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Abstract		
 
The article discusses the issue of creating application software using multithreading. A 
recommender system designed to provide recommendations to tourists regarding hotels has 
been developed. The system works using a neural network based on a multilayer perceptron. 
A hotel evaluation model described by objective and subjective features was built to create 
recommendations. The objective features include the characteristics of hotels, which can be 
presented as a logical value (presence or absence) or a quantitative assessment of the hotel's 
components (number of floors, area, etc.). Subjective features are estimations given by 
tourists on a specific scale. Among the subjective features, the most valuable are the textual 
reviews of tourists, which are analyzed with the determination of a particular emotional 
color; it can be classified as a positive, neutral, or adverse opinion. The recommender system 
was developed using the Python programming language and related libraries – spaCy, 
multiprocessing, etc. A preliminary data analysis was conducted to study text responses, 
including removing stop words, segmentation, reducing words to a single norm, and marking 
parts of speech. After that, the text responses were transformed into a valid feature space 
using the Word2vec algorithm and classified using machine learning methods. During the 
neural network training, the Word2vec algorithm tries to maximize the cosine similarity 
between the vectors of words in similar contexts and minimize the cosine distance between 
those words that are not located next to each other in the context. In the work, the neural 
network architecture was created using parallel computing, the training sample parallelization 
mechanism was used, and the activation function of the ReLU family was used. Data for 
training a convolutional neural network and a loss function describing how far the neural 
network model is from making ideal recommendation predictions for the given data are 
defined. The average absolute and root mean square errors, accuracy and completeness were 
used to check the quality of the recommendations. The results of the experiments showed that 
when analyzing ten HTML pages with descriptions of hotels with 500,000 epochs of neural 
network training when switching from sequential calculations to parallelization on two 
processors, the metrics for checking the quality of the received recommendations slightly 
deteriorated due to the costs of synchronizing gradients between processors, but when 
switching to 4 and 8 processors. When using eight processors, the precision metric showed 
the best results, which increased by 8.33%.  
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1. Introduction	

Currently, a person is among a vast amount of information. And constantly, it is necessary to 
choose among a set of offers. While deciding, one can use friends’ opinions, data from the Internet, 
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expert evaluations, and so on. It is essential to have an automated tool to help you make choices in 
any field (goods, movies, audio, books, news content, promotions, etc.). 

Content-oriented filtering, collaborative filtering, or hybrid methods are usually used when 
creating a recommender system (RS) [1]. Matching the attributes of the user profile, which stores 
preferences and interests, with the content object (element) characteristics is the primary process in 
the case of RS based on content-oriented filtering [2]. Thus, RS deal with two entities, users, and 
items, where each user gives a rating (or preference value) to an item (or product) [3]. Collaborative 
filtering involves evaluating items through other people's opinions. Technology brings together the 
opinions of large, interconnected communities, supporting the filtering of significant amounts of data 
[4]. A hybrid approach between context-based and collaborative filtering includes various machine 
learning and clustering algorithms, eliminating each algorithm's shortcomings, and improving system 
performance since clustering, similarity, and classification lead to better recommendations and 
enhanced precision and accuracy [5]. 

Of particular interest is the development of software tools using artificial intelligence components 
in which specific design patterns are involved. In [6], the authors warn of the promising potentials of 
machine learning accompanying multifaceted challenges to traditional software development 
processes and practices.  

«It can be more difficult to maintain strict module boundaries between machine learning 
components than for software engineering modules. Machine learning models can be “entangled” in 
complex ways that cause them to affect one another during training and tuning, even if the software 
teams building them intended for them to remain isolated from one another» [7].  

Let's consider the development of recommendation systems as a system with artificial intelligence 
components. Recommender systems are designed to increase user satisfaction by providing helpful 
recommendations for various entities. Of course, in this case, the recommender system should have 
available data describing the user and the entities to which the recommendations are projected [8, 9].  

One of the classes of content analysis methods, the work of which can be automated and organized 
in such a way as to increase awareness of the level of opinions about particular objects or processes, is 
the analysis of the tonality of the text. The tonality of any text is understood as the kind of emotional 
coloring of this text, which shows the author's attitude to some event, object, or process. The tonality 
analysis is based on analyzing emotionally colored vocabulary and its components [10].  

Using sentiment analysis methods allows you to solve such tasks as determining the author's 
emotional state during the creation of the text and the author's relationship to a particular object 
mentioned in the text. At the same time, theoretical definitions of the characteristics of sentiment 
analysis have quite specific practical applications in practice [11].  

