
1

Analysis and assessment of functional stability of information
systems supporting management processes

Oleksandr Dodonov1, Olena Gorbachyk1, Maryna Kuznietsova1

1 Institute for Information Recording of the National Academy of Sciences of Ukraine, 2, Mykoly Shpaka Street,

Kyiv, 03113, Ukraine

Abstract
The concept of functional stability of information systems and its characteristics are defined.
We propose to build functionally stable information systems (IS) using the principles of
multi-version diversity, multi-parameter adaptation, and multi-level management of system
degradation. Features of specific implementation of multi-version of processes and products
are described. A model of a multi-version system is presented. Indicators of functional
stability are proposed, considering the functional capabilities of the system and its structural
features. The problem of assessing functional stability taking into account the structure of IS
is described. It is shown that the evaluation of the functional stability of the IS based on the
parameters of the graph describing its structure is reduced to the clarification of the question
of the viability of the graph or the structural viability of the IS. The methods and means of
increasing the structural survivability of IS are outlined. Operational cycles at different levels
of the IS hierarchy have been analyzed in order to ensure its functional stability. Ways of
increasing the functional stability of information systems are considered, in particular, the
technology of dynamic reconfiguration. The implementation of the dynamic IS
reconfiguration management subsystem is proposed and the main functions of its components
(monitoring, analysis, localization, selection and decision-making, implementation, database
and knowledge modules) are analyzed. Measures to ensure the reliability of software and
increase the functional stability of information systems are described

Keywords1
Information system, functional stability, indicator of functional stability, dynamic
reconfiguration.

1. Introduction

The functioning of most information systems (IS) involved in management processes takes place
under the conditions of constant interaction with a permanently changing external environment. A
significant part of such interactions are various informational conflicts that significantly affect the
achievement of the system-wide goal. Information conflicts can lead to the destruction of information
resources, violations of interaction regulations and regular information processes, as a result of which
the performance of system and application functions is violated, and accordingly, management
violations occur, which can represent a potential threat to human life and the environment in case of
object criticality management.

To prevent emergency situations, it is important to assess the risks and develop means of
forecasting, early detection, prevention, and countermeasures against destructive informational
influences from the external environment. Otherwise, elimination of their consequences will require
significant material and human resources.

XXII International Scientific and Practical Conference “Information Technologies and Security (ITS-2022)”, November 16, 2022, Kyiv, Ukraine
EMAIL: dodonovua@gmail.com (O. Dodonov); bges@ukr.net (O. Gorbachyk); marglekuz@gmail.com (M. Kuznietsova)
ORCID: 0000-0001-7569-9360 (O. Dodonov); 0000-0001-8492-4478 (O. Gorbachyk); 0000-0001-6054-418X (M. Kuznietsova)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

2

The development of functionally stable information systems involves several urgent tasks,
including:
• the early detection and countermeasures against harmful informational influences of the external

environment;
• practical assessment of the reliability of IS software;
• development and implementation of mechanisms for increasing the survivability of IS.

2. Basic provisions

Nowadays IS is the most important tool for supporting management processes and ensuring the
safety of the operation of various management objects, in particular, critical infrastructures. In order
to avoid violations in management processes, it is necessary to ensure that IS, which are components
of automated organizational management systems, have such a property as functional stability, which
allows IS to maintain and/or restore the performance of functions in conditions of various types of
disturbing influences, minimizing the risks of transition to an emergency (dangerous) state of the
control object [1].

Functional stability is a property that indicates the level of reliability, fault tolerance, survivability,
and security in IS. Functional stability of IS is usually ensured by the introduction of a certain
redundancy; implementation of the built-in control system; formation of a contour of protection
against the negative effects of the external environment; using components with an increased level of
security and reliability. However, additional redundancy leads to the deterioration of technical and
economic characteristics of IS. Control systems may not always respond adequately to abnormal
situations, and the probability of such situations is not reduced. The protection circuit minimizes the
influence of external factors, but does not completely eliminate it. The choice of an element base with
a higher level of security and reliability increases the fault tolerance of the IS, but does not ensure
functional stability when the failure has already occurred. The functional security of IS is evaluated
using various procedures and techniques [2,3], which are not sufficiently systematized and agreed on
input and output parameters. To minimize the risks of inaccurate assessment, it is necessary to
determine the order of their compatible and parallel application.

