CEUR-WS.org/Vol-3501/s5.pdf

Massively Parallel Program Analysis Using Simulation of
Graphics Processing Units

Dmytro Rahozin’

! Institute of Software Systems of the National Academy of Sciences of Ukraine, Acad. Hlushkov ave. 40, Kyiv,
03187, Ukraine

Abstract

Modern Graphics Processing unit (graphics card) is a modern platform to run massively
parallel programs. Still, it is a complex task to analysis, observe and measure performance of
GPU-based software. Due to complex memory hierarchy, specific organization of memory
units and the use of thousands of execution threads the performance improvement is a task
about the efficient use of graphics card memory hierarchy. We describe the use of
GPGPUSIim simulator, previously used mostly for graphics card architecture validation, for
performance analysis for CUDA-based program, which covers many performance analysis
questions for parallel software. We provide examples which show how to use the simulation
for performance analysis of massively parallel programs.
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1. Introduction

Over last 15 years graphics processing units (GPUs) or video-cards have revolutionized high
performance computing, introducing massive parallelism at a moderate price and allowing everybody
to have a supercomputer at home. Still the effective use of a GPU is limited as the efficient GPU
software creation usually requires the full redesign of the original algorithm, as GPU provides quite a
different model of massive parallelism utilization.

First, we discuss the existing GPU performance models, which are based on software simulators of
GPU hardware. This software is able to simulate computational units, GPU memory hierarchy model,
commutation network and are able to execute usual programs compiled for GPU, for example PTX
codes of CUDA toolkit for Nvidia GPU. The most simulators employ the reengineered GPU
architecture [1], which was recovered using various benchmarks [2], so allows the end-user to be
aware about better techniques of software optimization for video-cards.

Second, first GPU where quite limited computational devices, targeted for pixels rendering,
triangle meshes calculation and texture rendering. In 2007, Nvidia 8800 GPU revolutionized the
market, as Nvidia GPUs provide a massive parallel programming model, giving the user a massive
parallel processor. But the internal problem for programming model was not a complexity of
programming model, but just a being unprepared for introduction of such parallel programming
devices on market. Year by year the GPUs became more and more “general-programming ready” at
the cost of increasing the complexity of memory buses, but providing 1000s of computational cores.
Multicore CPUs performance was not scaled so much, due to lack of flexibility at memory side. The
use of GPU for computations is still too expensive in programming (time/money) for software
developers, but its architecture looks to be familiar for “supercomputer” user — except challenges with
double precision floating point, the GPU platform looks familiar for people who used to operate with
thousands of threads.
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Third, there is a problem of the inefficient utilization of GPU massive parallelism, so that for
complex software it is hard to provide the good higher-level model of massive parallelism, which can
be effectively projected onto the GPU hardware [3]. It is hard to account the relations and
dependencies of the basic parameters of software massive parallel model — for example, number of
threads, memory block size processed by one thread, scheduling techniques and so predict the final
real performance. GPU computing model was really revolutionized the computing and we state that
the GPU performance is fully defined by memory hierarchy performance. As the GPU memory
hierarchy employs 5-6 memory levels now (compares to the older L1-L2-L3 cache memory scheme)
the analysis of bottlenecks caused by memory hierarchy/interconnect is extremely complex.
Definitely the software developer needs good tools which help him to analyze what is wrong with
software performance and need to define simpler model for software performance.

Fourth, we propose the use of simulator to discover the potential problems in massively parallel
software, analyze the software bottlenecks and recover memory utilization models. We re-formulate
the performance analysis problem as a problem of the different memory hierarchy stages resource
utilization, it is very close to the commonly used mass service models. The role of simulator is
changed — originally the simulator was used for recovering the peculiarities of a GPU architecture, but
now we are extracting model data from memory hierarchy simulation. The simplified model is applied
back to the original task and allows to estimate memory/time resources necessary for software run.

Fifth, we are providing the motivating example of CUDA application analysis on the top of
simulation and illustrate how the simulation data can be used to recover less complex performance
model and re-applied for application optimization. We are providing suggestions for simulator
enhancement and enabling better performance analysis, leading to build-up of clear performance
estimation of the developer massively parallel software.

