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Abstract 
This paper outlines the generalized framework for building end-to-end botnet network 

activity detection systems using artificial intelligence (AI) techniques. Network flows 

reconstruction was used as a primary feature-extraction method and different AI classifiers 

were considered for achieving better detection rates. The results of the latest research by 

other authors in the field are incorporated to implement a more efficient approach for botnet 

discovery. The implementation of the described intrusion detection approach was tested on a 

dataset with real botnet activity traces. The performance metrics for different AI 

classification models were obtained and analyzed in detail. Different data preprocessing 

techniques were tried and described which helped to improve the results even further. Some 

options for future enhancement of network feature selection were proposed as well. Finally, 

the comparison of the obtained performance metrics was drawn against the results provided 

by other researchers in this field, demonstrating the appreciable improvements of CNN- and 

LSTM-based classification of network flows data organized as time-series. 
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1. Introduction 

In the environment of ubiquitous Internet access and integration, network attacks have become a 

usual phenomenon. Regular means of protection like thoroughly configured firewall rules and 

signature-based antivirus programs do not cover the full attack space. Many attacks are conducted 

exploiting well-known regularly open ports and are masked under the normal network activity. Such 

activity is impossible to detect using just static security mechanisms like firewalls and signature 

matching. Intrusion detection systems (IDS) are the dynamic line of defense designed to identify 

malicious activity at runtime. This paper describes a network-based detection system with AI models 

used for traffic classification. To better understand the benefits of such an approach, it is worth 

mentioning the common alternatives. 

Hervé Debar in 2009 [1] gave an overview of different IDS types and their taxonomy, dividing 

detection tactics into knowledge-based and behavior-based.        

Knowledge-based systems, which are also known as rule-based and considered to be a classic 

approach, utilize a set of predefined rules created by a human expert, describing the known attack 

patterns, and matching those against the captured events (e.g., logs or network packets). An example 

of such a rule may be “more than N failed connection attempts from source IP address X”. After the 

rule is triggered, the system produces an alter and potentially performs an automatic response (e.g., 

blocking the malicious IP address). There are several drawbacks of such an approach. A human expert 

is required for rules creation and to keep the list up to date later. More importantly, the construction of 

some more sophisticated rules may be extremely difficult as the attack patterns cannot always be 

easily described. Attackers often intentionally stretch the intrusion in time by sending malicious 
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packets irregularly and mixing them with benign data. Finally, as the name implies, knowledge-based 

systems require specific prior knowledge to counter the attack. 

Behavior-based systems, on the other hand, are presumably more flexible as designed to “learn” 

the user behavior and create a normal activity profile. An outlier in the monitored activity can be 

viewed as an anomaly and classified as an intrusion. Despite the enhanced flexibility, the complexity 

of that approach lies in the difficulty of defining what is a normal behavior. Usual users can change 

their behavior at any time, and it is hard to define to which extent the change is acceptable before 

considering it an anomaly. 

AI-driven systems are an alternative that looks the most promising, considering rapid AI 

development in the last decade. The advantage of AI is that it may encompass the benefits of 

knowledge- and behavior-based systems with significantly less human input involved. AI models do 

not need human experts as they learn the rules and profiles from the data. For instance, decision trees 

and neural networks can derive significantly more complex rulesets in comparison to knowledge-

based systems. A supervised learning model studies the normal activity alongside the attack patterns, 

while unsupervised learning models can learn to distinguish anomalous traffic on their own, which 

makes them superior to behavior-based systems. There are 2 major drawbacks, however: firstly, is 

that those learned rules are often not human-interpretable; secondly, a significantly larger training 

dataset is required – in the case of supervised learning, the dataset must be labeled as well. 

It was shown that AI-based IDS performance significantly depends on the feature selection method 

as well as the choice of underlying classifier architecture. The work edited by Al-Sakib Khan Pathan 

in 2014 [2] among others briefly describes the benefits and drawbacks of using different AI 

techniques to perform the detection. Those which are mentioned: Deep Neural Networks (DNN), 

Self-Organized Maps, Markov Models, Bayesian Systems, and Support Vector Machines (SVM). In 

more detail, Arnaldo et al. in 2017 [3] described the usage of Random Forests (RF), Feed-forward 

neural Networks (FFNN), Convolutional Neural Networks (CNN), and Recurrent Neural Networks 

(RNN) to analyze log and relational data as time-series. However, in that study, neither RNN nor 

CNN enhanced the results in comparison to the regular FFNN or RF. In the scope of this paper, it will 

be shown that LSTM (a variation of RNN) and CNN do improve the results in the case of network 

flow analysis, given that data preprocessing and aggregation is done correctly. 