If in a time interval t under any set of destructive influences tR there is at least one workable

distribution of IS resources, which will ensure the implementation of a defined set of functions
 nfF  with a quality level not lower than a given one in the presence of the state of

communication in this interval lim , then the IC is functionally stable in the time interval t .

The operational failures flow, destructive effects of various origins (of diverse nature), intentional
damage, and unauthorized interference, errors of service personnel can cause IS failures, leading to a
decrease in functional stability or a complete loss of this property. But in the case of activation and
application of mechanisms for ensuring survivability, such as reconfiguration and/or reorganization of
resources, or by introducing additional resources from the outside, the lost property can be restored.

3. Assessment of functional stability

To reduce the probability of failures, IS can use methods and structural solutions based on multi-
version diversity (diversity, N-version, multi-versity). This can prevent issues caused by physical
hardware and software design defects, as well as external influences.

Multi-version systems use process and product diversity to minimize the impact of hardware and
software defects. These systems have several product versions and backup channels created using
different software and hardware versions.

A single-version system can be described like a four
 FZYXS ,,,)1(


 ,

where X


– is the alphabet of input signals, Y


– is the alphabet of internal states, Z


 – is the alphabet of

output signals,  nfffF ,...,, 21 – is the set of performed functions. A multi-version system)(NS is

3

described as follows:
  ,,,,,)(VFZYXNS


,

where X


– is the alphabet of input signals, Y


– is the alphabet of internal states, Z


 – is the alphabet
of output signals,  nfffF ,...,, 21 – is the set of executed functions,  NvvvV


,...,, 21 – is the set

of versions,  K ,...,, 21 – is the set of options for processing the results of version
implementation.

There is a dependency between multi-version and single-version systems [2]:
  ,),1()(VSNS


.

A single-version system can be structurally redundant and have means  , that process results
from identical channels.

In multi-version systems, it is possible to apply several types of version redundancy [2]. Their set
 rrrrR ,...,, 21 can be decomposed into subsets by product versions and process versions. Various

types of version redundancy Rr are accumulated, in turn, in the different product versions of the
multi-purpose system. This is described by mapping using a Boolean matrix rj :

VR


 : .
In this case, a multi-version system can be described as:

  ,,,,,,,),(RVFZYXrNS


or
    ,,,),1(,),(),(RVSRNSrNS


.

For multi-version systems, the correspondence between multiple versions iV


 of the backup

channels of the system  qccсС ,..., 21 is also important [2], which can be specified by mapping

using a Boolean matrix ijwQ  :

CVQ 


:
And accordingly, the model of the multi-version system will look as follows:

   QCrNSQCRVFZYXqrNS ,),.(,,,,,,,,,),,(


.

The principle of multi-version can be effectively supplemented in the design of functionally stable
ICs by multi-parameter adaptation and multi-level controllability of degradation [2]. Multi-parameter
adaptation involves the organization of several software-implemented and hardware-supported control
loops of the reconfiguration procedure, considering the types and number of failed components, and
multi-level control of degradation allows redistribution of excessive and non-excessive, but mobile
resources (and correction, if necessary, goals of functioning) to minimize volumes of degradation.

Let's define the structure of the object Ŝ management system in the form of a triple:
Ŝ ൌ 〈G, R, U〉,

where G is the component set of the system, R is the set of rules by which the system Ŝ should
function, U is the process of functioning, defined on the set G within the rules of R. IS is a part of the
object’s Ŝ management system .

Let's assume that in the absence of failures, the IS ensures the performance of a complex of object
management tasks:

Ф ൌ ሺфଵ, фଶ, … , ф௠ሻ.

The complex of tasks Ф is performed with the specified quality and the required efficiency, provided
that the IS has resources to perform the functions of a certain set:

𝐹 ൌ  n
Ii

i fffF ,...,, 21

 .