The most common practical example of encouraging sentiment analysis methods is evaluating the 
quality of services and/or certain goods based on textual user reviews. The importance of such 
information received by the user about a particular product or service varies depending on the degree 
of importance of the service or product to the user. Therefore, in the case of the need to make a 
complex decision for the user, it is advisable to obtain recommendations and reference information. 
At the same time, the sharp increase in the number of goods and services, as well as the people who 
use them, leads to the impossibility of manual processing of data arrays. Therefore, such processes 
should be automated. 

2. Purpose	and	tasks	

The work aims to study the peculiarities of building a recommender system created using a neural 
network based on a multilayer perceptron, using multithreading, as well as analyzing the speed of its 
operation depending on the dimension of parallelization. 

To achieve this aim, the following main tasks of the research are defined:  
• build an evaluation model for the object described by objective and subjective features; 
• among text vectorization algorithms, choose an algorithm for determining the emotional 
coloring of text responses; 
• determine the data for training a convolutional neural network, formalize the process of 
determining the tonality of responses using multi-threading; 



• to consider the application of the recommender system using the example of creating 
recommendations for choosing a hotel, detailing the requirements for the functional characteristics 
of the corresponding software application, and designing the system architecture; 
• perform a comparison of the training duration of a neural network on one and several 
processors. 

3. Analysis	of	literary	sources	and	problem	formulation	

The work [12] presented a recommender system that calculates product tonality scores based on 
different levels of analysis using hybrid deep learning techniques to determine polarity-based tonality 
characteristics. But the study used mainly subjective features such as customers’ feedback and ratings; 
only the product cost is used from objective features. 

In [13], it is shown that the most common methods are SentiWordnet and TF-IDF, and for machine 
learning Naïve Bayes and SVM. Choosing the right sentiment analysis method depends on the data itself. 
The authors consider applying these methods to solve the specific problem of analyzing sentiment in social 
networks. 

The authors of [14] described the individual methods used to evaluate the review using sentiment 
analysis and found that to overcome the shortcomings of the particular techniques, it is possible to 
combine them to improve the effectiveness of sentiment classification. However, it is indicated that 
the proposed methods have performance problems, which should be solved in the future. 

In [15], there was introduced sentiment analysis based on recursive neural networks using deep 
learning to optimize recommendations based on sentiment analysis performed on different reviews 
taken from various social networking sites; however, the narrow task of recommending places that are 
close to the current location is solved location of the user, a significant part of the attention is focused 
on solving the spatial task.  

The work [16] defined a methodology for calculating the weighted sentiment value using the 
Sentiment Intensity Analyzer from the NTLK library, but no objective factors are used. In addition, 
parallelization of calculations is not proposed to increase the speed of obtaining results. 

The task of sentiment analysis (tonality analysis) consists of three stages: 
• preliminary analysis of textual data; 
• conversion of text into a valid feature space; 
• tonality classification using machine learning methods.  
Preliminary analysis of textual data means: 
• removal of stop words; 
• segmentation; 
• bringing words to a single norm; 
• marking parts of speech. 
Two methods are most often used to convert text into a valid feature space: 
• bag of words [17]; 
• Word2Vec [18]. 
Both models use methods based on statistical information about the words of the text. This 

approach creates a vector with a length equal to the number of words used in all analyzed texts for 
each object. 

In the last step of sentiment analysis, the most suitable machine learning method is selected and 
applied. It classifies and determines whether the text message reflects a positive, neutral, or adverse 
opinion. There are many classification methods. The most common classification methods are support 
vectors, gradient boosting, naive Bayes, etc. 

The process of deep learning can be divided into the training process and the inference process. 
We should point out that a single node often cannot meet its performance requirement in large-scale 
deep neural network training. Therefore, the training process often is designed in parallel nodes. The 
increase in the number of layers of the neural network and the complexity of the algorithm model has 
brought challenges to the parallelization of deep learning [19]. 

4. Formalization	of	the	process	of	building	a	recommender	system		



For the assessment of a complex object, the application of an aspect-oriented approach is 
proposed. In general, the description of such an object can consist of objective O and subjective S 
features. The characteristics of objective features are measured on a binary (true/false or 
present/absent) or quantitative (numeric types) scale. 

In general, the evaluation model is represented by sets of evaluations of objective and subjective 
features: 

H	=	(	<Сoi⊆	O,	Сsj⊆S>	),	 (1)	
where Сoi represents a set of evaluations of objective features, i=1,...,N, N is a number of objective 
features; Сsj represents a set of assessments of subjective features, j=1,...,M, M is a number of 
subjective features. 