In order not to dissipate the reader’s attention, this paper is focused on botnets traffic detection 

only. Botnets are among the top of the most destructive cybersecurity threats and their number is 

actively growing on a yearly basis. Unlike other attacks, botnets are often designed to stay under the 

radar for a long time period – the longer the infection stays undiscovered, the more harm is caused in 

the form of data leakage, malicious surveillance, and involuntary participation of the infected machine 

in other network attacks, so botnet detection is crucial for any information security system. 

It should be noted, however, that despite the focus on botnets, the specialization is made only at 

the stages of network feature selection and the dataset used for AI models training. The general 

detection framework can be applied for other kinds of network attacks, except the models must be 

trained specifically against those and the feature set for the effective discovery may be different. 

2. Intrusion detection based on network flows 

This chapter provides a high-level description of the data-processing pipeline for flow-based 

network intrusion detection. Each step will be described in more detail in the following chapters. The 

complete pipeline for AI-driven network-based intrusion detection is shown on the Figure 1. 



  
Figure 1: AI-driven network-based intrusion detection pipeline 

 

The initial stage is network monitoring in form of traffic capture. The capture should be performed 

at the nodes of interest of the monitored network. Packets captured propagated down the detection 

pipeline for further analysis. 

The second stage is network flows reconstruction from the captured packets. Network flow aims to 

represent the end-to-end conversation between two remote processes (endpoints). The major benefit 

of such an approach is that it allows isolating packet groups belonging to the same communication 

process from the rest of unrelated traffic, so no matter how much noise is coming through the channel, 

a classifier can operate separate conversations. 

Another benefit of working with network flows is easy contextual features extraction, which is the 

third stage of the pipeline. Aggregates across all the array of packets are computed, those may be 

statistical values describing packet properties like frequency, size, etc. The occurrence of some 

specific network events in the flow can be considered as well (e.g., presence of DNS lookups). These 

calculated feature values numerically describe the full context of the conversation. There might be 

multiple flows over the longer time span between two considered endpoints, so it is important to 

capture the timestamp of when the current conversation was initiated and when it ended – it can be 

used at the later stages of the pipeline. 

After the numerical representation of each individual flow is obtained, the fourth step is feature 

preprocessing: cleaning up invalid values, normalization, and scaling. At this point, it is already 

possible to perform traffic classification based on those features only. However, as will be shown 

later, the detection quality can be improved by feature enhancement applying techniques like 

dimensionality reduction and smart feature selection. This stage is optional. The detection rate can be 

improved even further if instead of considering each flow in isolation, flows are aggregated into 

ordered groups and treated as time series. The approach was proposed by Arnaldo et al. in 2017 [3], 

although, they describe it in terms of grouping related events by fixed time intervals and calculating 

statistical features for each group. Such timeframe-based aggregation is not equivalent to the network 

flow reconstruction technique. More details are provided in the later chapter. 

The final stage is flows classification by AI model based on the features obtained in the previous 

stages. Depending on the model architecture, the classification can be performed on both individual 

flows and a series of flows. 

Essentially, the network-based detection problem is reduced to aggregating the captured packets 

into flows represented by vectors of numeric (and categorical) features and then marking those as 

malicious or benign by an AI-based classification model. 



This approach assumes supervised learning, so to train the model there must be a labeled dataset 

provided. Such a dataset can be generated in laboratory conditions by artificially producing malicious 

traffic (e.g., infecting machines by a botnet) and capturing their network traces. The labeling is 

performed by knowing malicious IPs and time intervals – after flows reconstruction, all the flows 

containing the known IP as their source or destination (and falling under specific time intervals if 

those are specified) are considered malicious. Other flows are labeled as benign.  

The full detection pipeline was implemented in scope of this paper creation: a labeled set of flows 

was derived from ISCX Botnet dataset 2014 [4] provided by the Canadian Institute for Cybersecurity. 