2. GPU performance models

Currently we are observing several shifts in microprocessor production, and these shifts hugely
impact existing approaches for application development. First, the term “parallel application
development” became more “academic”, as the process of researching different forms of parallelism
in application became even more complex, even more time-consuming and requires a lot of
knowledge in narrow areas. Second, modern “start-up” culture pushes engineers to decrease “time-to-
market” and development costs for their products or product prototypes, so the employment of newer
and newer architectural capabilities become slower and slower and comes down to moving just to
newer GPUs or running several copies of a process on more powerful GPU. The real things a
“median” programmer can do around “parallelism” utilization is the employment of threading concept
without good understanding of resulting application performance. This gives a chance to chip makers
to increase the number of processor cores on chip, as they easily can be employed in applications or
operating system by just run usual software services. So basically, applications are not optimized for
multi core CPUs. Further performance analysis and optimizations are open to industrial rivals, who
can enter the market with a substitute application, which is faster and smarter. So, the scaling of the
number of processor cores looks to be a good choice for typical smartphone platform which runs a
bunch of application which are loosely coupled in terms of using some data amounts simultaneously.

Although if we look into software, which we can define as “data processing infrastructure” —
communication, video processing, artificial intelligence (Al) [4], we see the opposite picture — each
year the volume of processed data increases exponentially. For example, a century ago, a short
telegram message was enough for communications, 20 years ago we entered the era of voice
conferences with sophisticated sound processing, and now we demand video calls and conferences as
we need the visual presence of our peer. Nobody can predict the next shift (mostly a move to virtual
reality area) where computation demand will increase another 10x.

This increase of computing demand targets not the computation capability and not the memory
volume — as the computational cores and memory cells are scaled perfectly, but the interconnect
communication, which joins storage and computations (fig 1.). It’s impossible to scale interconnect
infrastructure due to physical limitations, but everybody notices that fig. 1 illustrated the usual
computational system structure — it may be applied to microcontrollers, common multicore system



and GPU. Actually, this means that all the computer system has the same problem of non-scaling
interconnect network, but today the interconnect scaling limitation became at least “severe”. Note,
that GPU hardware has the best current solutions for optimizing the interconnect, as it requires to
process huge data (triangles, texture and points) in complex way (rendering, ray-tracing, general
computing) in real-time (60 frames per second).

Computational HW Interconnect Memory

Figure 1: Computational system structure.

Pure computation capability is practically infinite now, the number of memory cells is really huge,
but the interconnect between them — as the data is routed to computational units - is very limited.
Even more limiting factor is the complexity of interconnect programming by a developer. There is a
good (and ancient) example for this — older DSPs has several independent memory buses, as only this
solution doubles or triples the data throughput. The technology required the special programming, as
program data are spread among two or more memory spaces manually. Now there are more
complicated chips with multilevel cache memory but the major problem is still the same — memory is
quite slow if compared to computations, so channels capacity between logic and memory should be
increased, and here it looks that it is necessary to change the paradigm. If we check modern GPUs (as
of 2019), they have 12 (twelve) or more high-speed (DDR4/5 DRAM) controllers, which should (at
least in theory) balance memory load/throughput.

Long ago a simple but practical classification for software performance limitations was introduced:
memory-bounded software and computations performance bounded software. The latter case was
resolved quickly usually in two ways: 1) computations are scaled via SIMD execution and just
providing extra number crunching power (but need to scale memory buses); 2) common pipelines are
defined in hardware and used as a hardware accelerator (e.g. Nvidia video stream encoders and
decoders). The memory-bounded case is much harder - memory bus became wide, up to 2048 bits — to
feed SIMD units width or hardware accelerators, but never bus speed can outperform arithmetic speed
— even worse multi-core system just multiple memory load. Basically, if we are taking out of view the
small number of really computational bounded algorithms, the most important characteristic of a
program/algorithm is the degree of “memory boundness”. Overcoming the memory bandwidth
limitations requires the improvement of both hardware and software methods, as the interconnect
infrastructure should be load optimally.

The interconnect does not mean just a bunch of wires [3]. Computational units produce requests
for reading/writing memory cells, memory is an old-fashioned DRAM with need to open pages,
refresh contents and serve operations. Basically, the pseudo-random memory accesses greatly
decrease the DRAM memory throughput, so interconnect should effectively decrease the number of
memory accesses exploiting the principle that the data traffic for the most frequently used memory
cells should be routed somewhere inside the interconnects. Speaking simply, interconnect should
integrate specific multilevel cache memory to serve multi-threaded execution, which multiplies
memory traffic.