Building a system for creating recommendations for complex objects includes several stages. 
In the first stage, the evaluation object is studied, and the result of the stage is the determination of 

evaluation aspects. 
The second stage is constructing the evaluation model; the result is directly the evaluation model. 
In the third stage, a preliminary analysis of text data is performed; as a result, a set of prepared 

data in the form of text should be obtained. 
In the fourth stage, the architecture of the neural network is determined using parallel calculations; 

the result of the stage is the architecture of the neural network, the loss function, and the method of 
optimizing the training procedure. 

In the fifth stage, the text is transformed into a valid feature space, and the result of the stage is the 
formed feature vectors. 

The following sixth stage is responsible for training the classifier; the result of the stage is the 
trained model of the classifier. 

After that, at the seventh stage, the tonality of the text data is determined, and the result of the 
stage is the emotional coloring of the text data. 

In the eighth stage, recommendations are created, resulting from the stage's implementation. 
The last, ninth stage, is responsible for analyzing the received recommendations. 
Next, a preliminary analysis of text data is performed – reviews, messages, descriptions, etc. In 

this processing, marked data, i.e., marked as positive or negative, and dictionaries are fed to the input 
of the block. Dictionaries are used to normalize words further and remove stop words. Despite being 
significant in human communication, stop words are not provide helpful information when analyzing 
the text’s tonality. 

A neural network transforms the processed text data into feature space and determines tonality. 
The neural network architecture determines the topology of connections between neurons, the number 
of layers and neurons in each layer, the learning method, etc. Multithreaded calculations are proposed 
to optimize the neural network training procedure. The number of processors involved in calculations 
affects the way of control, information transfer between individual neurons, and their synchronization. 

 For the text to be submitted to the classifier’s input, it needs to be vectorized. Depending on the 
chosen technology, the text is matched with a set of signs presented as numbers during vectorization. 
The following algorithms can be used for vectorization: Topicmodeling, GloVe, One-hot encoding, 
SVD, FastText, and others.  

But the most widespread is the Word2vec algorithm, which provides an opportunity to determine 
the degree of closeness of the word values of the analyzed text depending on the context of the words. 
To assess the degree of proximity of words represented by vectors, cosine similarity is used, which for 
two vectors A and B is calculated according to the standard formula: 

	

(2)	

During the training of the neural network, the task of the Word2vec algorithm is to maximize the 
cosine similarity between the vectors of those words that are in contexts that are similar in meaning 
and, conversely, to minimize the cosine distance between words that are not located next to each other 
in the context. 

 The neural network of the Word2vec algorithm is trained using the backpropagation method; that 
is, the weights of the hidden layer and then the input layer are adjusted. The result of Word2vec is 
vector coordinates for certain words. 



Metrics for evaluating the decisions made should also include Precision and Recall. Both are based 
on the so-called contingency table, which contains four values: TP (true-positive) reflects the 
correctly recommended entities; TN (true-negative) reflects the correctly not recommended entities; 
FP (false-positive) reflects the entities recommended to the user, but he does not need it; FN (false-
negative) reflects the entities not recommended to the user but was required by him. 

Precision and Recall values are calculated as follows: 

 
(3)	

 	

 
(4)	

5. Sentiment	analysis	using	multithreading	

Quite often, convolutional neural networks are used to analyze the tonality of texts [20]. Initially, 
convolutional neural networks were used for image recognition, but later they began actively used in 
prediction, classification, and modification tasks.  

The architecture of the convolutional neural network is unidirectional (only the direct direction of 
propagation of the activation signals); the activation functions are selected at the user's request. A 
neural network has many layers. The backpropagation method is used for training [21].  

The idea of parallel computing is based on the fact that most tasks can be divided into smaller 
tasks that can be solved simultaneously. Usually, parallel computations require the coordination of 
actions. At the same time, several threads can run in parallel and not interfere with each other. When 
solving problems with the help of neural networks, parallelization can be carried out in different 
ways: at the level of the learning phase, with the distribution of the training sample, at the level of the 
layer of the neural network, at the level of the neurons themselves or their weights. These methods 
can be used both individually and in combination. 

For any neural network, the most resource-intensive task is the stage of its training. Often, the 
training sample size for a problem solved using neural networks can be large enough. In a single-
stream system, training vectors will be sent to the network one at a time. In a parallel system, these 
training vectors can be divided between several processors, and the number of processors can be 
adjusted. Each processor requires a full copy of the neural network. The peculiarity of this learning 
method is that different values are applied to the input of neural networks, thereby changing the 
response results. At the same time, after their correction, the scales are immediately sent to other 
streams, after which the results are obtained. 