Further feature processing and aggregation was performed. Afterwards, different AI classification 

models were trained based on those features. Finally, the pipeline was tested on previously unseen 

data and performance metrics were obtained. More details are provided in the following chapters. 

3. Network traffic capture 

Event capturing is an important part of every intrusion detection system. In the case of the 

detection pipeline described previously, such events are network packets. Network traffic monitoring 

is usually performed by “packet sniffing”. These techniques allow capture network packets on layers 

2-5 of the OSI model passing through device network interfaces in any direction. The usual tools to 

perform such tasks are: 

• Wireshark – the most common packet capture tool with UI and ability to perform various 

filtering (e.g., based on source/destination IP, port protocol, etc.). It can recognize different 

protocols on different network layers and reconstruct the packet, segments, requests, etc. 

• TShark – console version of Wireshark. Can run as a background process and is most useful in 

environments with multiple hosts, where automatic provisioning is used. 

It should be noted, however, that plain packets analysis is quite expensive and sometimes not 

accessible process. First, because of the huge amount of data being generated: essentially capturing a 

packet means duplicating it on some host machine, before passing further to the analyzer. This at least 

doubles the amount of data being transferred and stored. Furthermore, it is not always possible to use 

the regular capturing tools on some network devices (e.g., some switches and routers), without 

degrading its throughput performance. Techniques like “port mirroring” double the amount of traffic 

and may not be supported on all the devices (especially on the cheap ones). Moreover, capturing 

packets on a single node is not sufficient: different packets with the same destination may take 

different routes while traveling over the network, so to capture all possible packets, all intermediate 

nodes must be monitored. This, however, may lead to one packet captured on multiple intermediate 

nodes it came through, which causes even higher data duplication. All these large volumes of data 

must be stored and analyzed, often in real-time, which sometimes is too computationally expensive. 

Finally, data duplication and raw packets analysis is always a security risk, as most likely it contains 

sensitive or confidential data. Also, in terms of IDS, while the packet body may contain the crucial 

information to identify an attack (e.g., botnet IRC communication commands), deep packet analysis 

becomes impossible, when traffic is encrypted (which is often the case). 

4. Network flows reconstruction 

The complementary approach to network traffic analysis, which addresses some of the issues 

mentioned above, is processing network flows, instead of separate packets. To achieve this, flows 

need to be reconstructed from the groups of individual packets and only then passed further to the 

analyzer. 

There are various ways for doing network flow reconstruction, with different complexity and 

result quality. In theory, a network flow should unite all packets transferred between two processes 

(endpoints) sharing the same context and time span to represent the complete communication session 

between those. An example would be the sequence of packets exchanged in the scope of a single TCP 

connection. Flows can be unidirectional or bidirectional, depending on reconstruction procedure and 

requirements. As the name implies, unidirectional represents the set of associated packages coming 



from one endpoint to another in a single direction, while bidirectional captures packets coming in both 

ways. A traffic flow is identified by the following tuple: 

<Source IP address, Destination IP address, 

Source Port, Destination Port, 

(Transport) Protocol, Start Time (Finish Time)> 

So, given a set of network packets, the flow can be considered as an aggregate of packets grouped 

by those attributes. Aggregation is performed by computing a set of values of interest (further called 

features), which represent the generalized description of the properties of all packets associated with 

the flow. Those features can be statistical (e.g., avg/min/max packet size), categorical (e.g., protocol 

type) or simple counters (the number of specific TCP flags, total packets count, etc.). All these values 

are crucial and used later by the detection classifier to make the judgment of whether the flow/a series 

of flow is malicious or not. 

The flow reconstruction algorithm can be generalized to 3 main processes: 1) registration of new 

active flows 2) association of a packet with one of the currently active flows 3) marking flows, which 

have hit one of the termination conditions, as finished and removing those from active flows list. The 

algorithm constantly tracks the list of already discovered active flows; for each captured network 

packet check if there is an active flow the packet can be associated with. If a packet matches one of 

the active flows, then feature values of that flow are adjusted accordingly. In case if there are no 

active flows the packet can be associated with, a new flow is created and added to the active flows 

list. The mentioned tuple of packet attributes is used to uniquely identify the flow. As this is the first 

packet in the flow, its timestamp is put into flow`s “Start Time” field. This process is repeated for 

each analyzed packet. In addition to that, flows are occasionally terminated and removed from the 

active flows list. The list of active flows must be checked periodically whether there are any expired 

flows, either by “flow idle timeout” or by “flow activity timeout” – the predefined external parameters 

controlling the lifetime of a flow: 

• flow idle timeout - maximum timespan allowed between 2 subsequent packets in a single 

flow: if the idle timeout has passed, but no new packet registered in the flow, it is considered 

idle and deleted from the pool of active flows. Figure 2 demonstrates the termination by flow 

idle timeout. 