As a good example of the threading paradigm change, we address the execution structure of GPU
hardware threads — where the massive thread execution is driven by readiness of data, fetched from
interconnect internals. The advanced approach requires simultaneous execution of hundreds of
threads. Some of them processing data, some of them waiting for data to be ready. This raises at least
two common problems: 1) an algorithm should have enough degree of parallelism to allow execution
of hundreds of threads — for example, triangle and pixel rendering; 2) an algorithm should be initially
developed to utilize the benefits of memory hierarchy (interconnect). The first problem is inevitable,
as somebody need to convert an initial task into a concept of a set of interoperating threads. The
second problem is more technical, but we need to define the interconnect and memory hierarchy
structure in computing systems. For practical reason we state that the interconnect and memory
hierarchy need to be architected to support hundreds of threads, conceptually this is very different
from simple interconnects of multicore processors.



The rise of cheap mobile system-on-chips (SoCs) leads us to new challenges in massively parallel
computing (really supercomputing), proving excessive parallelism level but making code optimization
time consuming and costly. A mobile GPU with thousands of execution threads is a flagship of
modern computing and the possible level up looks to be a kind of quantum computer, so software

development industry has to invent ways to utilize this computing power efficiently.
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Figure 2: Memory hierarchies for multicore CPU and GPU [1].

Going back to traditional multi-core CPUs we consider the scheme (fig. 2, left) of multilevel cache
memory (or interconnect), which usually include fast but very small LO memory (read/write queues to
L1 cache memory), faster L1 cache memory, and L2 and L3 cache memories, L2 and L3 look to be
quite slow but really big. For streaming applications, we should also account DRAM performance, so
current multicore CPU memory hierarchy includes up to 5 hierarchy levels, and 95% of memory
bandwidth optimizations are around the better use of L1/L2 cache. More optimizations for memory
hierarchy lead to exponential growth of optimization costs. Optimizations for L1/L2 cache improve
data spatial locality but the other memory hierarchy is not taken into account due to too much cost and
still the number of hardware threads is small. The fig. 2, right shows us much more complicated
interconnect for only one core at modern GPU. The fig. 2 does not show several hundred threads on-
the-fly, generating requests for memory. These threads involve the use of the following hardware (fig.
2, right): 1) cross-bar interconnects/coalescers, allowing gathering/scattering data or connecting cores
to different L2 parts; 2) “non-blocking” L1 streaming cache, which eliminate stall during memory
accesses; 3) Specific schedulers for multichannel DRAM access. And the huge number of executing
threads require specific programming methods to utilize the hardware efficiently. Let us discuss the
motivating case.

3. Programming model for massively parallel programs

The usual first question people have about GPU programming is the question of proper abstraction
over the exposed massive parallelism, we call it a “programming model” for our purposes.

Let’s start not at supercomputing but at “microcomputer” point, such as old good 8088 CPU. The
“thread” term as a basis for programming model was appeared long before the first dual-CPU
machine was delivered for end user. The representation of a program as a bunch of interoperating
threads allows at least to incorporate several thread-enabled programs into a complete software
system. The ability to run a thread-enabled software on a multiprocessor and have the shrinking of
execution time is a result of the proper expression of the available parallelism in terms of the
programming models. Sure, the developer should adopt the concept of synchronization points, be
aware of common principles of parallel programming and be able to extract natural parallelism
sometimes even using a pencil and paper.

The most primitive parallel programming models are pthreads and OpenMP model. The first
model is widely used when you just need a threading model, possibly with manual control over thread
running and priority; the second is used for simplest and obvious parallel applications. There is no



notion of underlying memory model, cache memory hierarchy and so on, but this works good enough
for older double or four processor computers. Initially general-purpose computers have the simple
memory architecture, with tendency to increase and improve cache memory and so hide memory
latency. Simpler multicore model fits still well modern user programs within pthread model, when,
for example, a text editor allocates one core and an accounting program allocates another core. This
model scales well up to 16 cores, scaling for more cores raises the same problems for parallel
applications, as we have for x86 computers such as Xeon Phi [11]. The increase of the number of
cores leads to the complexity increase of memory architecture and to the same parallel programming
problems as we have for existing GPU regardless of computational power. Looks like there is a border
between parallelism and “massive” parallelism, highly related on memory hierarchy complexity