Thus, processors can learn simultaneously on different training samples (Fig. 1). 
 

 
Figure	1:	Parallelization	of	the	training	process		

 



A difficult task in building a neural network architecture is determining the number of internal 
layers. Adding too many layers causes the network to forget the gradient and dramatically increases 
the number of weights needed to train the network. The problem of forgetting can be solved using 
activation functions of the ReLU (Rectified Linear Unit) family of functions. Increasing the number 
of weights for training leads to an increase in training time and the possibility of retraining the 
network model. To solve this problem, a specific correlation between the values of the elements of the 
vectorized text is used, which allows not to create of a fully connected neural network and, thus, 
reduces the number of weights used for training. 

In the general case, the dictionary size can reach many words. The algorithm’s operation will 
require much time because the backpropagation method involves the calculation of the gradient in two 
steps. That is why it is necessary to choose algorithmic and software techniques, which include ways 
to optimize the word vectorization process to quickly use large dictionaries (more than several 
hundred thousand words). 

6. Results	and	discussion	

A hotel is selected as the object for which a recommendation is issued. The recommender system 
should help the tourist choose the most attractive hotel based on his request. A software system was 
created to implement the proposed model, including subsystems for implementing business 
requirements and making relevant recommendations for tourists regarding hotels (Fig. 2). 

 

 
Figure	2:	Generalized	structure	of	the	software	system	

 
The recommender system was designed based on the “Distinguish Business Logic from ML 

Model” pattern. The business logic depends on the results of the machine learning (ML) models, 
which may fail for various reasons. Hence, the overall business logic had been isolated from the ML 
models. Decoupling “traditional” business and ML components allowed the ML components to be 
monitored and adjusted to meet users’ requirements and change inputs. Figure 3 shows the entire 
structure of the recommender system. 

 
Figure	3:	Logic	representation	of	recommender	system	architecture	

 



As you can see, the software system contains two significant parts: a subsystem for implementing 
business requirements (Fig. 4) and a subsystem for creating relevant recommendations (Fig. 5). 

According to the aspect-oriented approach, when evaluating objective features, their characteristics 
are considered, which can be presented in the form of: 
• logical value true/false (presence or absence) for a particular component of the hotel: 
restaurant, children's entertainment room, swimming pool, etc.; 
• numerical values: the playground size, number of floors, depth of children's pool, etc.  
 
 

 
Figure	4:	Activity	diagram	of	the	business	requirement	implementation	



 
Figure	5:	Activity	diagram	for	creating	relevant	recommendations	

 
The evaluations of subjective features are the evaluations tourists give on a particular scale. In 

addition, the most valuable assessments of subjective features are the textual feedback of users, which 
is analyzed with the determination of a specific emotional color of the feedback. 

Classification of 
attractiveness  

of the hotel 



In this work, supervised learning is used to determine the emotional coloring of responses; that is, 
the labeled data is used for classifier building. 

When developing software, the method and convenience of implementing machine learning 
functions and the possibility of creating parallel data processing processes depend on the chosen 
programming language. This paper proposes the use of the Python programming language. Program 
modules implemented in Python can conveniently use the free spaCy library, which specializes in 
implementing natural language text processing algorithms. The spaCy library provides functions for 
analyzing text tonality based on applying a convolutional neural network. Since the system for 
recommending hotels must also consider the reviews of tourists, the spaCy library is useful.  

Fig. 6 shows spaCy's built-in loader for a pre-trained statistical language model to handle English 
text. Using the NLP (Natural Language Processing) method allows text tokenization. 

 

 
Figure	6:	An	example	of	tokenization	of	hotel	feedback	

 
When spaCy tools split the response into tokens using NLP, it receives a Doc object consisting of 

a set of Token class objects and other information. The token.is_stop construct identifies and 
removes stop words from tokenized responses. After that, spaCy tools reduce the tokens remaining in 
the feedback to their original form using a standard lemmatization procedure. The spaCy tools come 
with a default list of stop words. This list can be adjusted if necessary. 