• flow activity timeout – maximum time interval during which a flow is considered to be 

active. If the currently constructed flow lifetime exceeds this value, it is marked as inactive, 

and a new flow is created. Flow termination by the activity timeout is shown in the Figure 3. 

 
Figure 2: Flow termination by its idle timeout 

 
Figure 3: Flow termination by its activity timeout 

 



Besides the timeout parameters, TCP connections have some additional termination conditions 

(see Figure 4): 

• The most frequent is the “graceful disconnect” flags sequence: FIN-ACK-FIN-ACK. If the 

first FIN flag is encountered, the algorithm searches subsequent ACK-FIN-ACK flags and 

then marks flow as finished. 

• Another case of TCP flow termination is when RST flag is encountered, which means 

connection was abruptly reset by one of the peers.  

 
Figure 4: TCP connection lifecycle and the corresponding flags 

 

For UDP and ICMP flows idle and activity timeouts are the only termination conditions as they 

have no other mechanism for conversation termination. 

5. Flow representation formats 

In practice, to construct a network flows intrusion detection pipeline it is essential to select a 

descriptive format for flow`s features representation and pick a corresponding tool for extracting 

those features. 

Some fundamental work of flows format analysis and feature selection was done by Mark Graham 

in 2018 [5]. The work outlines two major flows representation, which are NetFlow (different 

versions) and IPFIX (IP Flow Information eXport). 

NetFlow is a technology developed and patented by Cisco in 1996 and built-in most of their 

routers. The first implementation (V1) was restricted to IPv4 traffic and contained very few fields 

associated with a flow. Later, after a few internal iterations, version V5 was released which is the 

most used nowadays along with V9. V5 has 18 static fields including header ones characterizing the 

flow. Unfortunately, only 10 are useful for intrusion detection. The final version of NetFlow is V9, 

which extended the static fields count to 79 (104 for Cisco devices) and added support of the 

templates, so collected flow info format could be customized according to the needs: some fields 

could be added, and others could be excluded. 

There are two major problems with NetFlow in the context of IDS: 1) it is proprietary 2) it was not 

originally designed as a traffic monitoring tool for intrusion detection, but rather for network resource 

consumption and performance analysis or simply network management. 

IPFIX (aka NetFlow V10, even though has nothing to do with the original Cisco NetFlow) is a 

standardized technology for capturing network flows. It has 433 information elements, 79 of which 

match NetFlow version 9 for the sake of compatibility. Like NetFlow V9 it is template-based, so the 

user can choose a specific set of fields to capture and report. Just as V9 it supports IPv6, multi-cast, 

and MPLS. IPFIX is vendor-neutral and standardized in RFC 7011. One major difference of IPFIX 

from NetFlow is that it supports application-layer (L7) protocol analysis as well (e.g., HTTP and 

IRC), which is crucial for threat detection. According to Mark Graham, 2018 [5] IPFIX is the 

preferable format for intrusion detection.  

Despite NetFlow and IPFIX can provide reach and extensible flow representation, they turned out 

to be hard to obtain from the existing datasets. To process the ISCX Botnet dataset 2014 [4], which is 

provided as PCAP files (Wireshark-compatible packet captures), a tool was needed to convert packets 

from those files into flows (either in IPFIX format or any other).  Although IPFIX is an open 

technology, most of the tools capable of producing IPFIX-formatted flows from packet captures are 

proprietary (e.g., Nprobe). So, for the task of flow reconstruction and primary feature extraction 

CICFlowMeter V4.0 [6] was chosen, which is an open-source tool developed by the Canadian 

Institute of Cybersecurity. It can construct flows from packets both offline (from PCAP files) and in 



real-time (by network sniffing). The output flows are presented in CSV format. Each constructed flow 

contains 83 information fields. 