At the functional level IS, as a component of the object Ŝ management system, can be
characterized as a set of functional modules performing functions from the set F:

ŝ ൌ ሺŝଵ, ŝଶ, … , ŝ௞ሻ, ŝ ⊂ Ŝ.
Let us denote a set of critical management tasks, the failure of which will cause undesirable

changes in the state of the management object, due to Ф୩୰ ൌ ൫фଵ
୩୰, фଶ

୩୰, … , ф୫
୩୰൯, Ф୩୰ ⊂ Ф .

4

Management tasks from a set of Ф୩୰ provide for the performance of a set of management tasks,
independent or informationally related, in IS, which is possible if there are resources in the system for
performing functions from a set F.

Suppose that 𝐹∗ ⊆ 𝐹 – is some subset of the functions performed in IS. Then, if d is such that:
(1) if any d functional components ŝ୨ fail, the IS can perform any function from the set 𝐹∗ and,

accordingly, the object Ŝ management system will ensure the performance of a set of critical
management tasks Ф୩୰ ⊂ Ф.

(2) there will be such a set of (d +1) functional components ŝ୨ and such a function f୧ ∊ F∗, that in case
of failure of (d +1) functional components ŝ୨, the IS will not be able to ensure the performance of
the function f୧ ∊ F∗, then the value

𝑃௦௧௔௕ ൌ
𝑑
𝑛

is defined as the coefficient of functional stability of IS and at the same time of functional stability of
the object Ŝ management system.

It is clear that 0 ൑ Pୱ୲ୟୠ ൑ 1. . If it is impossible to fail any of the functional components ŝ୨ of the

IS without losing the ability to perform management tasks from the set of Ф୩୰,, then Pୱ୲ୟୠ ൌ 0.
If IS resources are sufficient to perform all functions and, in addition, there is a sufficiently large
functional redundancy or the possibility of interchangeability of functional components ŝ୨ in the IS,
then Pୱ୲ୟୠ ൌ 1.

Different algorithms for calculating the functional stability index are possible for different classes
of systems. And if the coefficient of functional overlap 𝐾௙ is known - a quantitative indicator
(provided by the IS project) that determines the number of functions 𝑓௜ ∊ 𝐹∗ performed by one
functional component ŝ௝ of the IS, and characterizes the possibilities of functional interchangeability
ŝ௝; 𝑁 – is the number of 𝑓௜, that must be implemented in IS to perform a set of critical management
tasks by the object Ŝ management system, then it is possible to determine the upper estimate of the
functional stability coefficient:

𝑃௦௧௔௕ ൑
𝐾௙

𝑁
 .

Since the upper estimate of the functional stability coefficient does not depend on the number of
functional components in the IS, it is impossible to increase the functional stability of the system by
simply reserving functional components.

Increasing the coefficient of functional stability is possible by increasing the coefficient of
functional overlap or by "successful" selection of the set of functions F and the distribution of
functions 𝑓௜ between the functional components ŝ௝ of the IS.

4. Evaluation of the functional stability of IS considering the properties of
the system structure

IS, involved in management processes, to the class of complex organizational systems and are
created on the basis of corporate computing technology. The main requirement for such systems is the
guaranteed provision of users (managers) with access to distributed information resources, combined
into a single information space, for solving object management tasks.

Assessing the functional stability of a distributed IS, provided that its main function is determined,
such as data exchange between communication nodes, is usually reduced to solving the problems of
graph connectivity analysis, assessing the probability of the existence of communication structures
that make it possible to reach a specified node, and assessing the probability of the formation of a
workable structure in IS in conditions of accumulation of damage to communication lines, etc.

An undirected graph ሺV, Lሻ; V ൌ ሼv୧ሽ; L ൌ ൛l୧୨ൟ; i, j ൌ 1, 𝑀, serves as a model of the IC structure,
where 𝑉– is the set of vertices of the graph corresponding to the set of communication nodes; 𝐿 – a set
of edges, corresponding to a set of communication lines between communication nodes. The graph is

5

described by the adjacency matrix:

ijaA  , 𝑖, 𝑗 ൌ M,1 ,











Llif

Llif

ij
a

ij

ij

,0

,1
.