The next stage is the vectorization of text responses with the formation of feature vectors. The 
Word2Vec method is used for this. Note that the Word2vec algorithm has been known for a long 
time, so there is no need for the program implementation of a neural network for the vectorization of 
text words. The lemmatized tokens are transformed into unique numerical values; vectorization is 
performed and calculated by vector for each token. In the spaCy library, the vectors are dense, i.e., 
zero empty values are not created, which allows you to speed up the processing of a non-sparse array. 
For vectorization, the nlp() method is used, which calculates a vector using the vector attribute and 
determines the vector partition coefficients for testing. By default, 80% of the data is used for training 
and 20% for testing and checking the quality of the classification result. Next, the classifier is trained. 
As mentioned above, a convolutional neural network is used for this. The appropriate APIs of the 
Python programming language multiprocessing package provides the parallelization of the training 
sample. After that, the marked text and its corresponding labels are loaded using the 



load_training_data method. The data is shuffled and split into two sets – a training set and a test 
set – and these sets are then returned as the result of the method. The error backpropagation method 
trains a multilayer perceptron using an iterative gradient algorithm. It allows you to reduce the errors 
of the neural network and obtain satisfactory classification results. 

 Next, the datasets are loaded into the list, and the directory structure of the data files is created. A 
content tuple is then added to the list of hotel reviews and, in addition, a dictionary of tags (a 
requirement of the spaCy model format during training). 

 The trained model of the classifier is used to determine the tonality of the response; for this, the 
functions of the spaCy library are also used. 

The classification results are evaluated according to the defined classification quality assessment 
measures. Classification accuracy is traditionally determined. 

A program class diagram (Fig. 7) has been developed for the proposed system, which contains 
classes: DataPreparation, MainClassifier, ReviewClassification, ClassificationNode, 
NetTrainer, View, HotelValueGather, HotelReviewsGather, WebPageParser. The 
ReviewClassification class is responsible for classifying hotels. It inherits from the 
MainClassifier class and uses the NetTrainer class to train the neural network. The 
ClassificationNode class is used to process neural network nodes. The DataPreparation class 
helps you configure input data for recommendations. The View class implements the user interface. 
The HotelValueGather and HotelReviewsGather classes analyze hotel feature ratings and 
summarize recommendations for them. The WebPageParser class is responsible for parsing HTML 
pages with hotel descriptions. 

 

 



Figure	7:	The	software	classes	diagram	
 
During the research, different scenarios were used, which differed in the number of epochs of 

neural network training: 10,000 (scenario 1), 100,000 (scenario 2), and 500,000 (scenario 3) epochs. 
The results of neural network training and testing obtained using 1, 2, 4, and 8 processors are 

shown in Table 1. As can be seen, there is no significant improvement in results between training the 
neural network on one and two processors because the gain from organizing parallel computations on 
two processors is spent on synchronizing the gradients between processors before each update of the 
neurons of the neural network. 

But when switching to 4 and 8 processors, all metrics show a gain for checking the quality of 
received recommendations. Thus, with 500,000 learning epochs of the neural network, calculations on 
8 processors compared to sequential calculations allowed to increase Precision’s value by 8.33% and 
Recall by 2.83%. 

 
Table	1	
Dependencies	between	parallelization	and	values	of	execution	time,	Precision	(3),	and	Recall	(4)		

Scenarios Execution time (seconds) on processors 
1 2 4 8 

Scenario 1 4,92 5.34 3.91 2.28 
Scenario 2 49,26 53.38 39.07 25.01 
Scenario 3 243,15 260.94 190.12 129.04 
Scenarios Precision,% 

1 2 4 8 
Scenario 1 0,716 0,718 0,727 0,792 
Scenario 2 0,752 0,749 0,756 0,836 
Scenario 3 0,804 0,811 0,823 0,871 
Scenarios Recall,% 

1 2 4 8 
Scenario 1 0,704 0,703 0,726 0,738 
Scenario 2 0,723 0,725 0,732 0,749 
Scenario 3 0,741 0,744 0,751 0,762 

7. Conclusions	and	prospects	for	further	research	

The paper presents the results of studying the peculiarities of using multi-threading when building 
a recommender system using a neural network based on a multilayer perceptron. Modern publications 
in the work domain were analyzed, and best practices were determined. Further, these best practices 
were applied in developing a hotel recommendation software system. The software implementation 
was performed using multithreading, which made it possible to conduct an experimental study of the 
speed of its operation depending on the parallelization dimension. Quantitative measurements showed 
that parallelization reduces the execution time, which corresponds to theoretical assumptions. Also, 
improved performance leads to improved model training, which is confirmed by the quantitative 
values of the model performance metrics. 

 Although the quantitative indicators summarized in Table 1 are obtained from representative 
samples, the experiment is set for one recommender system. It can be assumed that the behavior of 
the meters will not change depending on the subject area for which the recommender system was 
developed. Therefore, the following research step will study the impact on the recommender system's 
quality of using different neural network structures. 
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