Meanwhile GPU architecture evolved just in the opposite direction: originally it has quite complex
programming and memory model — old school developers still remember programming model based
on vertex and pixel shaders. Nvidia 8800 card was the first which provides a kind of more familiar
“general-purpose” programming model. The “newly” introduced CUDA technology allowed to run
“general-purpose” programs with some limitations. But the cornerstone of the parallel programming
was the effective use of available parallel resources, which include SIMD-fication, warp-aware
programming, specific memory allocation for computational units, specific synchronization. The
exposed CUDA programming model was the tradeoff between general purpose programming and
requirements for efficient pixel and vertex shader runs. Of course, the programmer may not use the
GPU hardware, such as SIMD, threads and may not be aware of proper parallelization techniques, in
this case the 99% of GPU computational power will be wasted. Anyway, existing GPU architecture
looks to be well-balanced, as Nvidia neural networking accelerator card, which have no video output,
has the same hardware architecture as common GPUs, so even removing the requirement to run
graphics-related shaders does not change the state of art in existing GPU programming model.

But the convergence of GPU and multiprocessor programming models is not possible in
foreseeable future, mostly due to the difference in concepts, as GPU involves programmer heavily
into architecture details. Moreover, if the massive threading is evident for CUDA, the internals of
memory hierarchy are unclear. Still the performance analysis for GPU software and memory footprint
optimization are the area for the small number of computer scientists.

GPGPUSIim [2] itself uncovers the internals of GPU card for several areas of interest. First, as it
does partial work of a GPU driver, so you can look into mechanisms which run a CUDA application
on GPU. Second, an attentive programmer can get well enough information about proper GPU use
and GPU capabilities from the simulator code. Despite the common sense that GPU architecture itself
is very complex and somehow mysterious, all the hardware GPGPU computing concepts are derived
from public articles in computer science journals, as any architectural advances in computing should
be simulated on a hardware simulator similar to GPGPUSim before going into hardware. Speculating,
it is possible that GPUGPUSim is used by real chipmakers to check architecture innovations.

Third, GPUGPUSim simulator has the smaller simulator inside, internally called InterSim2. It
simulates a general routing network, with extreme number of options, which enable to simulate
practically all types of packets routings and scheduling methods, described in scientific papers. The
interconnect is used to connect partitioned caches, for example L2 GPU cache, forming a holistic L2
cache level, which is perfectly integrable into memory hierarchy. In our opinion the roots of this
interconnect fabric are situated in older supercomputers (even from 70s), so are good analyzed and
tested on many workloads, so that these ideas were the good points to start analysis for GPU
interconnect development. This structure is much more complex than ring bus used in Xeon Phi from
Intel, but Xeon Phi has much smaller number of CPUs sitting on bus. We are not going here to
compare performance of Xeon Phi [11] and GPU due to different programming models for Xeon Phi
and GPU and the limited number of CPUs on Xeon Phi bus. So we can not project the real bus
performance of the ring bus for massive parallel tasks. Anyway, it should be noted that the
interconnect is the only one of many architectural solutions enabling massive parallelism on GPU.

Finally, let’s return to the programming model philosophy for GPU. It is obvious, that it quite hard
to make conclusions over simulating CUDA programs in global sense, due to quite low-level coding
in CUDA. It looks more useful to adopt more high-level software, for example cuDNN library, as the
developer already was moved level up from linear structures up to 2D structures and it is much easier
to compare higher-level memory operations (such as evaluating a level in a neural network) and



updates in simulation results. Here cache effects after changing 2D data structures looks clearer.
Looks like that using high-level languages like Haskell/APL, where 2D array slicing is used for
coding directly on GPU can shorten the way between defining 2D array slices operations and
analysing memory bandwidth utilization effects in simulator. But this is the next points in our
research.