A distributed IS will be functionally stable if, when removing a vertex or an edge from the graph
G, which is an IS model, a graph is obtained in which none of the following conditions is satisfied [4]:
• the graph consists of at least two components;
• there are no directed ሺ𝑙௜ െ 𝑙௝ሻ paths for defined sets of vertices;
• the number of vertices in the largest component of the graph G is less than some predetermined

number;
• the shortest path ሺ𝑙௜ െ 𝑙௝ሻ is longer than some given value.

Evaluating the functional stability of the IS based on the parameters of the graph describing its
structure is reduced to clarifying the issue of graph survivability or structural survivability of the IS.
The construction of estimates of the structural survivability of IS is connected with the solution of the
following problems:
• search for critical components of the network, in particular nodes, the removal of which leads to

the disintegration of the network into unconnected parts;
• analysis of stability, elasticity and vulnerability of the network;
• estimations of load of arcs and capacity of the network;
• network resiliency analysis;
• search for options for construction and development of the network with the minimum value of

the average path, the load of arcs and at the same time with the maximum throughput;
• construction of network connectivity indicators.

Calculation of connectivity indicators, such as the probability of connectivity under random graph
edges, can be computationally challenging because it requires direct enumeration. At the same time,
using the paths and sections of the graph simulating the communication network, it is possible to
obtain fairly simple (compared to the exact methods of finding the relevant characteristics) marginal -
upper and lower - estimates of the required indicator (Cesari-Proshan, Litvak-Ushakov estimates) [2].

The study of the connectivity of the majority of graphs, that is, the solution of the problem of
whether a certain node - the source - can communicate with another certain node - the drain, in many
cases does not provide an exhaustive criterion for answering the question about the quality of the
functioning of the system with a network structure. Therefore, research has been conducted to find
other relevant indicators of the quality of functioning of communication networks.

An important group of indicators of structural survivability, and accordingly structural stability,
are the so-called "measures of survivability". When defining them, it was assumed that an intelligent
adversary, knowing the structure of the network, tries to disrupt its functioning.

The network has a high survivability index, if it is necessary to "destroy" a large number of nodes
and (or) edges in order to significantly impair or completely interrupt its functioning. Such a measure
of survivability is conventionally called a "deterministic measure of reliability" and is used in the
initial planning and development of communication networks, when there is a shortage of statistical
data on the quality of the network's functioning.

In mathematical graph theory, survivability measures are often interpreted as quantitative measures
of connectivity for the structure of a graph: minimum cut, nodal connectivity, generalized
connectivity, path length, etc.

Assessing functional stability and analyzing structural survivability are crucial tasks at the initial
stages of creating a distributed IS communication structure. It involves estimating the maximum flow
that can be transmitted in the network when elements fail under permissible quality of functioning.
When evaluating the survivability of communication networks, depending on the transmission
technologies used in them, the presence of various types of traffic (audio and video information, data,
compressed video and audio), various categories of services, the probability of data loss, and
requirements for the quality of processing are considered. Packet data transmission can increase the
structural survivability of systems. Information packages can take different routes between network
nodes, depending on channel performance and load. In the event that part of the communication

6

channels is inoperable, destroyed, and the network remains survivable, information will still be
delivered to the destination node via other working channels, and functional stability will be ensured.

The application of ring topology provides the possibility of automatic switching of channels to
backup ones in the event of any emergency situations. For example, the SDH (Synchronous Digital
Hierarchy) equipment provides the redundancy of lines and hardware units according to the 1+1
scheme. This allows for automatic traffic switching to the backup direction and restorative work
without interrupting traffic.

