cardinality from 4 to 6, and

do not contain functional molecules , , for this purpose we need to set for Algo-

rithm 3 the following configuration:

In  this  case,  the  algorithm  returned  the  following  subclasses:  ,  ,  ,

, , , and . Let us join configurations  and , i.e.



As the result, we received the following subclasses: , , , , and

. Finally, let us join configurations  and , i.e.

In this case, the algorithm returned the following subclasses:  ,  ,  , and

. Let us consider the interpretation of the obtained results in more detail. As we can see,

each of subclass  and  defines two points on a plane with the ability to get and set

their coordinates, as well as compute the distance between them. According to the definition of the
homogeneous class of objects , they have a following representation:

The subclass  defines three points on a plane with the ability to get and set their coordi -

nates, as well as compute the distance between any two of them. According to the definition of the
class , it has a following representation:

The subclass  defines a triangle on a plane with the ability to get and set coordinates of

its vertices, as well as compute the length of all its sides. According to the definition of the class ,
it has a following representation:



Therefore, we can conclude that decomposition of the homogeneous class of objects  using Algo-
rithm 3 generates semantically consistent subclasses, which represent the implicit or hidden knowl-
edge within the domain of the class . In addition, the algorithm performs the filtration of all con-

structed semantically consistent subclasses according to attribute query   and dependency query

. 

For some cases, Algorithm 3 can be improved by changing the filtration strategy, since a resolving
of the decompositional SCP is also a kind of subclass filtration, depending on an attribute query, as
well as a dependency query, the order of verification of their satisfiability can be changed. The main
criterion for such modification of the algorithm is the estimation of search space reducing chain per-
formed by a particular sequence of subclass filtration.

6. Conclusions

In this paper, we considered in detail the internal semantic dependencies of homogeneous classes
of objects (structural and functional atoms and molecules) and how they affect the decomposition of
the class. We defined the decomposition of the class as splitting the class into such subclasses, which
do not contradict any internal semantic dependency. Since all possible subclasses of a homogeneous
class of objects form a power set lattice, which is a complete lattice, using methods of formal concept
analysis we constructed the corresponding concept lattices for all subclasses of the class, for all inter-
nal semantic dependencies of the class, and for all its semantically consistent subclasses. As the result,
we found that in all three cases, constructed concept lattices contain a certain number of formal con-
cepts with semantically inconsistent intents because the algorithms for the construction of concept lat -
tices compute the part of extents via the intersection of extents which can be extracted from the formal
context. At the same time, they do not consider the internal semantic dependencies of a class, which
define corresponding restrictions to the creation of its semantically consistent subclasses. That re -
stricts the usage of formal concept analysis for knowledge extraction and retrieval since it allows re-
trieval, inference, or usage of inconsistent concepts, which are unreal within a modeled domain.

To propose an alternative approach to knowledge extraction and retrieval via decomposition of ho-
mogeneous classes of objects,  we improved the decomposition algorithm, which was proposed in
[28], adding the additional filtering parameters, which help to reduce the search space and improve
the performance. As the result, in the first stage, the algorithm extracts knowledge by constructing
only semantically consistent subclasses of a homogeneous class of objects, which have a certain cardi-
nality, via solving the corresponding constraint satisfaction problem defined based on the internal se-
mantic dependencies of the class. In the second stage, the algorithm retrieves knowledge by filtration
of constructed semantically consistent subclasses according to the attribute and dependency queries,
which allow selecting only those subclasses, which include all desired attributes and dependencies
and do not include undesired ones. We introduced the decomposition consistency coefficient, which
allows us to estimate how much the algorithm can reduce the search space for knowledge extraction
and retrieval, avoiding the consideration of all semantically inconsistent subclasses of the class. To
demonstrate the possible application of the algorithm, we considered seven different scenarios of how
the homogeneous class of objects, which define a triangle on a plane, can be decomposed for knowl-
edge extraction and retrieval.  In all  cases,  the algorithm extracted and retrieved subclasses of the
class, which are semantically consistent within a modeled domain and satisfy all restrictions and fil -
ters. 



In addition, we developed two algorithms for the decomposition of objects, which adapt generated
objects for their usage in the run-time or storing them in a database. Both algorithms are based on the
decomposition of a homogeneous class of objects and guarantee that all objects of any semantically
consistent subclass of the class, generated during the decomposition, will be also semantically consis-
tent ones as their class. The proposed approach provides an opportunity to perform knowledge extrac-
tion via the decomposition of the homogeneous classes of objects, as well as the decomposition of
their objects. To demonstrate the possible application of these algorithms, we provided corresponding
examples of decomposition for objects of subclasses of different cardinality. However, despite all
mentioned advantages of the developed algorithms, they require future analysis, improvement, and
optimization.
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