4. Software performance modeling

Despite of the wide use of matrix computation examples in performance-related studies, still
BLAS/LAPACK based software is used for solving many problems (or BLAS/LAPACK style of
expressing matrix operations), e.g. for signal/sound processing area. Convolutional neural networks
software uses special optimized routines for matrix processing, but general matrix-processing based
software still use LAPACK due to old and well-known standard. Nvidia proposes cuBLAS library for
GPU-optimized BLAS routines.
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Figure 3: Illustrative block matrix computation scheme

The common matrix by matrix multiplication scheme is shown on fig. 3. In order to computer C
matrix block, a block row from 4 should be multiplied by block column B. As above we have
mentioned that the common software workloads are memory bandwidth bounded and this example is
classical — for each multiplication operation which is performed in 1 clock cycle, we need 2 memory
accesses. The compared energy consumption for multiplication (a small functional unit) and for
memory access (memory, buses, interconnect, crossbar switches) is least 50x different. So, for speed
and energy consumption all 4, and B;, should be synchronously loaded to L1D cache/shared memory
(fig. 2, right) and possibly reused for computing C» blocks. Standard approaches for cuBLAS matrix
multiplications optimization are described in [5], advanced autotuning result is presented in [6]. The
autotuning approach [7] has many pros but a kind of contra — the tuned library is fast “in common
sense” as the target parameter is time, and sometimes additional resource restrictions apply (e.g. less
time — more memory or software depends on “hot cache”) and a library may use very specific dataset,
and this is common for the most of computational tasks — Fourier transforms have only one or two
used dimensions, matrices have only several fixed dimensions. The important point is that several
copies of computational process may be run on the same GPU (e.g. neural networks computations) to
better utilize non-used computational resources.

Anyway, matrix multiplication is scheduled as an execution graph of smaller partial matrix-
multiplication procedures of different sizes. There are various tradeoffs here, as complied kernels
have pre-defined memory allocation layout and their parametrization (loop bound change) and
sometimes need recompilation and re-scheduling and this is common for GPUs. The compiled
multiplication kernels reside on SMT (Streaming Multi Processor, fig. 2, right), which has limited
register file (local memory, usually 64K memory cells) which handles internal kernel variables and
shared memory cells needed for information exchange between kernels. The compiler also should
divide the memory between threads local storage and shared communication memory, that directly
influences the possibility of kernel allocation on SMT — the more memory kernel uses for
communication, the smaller number of threads are executed on the kernel — another tradeoff, highly
depend on currently executed task set.

Initially the “big” multiplication algorithm includes an optimized scheme for data transfers
between kernels to save memory bandwidth. Of course, kernels should be parametrized, for block
sub-sizes and data type. Reaching some successful tradeoff includes finding out the optimal
parameters for size of the general block matrix multiply kernel, by 1) adjusting the size of memory
handling matrix values; 2) adjusting memory size used as shared to exchange data between kernels.



The optimal piece of matrix processed by kernels is a tricky question, in general case very common
suggestions (e.g. register file size) are used for the basic matrix blocks size, as we need 1) to compute
2) to exchange data 3) to run as many threads as possible. For the kernel tuning there is a pre-defined
knowledge base initially, which stores basic register file parameters, so the tuning algorithm have
defined opportunities to use different matrix block sizes and possible limits for matrix dimensions.
The scheduler program defines the set of semi-optimal parameters for the “common” matrix
multiplication procedure for this particular GPU. The problem is solved now using a benchmarking
system [], which runs multiplication with defined matrix block sizes, making the GPU driver to
evaluate execution time. After that the final library is hard-compiled with the optimal parameters and
is used further for number crunching. If the code is moved to another hardware, we need to re-
evaluate and recompile the library. Basically, this is the way commonly used in industry for example,
for BLAS/LAPACK [5]. Still, this type of software tuning looks to be a “black box” methos— input
task parameters produce results, but there are no evidences how to line up parameters to have the
semi-optimal execution for selected datasets. None of benchmarking system is able to make a model,
which finds out relations between kernel parameters and execution time — as benchmark uses only
execution time as optimal criteria.

The upcoming problem is that the block-based matrix multiplication is the comparatively simple
task but investigated more than 50 years for available parallelism. The public codes for
BLAS/LAPACK show that even basic task looks to be complex, it is not just compiled library code
but a software system, which generate semi-optimal source code after benchmarking the system. If
somebody is required to produce a brand-new code it is even hard to imagine how much efforts
should be invested into creating a semi-optimal parallel code which can exploit parallelism on a
massively parallel processor. Even if the task can be parallelized well, we need to implement
parametrized kernel and define the factors which influence the software performance and used while
resolving later tradeoffs.