Reserving frequently used arcs and nodes in the network is a known method of increasing the
structural survivability and functional stability of distributed IS. Redundant networks can be created
using RSTP technology (Real Time Spanning Tree Protocol), connection of network segments in
pairs (Redundant Coupling), dual connection (Dual Homing), "trunk" connection (traunking) and
technology of redundant ring structures (for example Hirschmann HIPER-Ring).

5. Reconfigurations in IS as a means of increasing functional stability

The functional stability of IS can be characterized through the operational cycle Ω, which includes
such operations as: failures` prediction wଵ, warning wଶ, detection wଷ, localization wସ, isolation wହ,
parrying w଺, reconfiguration procedures w଻ and information recovery w଼. The sequence and time
limits of operations depend on the specifics of the defects and features of the IS.
It is also possible to define appropriate operating cycles for various defects, for example, for software
component vulnerabilities we have [2]: w୮୰ଵ – prediction of possible characteristics of attacks on this
vulnerability (possibility, method, time parameters); w୮୰ଶ – intervention warning; w୮୰ଷ – attack
detection through input data control; w୮୰ସ – localization (isolation) of the component on which the
attack was carried out; w୮୰଻ – reconfiguration that will compensate for a possible failure due to a
vulnerability attack; w୮୰଼ – continuation of service operations and selection of stationary
configuration.

The operational cycle 𝑤଻ - reconfiguration - is extremely important for increasing the functional
and structural stability of the IS. Reconfiguration is, in general, a process of changing the structure,
parameters, and technologies of functioning to restore the performance and efficiency of the system to
the required level or minimize the decrease in these indicators during functional degradation. The
main difficulty lies in the need to determine the moment of application of the reconfiguration
procedure, rules and algorithms for the redistribution of available resources and the formation of new
structural connections, ensuring the continuity and quality of object management.

IS means support the completion of management tasks by accumulating, processing, storing, and
transmitting information. In the IS, a subsystem of information interaction arises, which is generated by the
organizational structure of solving the management task. This subsystem consists of switching nodes and
communication channels between individual elements. An undirected graph can serve as a mathematical
model of such a support subsystem for the management task:

Ĝሺ𝑉, 𝐿ሻ; 𝑉 ൌ ሼ𝑣௜ሽ; 𝐿 ൌ ൛𝑙௜௝ൟ; 𝑖, 𝑗 ൌ M,1 ,
where 𝑉 – is the set of vertices of the graph corresponding to the set of switching and information
processing nodes; 𝐿 – is the set of edges corresponding to the set of connections between nodes.

Let's assume that the IS will perform the main function - ensuring information interaction, thanks
to the exchange of data between nodes of switching and information processing - if there is at least
one data transmission route. In this case, the requirement of the functional stability of the IS is
transformed into the requirement of the connectivity of the graph Ĝ, which forms the basis for the
quantitative evaluation of the IS's functional stability, based on IS's topology.

For example, the failure of the switching and information processing node of the information
interaction subsystem or the loss of connections between nodes due to their physical destruction or
violation of data integrity can make it impossible to perform the tasks of providing information
interaction for object management; deterioration in the functioning of IS (reduction in productivity,
capacity of communication lines, etc.); distortions or defects in the functioning algorithms of
communication and information processing nodes; reduction of structural redundancy, stock of
resources; deterioration of the functioning of IS elements or degradation of the entire system; fatal

7

loss of operational efficiency of the IS, etc.
Each IS communication and information processing node v୧ is a functional component of the

system, which is characterized by its functional purpose - a set of functions F୧ ⊆ F. Functional
specialization of nodes occurs by installing appropriate software and establishing the necessary
connections for information exchange. The modular principle of software development allows to form
the necessary configuration of the IS subsystem to perform the functions of accumulating, processing,
storing and transmitting information to support the solution of a specific management task. The
functionality of the v୧ node can be expanded, if necessary, by connecting new software modules.

Dynamic reconfiguration technology is implemented to ensure the continuity of the management
process, the guaranteed performance of management tasks even in the presence of unwanted
influences on the IS, which can lead to the failure of switching and information processing nodes,
disruption of connections between them in the IS.