6. Flow features extraction 

Out of 83 flow fields obtained by CICFlowMeter 6 fields (namely, Source/Destination IP, 

Source/Destination Ports, Protocol, Start Timestamp) were used for a flow identification. Another 72 

feature-field were utilized for classification, namely: Flow Duration, Fwd/Bwd Header Length, 

(Fwd/Bwd) Packet Length Min/Max/Mean/Std/Total, Total Fwd/Bwd Packets, (Fwd/Bwd) Inter-

Arrival Time Min/Max/Mean/Std/Total, (Fwd/Bwd) SYN/FIN/ACK/RST/CWR/PSH/URG/ECE flags 

count, Packets/second, Bytes/second, Flow Active Duration Min/Max/Mean/Std, Subflow (Fwd/Bwd) 

Packets/Bytes, Up/Down Ratio. 

The remaining fields have been left unused due to occasional faults in their calculation by the tool. 

Note: Since the flows were considered bidirectional, Fwd references packets sent forward with the 

relation to the first packet initiating the flow, Bwd - packets sent backward accordingly. 

7. Features preprocessing 

At this point, it is already possible to train the flows classification model based on the feature 

fields obtained from the previous stage. However, to obtain reasonable results, additional 

preprocessing must be done. 

Firstly, it is important to clean up the data. In practice, packets timestamps do not always 

correspond to the order packets arrive and being processed, which may cause feature calculation 

anomalies (if such scenario is not foreseen by the flow reconstruction tool). For example, after 

processing the ISCX Botnet dataset 2014 with CICFlowMeter, some fields like Flow 

Duration or Inter-Arrival Time had negative values. Such flows were discarded as not valid. 

Secondly, great attention must be paid to data normalization and standardization. Due to the nature 

of the selected features, their values may vary immensely – both, comparing to themselves and 

comparing to each other. For instance, Flow Duration may vary from several milliseconds to several 

hours. Such heterogeneity negatively affects the model’s ability to train. To compensate for that, 

values must be normalized. In this paper, min-max scaling (1) was used for each feature individually, 

so its final value is in the range between 0 and 1. 

, (1) 
 

In addition, counters fields, like TCP flags count, are several orders of magnitude smaller than, 

other fields and may be overwhelmed by the fields of much greater value, like Packet Length or Flow 

Duration. Features standardization addresses this issue, by subtracting the mean value and scaling to 

the standard deviation of each feature. In the case of logistic regression classifier, such manipulation 

has helped improve detection AUROC metrics from 0.778 to 0.7997. 

8. Possible improvements in feature selection  

It is worth mentioning, that despite those statical features characterizing generic network flows 

yield quite good detection rates (AUROC 0.918 on unseen data), crafting other features specific for 

botnet detection may significantly improve the results. 

Employing cluster and correlation analysis on real-world botnet data, Mark Graham, 2018 [5] 

concluded that the features listed in Table 1 contribute the most to successful botnet discovery. Even 

though some fields are purely utilitarian and obvious (e.g., IP addresses), others, like L7 flags (DNS, 

HTTP, SMTP, IRC), are closely related to the ways botnets often communicate. For instance, known 

techniques involving DNS lookups, which are used by infected machines to discover Command and 

Control (C&C) botmaster, namely “Fast flux” [11] and “Domain Generation Algorithm” (DGA) [12]. 

Studying the specifics of botnet functioning and their intrinsic network pattern and heuristics may 

help select feature sets for more effective botnet discovery. The same statement is true for the 

discovery of other network attacks. 



 

Table 1 
IPFIX features for botnet detection template [5] 

Name Description 

srcIPv4  Source IPv4 

dstIPv4  Destination IPv4 

srcPort  Source Port 

dstPort  Destination Port 

packetTotal  Total Number of packets transmitted 

flowEndMS   Timestamp of when the flow ended 

flowStartMS  Timestamp of when the flow started 

protocol  OSI protocol used (TCP, UDP, ICMP etc.) 