5. Performance modeling for memory hierarchies

In this chapter the model of the internal architecture and memory hierarchy (interconnect) of off-
the-shelf video cards is considered. Only commonly used Nvidia video cards are considered — due to
availability of the model, as since the appearance of the pioneering Nvidia 8800 programmable video
card, this platform is actively used for different kinds of computations, including very specific tasks,
which use imprecise computations [8] to employ thousands of hardware execution threads for faster
computations. Another point is that the video card is the general number crunching machine, which
has very good tradeoff between the peak computation power and memory bandwidth. Finally, it is
really important that there is a code base of less or more optimized algorithms, which can be analysed
for efficiency of memory bandwidth use.

For our investigation we use GPGPUSim simulator version 4.0.0 [9], which reflects the
contemporary complex architecture of the interconnect between GPU SMT (fig. 2) processors and
memory system. Originally the simulator was developed for recovering the architecture of Nvidia
GPUs, including SMT, energy model, full interconnect for SMT registers down to DDR memory [1],
as practically all hardware solutions used for computations and memory traffic routing were discussed
in research papers, e.g. [3], but the particular combinations of architecture solutions is still o trade
secret of Nvidia. The GPGPUSIM simulation precision is proved by simultaneous run of benchmarks
(e.g. Rodinia benchmark [2]) both on simulator and on a real GPU and comparing numbers, the
results of comparison may be found in [2]. For our purposes we state that the difference of
GPGPUSim simulation and real execution on GPU is insufficient for our research.

GPGPUSIim uses “fake driver” concept for running the applications. The simulator uses the fact
that all CUDA based codes are compiled into a form of so called PTX codes, which are very similar
to the real processor instructions of Nvidia GPU. Internally the GPU driver, which runs a CUDA
program on a GPU, translates PTX code into real GPU instructions, place on SMTs and execute it due
to N-dimensional execution model used by CUDA. This execution model effectively hides the GPU
internals from the user but gives the promise that well parallelized software will we well scaled for the
next generation GPUs supporting even more threads.



GPGPUSim works as a driver and intercepts PTX code execution, so does the same work as
CUDA translator and scheduler do, but only on CPU and on single thread. So GPGPUSim runs even
on a computer without real GPU. The simulation process is highly time consuming — so the standard
matrix multiply application with default parameters from CUDA samples package is run for two days
under simulator. This is not a problem as an older computer fleet which is able to run Ubuntu 20/22
and GCC 7 toolchain can be used to simulate CUDA application runs. GPGPUSim provides different
types of simulation — 1) just functional, 2) simulation with all instruction timings but zero memory
timings, 3) simulation of the whole SMTs-memory interconnect including DDRS5 memory simulation
models. There is a special mode for energy consumption simulation. It should be noted that simulator
codes are placed in GitHub, so can be freely downloaded and changed. There are several simulator
extensions, e.g. Accel-Sim [10], which are used for precise simulation validation and analysis.

GPGPUSIim is highly parametrized — more than a hundred of options control the simulated
hardware blocks, from SMT to DDR memory. As the GPGPUSim authors struggle to have simulation
accuracy in less than 5% if compared to real HW, all the hardware components are precisely
simulated. For a simple example, practically all the timing values from DDRS5 chips manuals
describing DDR5 memory bus are accurately introduced into the memory model. All the specific
concepts, which enable the huge parallelism level, for example, streaming L1 caches [3], are
simulated, so that the application developer can observe the real effects of using the newer hardware
concepts for the application. The simulated interconnect complexity is really high to account even a
basic set of optimizations for the parallel code. The developer who wants to optimize the code should
sit with “paper and pencil” and plan the memory layouts and scheduling of the parallel applications.

For our purpose we need to analyze a set of performance counter which are generated by
GPGPUSim during the program execution. For the first glance these counters can be divided into two
sets: 1) counters at the interconnect level borders; 2) counters for internal events in interconnect
levels. Let’s consider fig. 4.
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Figure 4: Memory hierarchy/interconnect levels.

Y

Fig 4. includes the large blocks of SMTs to DDR memory interconnect/hierarchy [1]. Here arrows
are “located” at the real hierarchy borders, and basically for each arrow we are able to denote the
traffic from more upper hierarchy level to lower level (e.g. from L2 cache to memory controller). The
efficiency degree for the hierarchy level for the particular task (except interconnect as it just routes the
data between L1 cache banks and L2 cache banks) is the bigger difference of the data amount routed
to the level from higher level (left at fig. 4) and data routed to the lower levels of memory hierarchy
(right at fig. 4). Researches also should be interest in the data set sizes, which are more friendly to the
hardware, as despite of increasing DDR memory size on board, the internal cache/shared memory
sizes for SMTs is practically constant over GPU generations. The internal events counters are used for
the fine tuning of the algorithms, as are able to show how different memory level improvements are
employed by the parallelized version of algorithm, as different parallelization methods can utilize
internal helpers in different ways. Here we are discussing “level borders” counters, the internal level
counters are the subject for our next research.