The implementation of this technology involves setting and solving various classes of problems of
structural dynamics management, in particular, problems of planning and management of processes of
processing and transfer of resources during restructuring of the structure. Therefore [1], dynamic
reconfiguration is not only a technological solution to compensate for failures in the IS, but also an
independent management process to ensure the operational redistribution of functions and resources
between nodes (functional components of the IS) and increase the efficiency of the functioning of the
IS.

Planning procedures for dynamic IS reconfiguration requires solving the following problems:
• construction of IS reconfiguration scenarios under conditions of destructive influences on the

system or control object;
• development, analysis and multi-criteria synthesis of plans for functional and structural

reconfiguration in conditions of permanent change in the operating environment;
• research through analytical and simulation modeling of the conditions for the reconfiguration

procedures implementation.
Dynamic reconfiguration procedures in IS can be implemented by a separate IS subsystem, which

should include a monitoring module, an analysis module, a localization module, a selection and
decision-making module, a decision implementation module, and a database and knowledge base
(DBKB) [1].

The monitoring module is designed to collect data on the state of the IS and its components. Data
collection takes place in accordance with the defined list of monitoring indicators. The received data
are recorded, indicating the exact time of their receipt, in the appropriate tables of the specialized
DBKB.

The analysis module is designed to detect deviations in the functioning of the IS and its
components. In the work of the analysis module, the values of the selected indicators (obtained at the
monitoring stage and stored in the specialized DBKB) are used. The detection of critical deviations of
the indicators from the normative or limit values allows to identify the IS components that are
potentially dangerous for its stable functioning, as well as to assess their impact on the functioning of
other components. The indicator values obtained at the monitoring stage are constantly checked for
compliance with the limits set for each indicator. The analysis module forms a list of potentially
dangerous IS components, which is passed on to the localization module for processing.

Therefore, the analysis module, based on the monitoring data, diagnoses the state of the IS,
determines the criticality of the detected deviations and produces a command for further working out
the situation. The results are recorded in DBKB. IS components identified at the analysis stage, which
are vulnerable to unwanted influence, must be localized.

The localization module is designed to further work out the existing situation, in case of receiving
a command from the analysis module to localize dangerous IS components that have critical
deviations. Localization means actions directed against the spread and implementation of a threat to
the functioning of the IS, therefore, the main task at the stage of localization is to perform actions that
will exclude dangerous IS components that are under unwanted influence from the working
configuration of the system in the shortest possible time.

The main functions of the localization module: calculation of the localization area; selection of
localization methods; localization of components that showed critical deviations in functioning;
formation of a list of users who need to be informed about localization results; forming and sending

8

messages to users about localization results; formation of a list of operational functional components
of the IS.

After the localization of IS functional components vulnerable to unwanted influence is completed,
a list of functional components that can potentially be used for reconfiguration - redistribution of
functional tasks is formed. The list formed at this stage will be used at the stage of selection and
decision-making regarding the application of the reconfiguration procedure.

Thanks to the localization of dangerous IS components vulnerable to unwanted influence, the
functioning of the IS is stabilized and the further spread of unwanted influence is stopped. However,
this step does not return the system to normal working condition.

The selection and decision-making module is designed to form a decision on the selection and
application of the reconfiguration procedure to restore the process of information support for solving
management tasks. The main functions of this module: definition of functional tasks for
redistribution; determination of limitations for each of the functional tasks to be redistributed;
definition of the list of functional components of IS and their properties for redistribution of
functional tasks; solving the problem of redistribution of functional tasks taking into account the
specified restrictions.

First, the selection and decision-making module prepares a list of functional tasks, in the
performance of which functional components vulnerable to unwanted influence were involved at the
time of localization, as well as tasks that must be performed by these functional components of the IS
in the future. As a result of gathering information, two groups of functional tasks are formed: (1) –
tasks, the execution of which was interrupted during the localization process and which were not
completed in the normal mode, (2) – tasks that must be performed after the completion of the
interrupted tasks according to the requirements of the technological process, which is realized. For
each of the tasks from these two lists, you need to construct constraints that formalize the properties
and requirements of the functional tasks. In particular, their priorities are determined; restrictions on
user access rights, etc. are set [1].