initTCPFlag  Flags exchanged during while establishing TCP connection 

tcpSeqNos  TCP sequence numbers 

collectorIPv4 IPv4 address of flows collector 

flowKeyHash  Hash of flow identification tuple + time. Used as Flow ID 

ircTextMessage  The text and command sequences in case of IRC communication 

httpGet  Whether the flow contains HTTP GET request 

httpResponse  HTTP response code 

dnsARecord  Flow contains domain resolution of A type record 

dnsSOARecord  Flow contains domain resolution of SOA type record 

smtpHello  Flow contains SMTP ELHO or HELO commands 

sslName Details of SSL certification authority 

 

9. Network flow classification techniques 

There are several different ways to perform the classification of the captured network traces. The 

most basic classification unit is an isolated network flow itself. Since each flow is already labeled as 

malicious or benign, flow feature vectors can be fed into the classifier one by one to learn whether it 

is a part of a botnet communication based on the data encoded into its feature values alone. If each 

flow vector contains F features, the dimensionality of the classifier input and the dimensionality of 

the full input matrix during training is N×F, where N is the number of flows in the training dataset. 

This method is used as the baseline to compare against. The best performance was shown by Deep 

Neural Network (DNN) with 3 hidden layers 16x16x16 (AUROC - 0.866). Random Forest classifier 

took second place (AUROC - 0.848) and Logistic Regression took third (AUROC - 0.778). 

The second more sophisticated approach for classification is centered around the idea of treating 

the flows set as time series and analyzing each flow in the context of the prior flows encountered. To 

achieve this, each flow`s timeframe is considered – all flows are sorted based on the flow start 

timestamps forming time series of flows. After that, different techniques can be used for those series 

processing. Flows can be split into groups by similar time intervals or into chunks with a fixed flows 

number. Later, those chunks are joined into one vector and passed into the classifier. Grouping 

arbitrary flows, however, makes the prediction results quite vague, so besides grouping based on time 

sequencing only, it is reasonable to aggregate flows based on their intrinsic data, like 

source/destination IP couple, ports, and protocols. Since an attacker can change communication port 



and protocol regularly, the grouping network flows by source and destination IP addresses may 

capture the whole bot-to-C&C communication occurring during a timespan. Further, classification is 

done on each flows group rather than on an isolated flow, while still treating a group as a time series 

of flows (for reference see Figure 5).  

 
Figure 5: Groups of ordered flows 

 

By combining these two approaches, it should be possible to perform a reasonable judgment on the 

communication nature as it regards the context of each flow in both time and event spaces. In such 

case, the classifier takes an input as a M×F matrix, where F is the number of features and M - flows 

group size. Input training tensor is K×M×F, where K is the number of groups. For the classification of 

such time-series data Convolutional Neural Networks are used with temporal convolutions. Such an 

approach was taken by Arnaldo et al. in 2017 [3], where they have originally described its application 

for log-based (connection-based) data, but later applied to network flows data, obtained from ISCX 

2014 Botnet dataset. In their case, unfortunately, that did not yield any positive results: the 

classification performance was worse than in the case of individual flow analysis. They did, however, 

manage to improve results slightly (by 5.6%), by extending the original feature set with generated 

features.  

In this paper, we used a similar approach, but with some enhancements and modifications. Firstly, 

the base feature set for each flow was extended from 23 to 72, which makes the input data much more 

representative. Secondly, the grouping was done based on a Source IP address only. The motivation 

for that we want to identify the infected host itself, which may be sending C&C discovery requests to 

different remote IP addresses before finding an available one. An attempt to establish C&C 

connection is known to be inherent for all botnets. Finally, it seems when considering groups with 

more than one flow Arnaldo et al. [3] discarded groups containing fewer than N flows. So different 

classifiers were trained and used for different cases (N = 7, 14, 28). In contrast, in the scope of this 

paper all series were split by static groups of size 10 and for all the groups containing fewer samples, 

the input tensor was simply padded with zeros, which is a common technique applied when using 

convolutions on data of varying size. Together with the features preprocessing and filtering 

techniques described in the previous chapters, using a CNN classifier on the groups of time-series 

yielded significantly better results in comparison to the baseline single-flow DNN classification. 

AUROC metrics increased by 6% (0.918), which indicates the effectiveness of considering multiple 

related flows in the context of the order of their occurrence. CNN model contained 2 convolutions 

layers and two 1-dimensional pooling layers. The first convolution layer had its kernel size of 3 with 

32 filters, the second one had the kernel size of 2 with 16 filters. Simplified version of the model is 

shown on Figure 6. 