6. Motivating examples

Now we propose a methodic, which starts from very beginning analysis of memory traffic. There
are different levels of hardware observations and currently we starting from high level beginning
metrics. So let us discuss what is valuable here for us and what are the challenges for research from
the simulator side.

Each computational demanding application is started from computational model, which usually
have incredibly low speed. For example, LIDAR model application has 1 frame per second (fps)
computational speed, but the final requirement is 100 fps. So, the initial task for simulation is the
evaluation of peak memory performance of the model application. Note, that the “computational



demand” here is transformed into “memory performance”, as memory throughput is more limiting
than computational throughput. L2 cache memory misses per computed frame describe the basic need
for memory traffic well, and (without optimizations) helps to project upper memory bandwidth limit.
Local optimizations for CUDA procedures may improve memory bandwidth up to 10x-20x, but the
detailed information may be got from simulation run. Anyway, any performance model made for
multicore CPU does not project real scaling for hundreds of threads and does not reflect the
optimization effects possible on GPU. That’s why massive parallelism simulation and evaluation are
not possible on multi-core CPU as the difference in number of threads is up to 50-100x, so none of
real parallelization issues may be observed at low number of threads. At high level of hardware
observing a developer can notice the upper limits of memory traffic necessary to make a decision for
feasibility of optimized program run at GPU, at lower level of observations it is possible to check
even fine effects of different cache levels use.

For the entry level matrixMul CUDA sample application was used. To check the cache utilization
effects the application was run (simulated) with different matrix size parameters, starting from 64x64
matrix and finishing with 256*896 size. The default multiplication size of 320x320 per 640x320
requires 2 days simulation on Intel Core i5-10400, at 1 thread, so the dataset configuration was
adjusted to decrease simulation time and reflect real problem sizes.

The GPGPUSim by default generates a text file, which updates the internal simulation counters
and model in timely manner. As the simulator works over the GPU state - the simulation results are
functionally correct, and the program/shaders are executed correctly. The resulting log file can be
parsed using any tools, starting from basic grep/findstr utilities up to complex Python scripts. In order
to parse these log files, we used simple findstr-based scripts. Simulation was run on Ubuntu 22 OS,
Intel 10™ Gen based and equipped with 32GB RAM, but retargeted for GCC 7 toolchain, as other
toolchains fall into compilation errors.

The simulation results are gathered into the following tables (fig. 5, fig. 6), we render only the
most important simulation results. For each matrixMul run we collect matrix dimensions (for
reference we note matrix sizes, just to know which data amount is processed during the run), L2 cache
accesses, miss rate and parallel utilization of the L.2 cache. L2 accesses mean the total data traffic we
get from L1 cache. L2 misses mean the data traffic goes to DRAM. And the most interesting point is
the L2 cache parallel utilization, the more this digit the better is the L2 sectored cache utilization, as
L2 structure allows to handle accesses in different L2 sectors simultaneously. The see some imbalance
in L2 parallel utilization (fig. 5) in 64x384x64, 128x768x128 and 256x768x256 multiplication — the
hypothesis that memory layout is these cases is imbalanced and some L2 sectors are loaded much
more than others.

N K M L2 accesses L2 misses L2 missrate L2 parallel Commands Matrix size, KB

64 64 64 770560 512 0,0007 2,6751 8796931 16
64 128 64 1387008 512 0,0004 2,3871 13156851 32
64 192 64 2003456 512 0,0003 2,1245 17578119 48
64 256 64 2619904 512 0,0002 1,938 22032941 64
64 320 64 3236352 512 0,0002 2,3606 26071177 80
64 384 64 3852800 512 0,0001 1,6027 31004616 96
N K M L2 accesses L2 misses L2 missrate L2 parallel Commands Matrix size, KB
128 128 128 5548032 2048 0,0004 48517 13789351 64
128 256 128 10479616 2048 0,0001 2,6501 23982502 128
128 384 128 15441200 2048 0,0001 2,0584 34300430 192
128 512 128 20342784 2048 0,0001 21442 41829619 256
128 640 128 25274368 2048 0,0001 2,8149 49129929 320
128 768 128 30205952 2048 0,0001 1,762 67740651 384
N K M L2 accesses L2 misses L2 missrate L2 parallel Commands Matrix size, KB
256 256 256 40552548 8192 0,0002 2,7894 59223409 256
256 384 256 61644800 8192 0,0001 2,6323 86073012 384
256 512 256 81371136 8192 0,0001 2,7374 111265663 512
256 640 256 101097472 8192 0,0001 2,8753 136206534 640
256 768 256 120823808 8192 0,0001 24648 169508642 768