 
Figure 6: Network flows group classification with CNN 

 

This approach, however, has a major drawback – it is not practical to be used for real-time (semi real-

time) classification, as it essentially needs the whole group of flows to be analyzed altogether. 

Another commonly known approach towards time-series data processing is based on ingesting 

events in order of their appearance one by one, but at each step taking into account the previous 

events. Firstly, a vector of “historical features” is extracted by applying the model to the events on the 

past timesteps (in our case, applying to the previous flows in the group). This vector represents 

historical context for the currently analyzed flow. Then the historical features are combined with the 

current features sample and fed into the classifier together, which makes the judgment based on both. 

The classifier input    can be described as (2). 

 (2) 

where  - feature vector of the current sample, and  – historical 

feature vector, which, for the sake of reducing the number of calculations, can be presented as (3). 

 (3) 

Such an approach can be implemented with Recurrent Neural Network (RNN) with the benefit that 

a series of feature vectors can be processed element by element at each step producing some new 

result. The flows groups are processed sequentially. It keeps track of the dependencies between a 

series of events and recurrently passes the values obtained on the previous step (historical features) to 

the input of the current step. In other words, such classifiers can “memorize” the prior states and take 

those experiences into account while doing future classifications. In this paper, long short-term 

memory (LSTM) was used as RNN architecture, which is more sustainable to vanishing gradients 

problem in comparison to vanilla RNN. AUROC metrics reached the value of 0.907, which is 2.37% 

better than plain single-flow analysis, but still worse than CNN. 

10.  Classification models 

After analyzing the obtained experimental results of different AI model performances for botnet 

detection it is worth outlining the summary for each model – the reason why they succeed or fail and 

their possible usage cases. 

Logistic regression can be used as a baseline classifier to compare against. Due to its simplicity, it 

is relatively quick to train and has the best real-time performance. Besides, the trained weights can be 

further interpreted to get the understanding of which features contribute the most to the decision 

process. Logistic regression classifier gives the probability as an output, so simple threshold tuning 

can be used for reducing the number of false positives, if needed, which is valuable for intrusion 

detection systems. Logistic regression classifiers can be used for real-time decentralized IDS, with 

limited resources capacity on each node. During the experiments, the logistic regression classifier 

showed the base performance of AUROC 0.778 with the accuracy of 0.78. Applying normalization 

and standard scaling (described in chapter 7) substantially improved the results: AUROC rose to 

0.799 and accuracy increased to 0.722. Dimensionality reduction of the input data with Principal 

Component Analysis (PCA) helped to improve the results even further (see the numbers in Table 2). 

In theory, decision trees are among the best candidates for the most sophisticated classification of 

network activity. The intuition is that every feature of the analyzed network activity has some 



interpretable semantic meaning and is usually included based on the prior knowledge of the common 

attack patterns. For botnet detection based on network flows several examples of such features are: 

“was IRC protocol used?”, “were type-A DNS lookups made and how many?”, “what was the number 

of TCP connection denials (no proper response to SYN flag) and resets (RST flag)?”, “how much data 

was transmitted before the reset?”, etc. A human expert would use all this information to denote a 

flow or a host as “suspicious” depending on the answers to those questions. Decision trees are capable 

of automatically constructing the “reasoning chains” based on the learned abstract conditions, which 

may remotely reflect the human reasoning sequence (e.g., if X and Y then if Z then … else …). This 

classifier type has performed well in a number of works in this field [7][8][9]. However, decision 

trees suffer from overfitting the training set, which is a big problem for intrusion detection, as training 

sets are often small, artificially generated, and include a limited number of botnet/attack traffic 

samples. This was demonstrated in the experimental part of this work, where AUROC value for 

decision trees classifier was only 0.477 (unless Principal Components Analysis was preliminarily 

applied). 

To address that issue, random forests can be used instead. By sacrificing accuracy and bias, 

random forests have much lower variance. Citing Hastie et al. [10], "because it is invariant under 

scaling and various other transformations of feature values, is robust to the inclusion of irrelevant 

features and produces inspectable models. However, they are seldom accurate". Random forests are 

based on the decision trees classification technique, but instead of using a single tree prone to training 

noise and overfitting, they use an ensemble of trees. During training, a random uniform sample with 

the replacement of data features is used for each tree. In the case of solving the regression problem, 

prediction averaging is performed among each decision tree to learn the result. For a classification 

problem, “voting” (selecting the class of the majority) is used. This gives the random forest classifier 

a significant advantage over the decision tree (AUROC 0.848 and AUROC 0.91 if combined with 

PCA). This is especially significant for network attacks detection problems, as there are not many 

publicly available labeled datasets and those which are available are often very moderate. This makes 

the overfitting problem even more significant for traffic classification. 

A single flow is often not sufficient to reconstitute the full picture of the attack. So single-flow 

classification techniques may fail to detect intrusions stretched in time. Unlike the previously 

described models, Convolutional Neural Networks and Recurrent Neural Networks can take 

contextual information into account. 

CNN performs sampling (convolution) of different features/events into a higher-level entity. Such 

sampling can be done over the same feature values changing in time. Such 1-dimensional sampling is 

called temporal convolution. This allows capturing the temporal nature of a feature across multiple 

associated network flows, which results in better detection performance. The drawback of CNN is that 

it operates on statically sized groups of events. So, to obtain the final prediction result, the full chain 

of flows must be captured, which makes them inapplicable for immediate intrusion detection, but very 

useful for analyzing historical data. 

LSTM models can accept sequences of arbitrary length, producing updated classification result for 

each new flow ingested. The detection accuracy may be low initially but gradually raises as the 

models get more and more historical context. 

11.  Related works and models performance comparison 

Table 2 demonstrates the performance of different network activity classification techniques 

obtained during the work on this paper. For reference, the table also provides similar metrics obtained 

by a few other researchers who used ISCX Botnet 2014 dataset [4] and the same feature extraction 

technique based on network flows. The results for similar AI models to the ones applied in the scope 

of this paper were selected, for the sake of making a direct comparison. 

 

Table 2 
AI models on ISCX Botnet 2014 dataset performance comparison 

Paper Feature Selection and 
Dimensionality reduction 

Classifier Performance  
on unseen data 



This paper. (1 flow) Logistic Regression AUROC 0.778 (0.799), 
Accuracy 0.648 (0.722) 

(1 flow) Decision Tree (d9) AUROC 0.477,  
Accuracy 0.65 

(1 flow) Random Forest (d9) AUROC 0.848,  
Accuracy 0.798 

PCA (16) (1 flow) Logistic Regression AUROC 0.804, 
 Accuracy 0.78 

PCA (16) (1 flow) Decision Tree (d9) AUROC 0.844,  
Accuracy 0.833 

PCA (16) (1 flow) Random Forest (d9) AUROC 0.91,  
Accuracy 0.87 

(1 flow) DNN (16x16x16) AUROC 0.866 
Grouped by Src IP  

(10 flows, 0-padded) 
CNN (2 conv + pool) AUROC 0.918 

Grouped by Src IP  
(10 flows) 

LSTM (100 cells) AUROC 0.908 

Arnaldo et al. [3] PCA (1 flow) Random Forest AUROC 0.769 
(1 flow) Random Forest AUROC 0.768 

PCA (28 flows flattened) 
+ generated features 

Random Forest AUROC 0.811 

(1 flow) DNN AUROC 0.724 
Grouped by Src IP and 

Dst IP (7 flows) 
CNN AUROC 0.644 

Grouped by Src IP and 
Dst IP (7 flows) 

LSTM AUROC 0.624 

Meshal Farhan et 
al. [7] 

MUTUAL* (1 flow) Random Forest Accuracy 0.81 

MUTUAL* (1 flow) Logistic Regression Accuracy 0.748 

ANOVA** (1 flow) Decision Tree Accuracy 0.73 

MUTUAL* (1 flow) DNN Accuracy 0.736 

* “Mutual information analysis” 

** “Analysis of variance” 

12.  Conclusion 

This paper has described a structured end-to-end AI-based solution to the botnet detection 

problem. The outlined intrusion detection pipeline is not scoped to botnets only and represents a solid 

foundation for future research on the topic of any network-based intrusions. The performance metrics 

given in this paper can be used as the baseline for future improvements and conducting research on 

each separate stage of the pipeline should result in further detection performance increase. 
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