256 896 256 140550144 8192 0,0001 2,8143 188037216 896



Figure 5: Matrix multiplication simulation results

Bank L2 accesses L2 misses [Bank L2 accesses L2 misses [Bank L2 accesses L2 misses
0 5035128 344 8 5033924 340 16 5033924 340
1 5035128 344 9 5033924 340 17 5033924 340
2 5035128 344 10 5033924 340 18 5033924 340
3 5035128 344 11 5033924 340 19 5033924 340
4 5035128 344 12 5033924 340 20 5033924 340
5 5035128 344 13 5033924 340 21 5033924 340
6 5035128 344 14 5033924 340 22 5033924 340
7 5035128 344 15 5033924 340 23 5033924 340

Bank L1 misses |Bank L1 misses |Bank L1 misses |Bank L1 misses

0 4020352 8 4070528 16 3988992 24 4076800
4014080 9 4051712 17 4083072 25 4026624
4045440 10 4001536 18 4026624 26 4020352
4070528 11 4045440 19 4064256 27 4001536
4039168 12 4026624 20 3976448 28 3995264
4064256 13 4026624 21 4045440 29 3970176
4045440 14 3932544 22 3995264
3951360 16 4089344 23 4057984
Figure 6: L1/L2 cache load balancing

~N o ;W N =

Fig. 6 shows the thread running balance in sense of the balance of memory accesses in sectored
cache memory. The picture at fig. 6 is practically the same for any reviewed matrix size, so we see
practically the ideal balance of L2 accesses and misses, this means that the matrices equally
distributed over the existing processes. Please note that this balance works also for L1 cache, despite
it has more sectors — 30 — if compared to 24 L2 sectors.

So, let us review what we can conclude for the “big” load picture for the matrix multiplication
example. First, we see that the problem fits the cache in practically ideal way — the number of cache
misses is less than 0.1% which is really small value. Yes, this should not surprise us as the matrix
multiplication is the topic which is evaluated over 50 years, but such kind of analysis is usually
provided for task which are unfamiliar for researchers. So, these results are extremely valuable if we
have no prior knowledge about the problem. By the way, additional results are not included in the
paper, but the same balancing analysis as in fig. 6 is computed for DRAM. As DRAM is multichannel
(12 channels), in case of low L2 miss rates (more than 1-2%) a problem of proper parallelization of
DRAM access arises, as 12 DRAM channels should effectively multiply DRAM throughput in case of
correct parallelization. Anyway the fig. 6 data allow to understand load balancing at cache memory
level and this metric directly highlights the quality of parallelization, which is ideal for our case.

7. Conclusions

Here we use GPGPUSIim in the opposite way to the initial authors intentions — instead of re-
engineering GPU architecture, we are evaluating CUDA-based software, as the simulation timing
errors do not exceed 10%. This even is not important for our tasks, as we need information for
memory accesses amount and patterns. For our classical task — matrix multiplication - we have got the
cache utilization efficiency, memory bandwidth and parallelization efficiency metric quite easy. If
projected to real tasks, where the matrix multiplication sizes are fixed, we easily predict the memory
footprint and time necessary to complete the operation, so can evaluate the real performance (+-10%)
on a GPU platform.

The paper is just the beginning of the road into the GPU performance analysis, as now we analyze
only basic digits. We have not evaluated all simulation modes and have not elaborated all the
parameters accessible in resulting log file, these are tasks for the further simulator evaluation. Also,
we need more accurate “slicing” of simulation state in time, for gathering more precise information of
algorithm behavior in real time. Additional analysis for cache memory utilization imbalance is also



required. Finally, we need to check the performance of algorithms which gives L2 miss rate more than
2% in order to check what we can get from DRAM channels load analysis.
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