The second block of input information for solving the problem of redistribution of functional tasks
is a list of IS components that are operational at the moment and on which functional tasks from the
list built earlier can potentially be performed. This list is formed on the basis of the list of components
built in the last step of the localization module. Naturally, the list of components for redistribution
may be smaller than the list of IS components generated by the localization module. The next step is
to form a list of properties for each functional component of the IS from the last list (performance,
current load, scheduled load, etc.). Prepared information about functional tasks, constraints, a list of
functional components and their properties are input information for solving the reconfiguration task
and obtaining a set of solutions that are ranked according to certain criteria, and the one with the
highest rank is chosen. The obtained results are recorded in DBKB.

The implementation module is designed to implement the decision made at the previous stage.
Functions of the solution implementation module: implementation of the selected reconfiguration
procedure; formation of a list of users who need to be notified of the results of reconfiguration [1].
The implementation module starts the execution of tasks that were terminated in an emergency as a
result of the localization process, on the specified IS components, makes the necessary changes in the
structure of the sequence of execution of the set of tasks and makes these changes in the task manager,
which monitors the sequence of their execution. Since part of the tasks with a low priority can be
excluded from further execution, this leads to a change in the structure of relationships between tasks.

The data and knowledge base is a specialized database (DBKB) designed to store data and
knowledge necessary for the functioning of the dynamic reconfiguration subsystem: a list of
indicators and their parameters (limit and normative values); time series of indicator values obtained
as a result of monitoring; a list of IS components to be localized; localization methods and
mechanisms. The need to use DBKB is based on the fact that the amount of data received for storage
per unit of time is quite large, it depends on the number of indicators that are monitored, as well as the
frequency of data acquisition. For such purposes, an industrial relational DBMS cannot be used, as it
is not designed to solve problems related to large volumes of data.

The dynamic reconfiguration subsystem should work in the background, performing a continuous
process of monitoring the state of the IS and its components according to the specified indicators. In
the case of detection of deviations from the set standard mode of operation, which may lead to or have

9

led to abnormal situations, the dynamic reconfiguration subsystem is activated.
Practical experience shows that the implementation of the dynamic reconfiguration procedure

allows us to increase the functional stability of IS and, consequently, the quality of information
support for the performance of management tasks, in particular, to ensure the safety of the functioning
of critical infrastructure objects and infrastructure as a whole.

6. Functional stability and reliability of IS software

The analysis of the functional stability of IS involved in management processes is, first of all,
based on a complex representation of systems as such, which must ensure the performance of
specified functions (provision of relevant services) under conditions of occurrence or manifestation of
physical, design defects of hardware and software, which lead to errors and failures; the appearance of
failures as a result of violations of interaction with physical and informational environments with
variable parameters of the influence of those interventions; a possible change in the requirements for
IS services and the occurrence of unspecified failures.

The study of failures and disasters in complex management systems of the banking, administrative
and industrial sectors revealed a variety of situations in which errors and failures in the functioning of
IS were caused by software defects (software). Software defects may prevent the implementation of
reconfiguration procedures, which are mostly performed by the corresponding software modules.
Therefore, software reliability assessment has become an integral part of projects to create
functionally stable IS.

IS software tools involved in management processes process a huge amount of information, and it
is practically impossible to identify all connections and ways of data processing, even for standard
rather simple programs. Therefore, implementing an experimental assessment of the real reliability of
IS software, which is a complex combination of interacting software modules, is a rather time-
consuming and difficult to automate task. Although it should be noted that today considerable
experience has been accumulated in assessing the reliability of software used in IS of critical areas
[5]. In such areas, it is impossible to use the functioning of real objects for testing and evaluating the
reliability of software, and as a result, methods and means of modeling the external environment have
become useful for the automated generation of tests for evaluating the reliability of IS software. On
the basis of software models and components of real IS, simulation test benches are created, which
provide an opportunity to evaluate the reliability of the functioning of specific software under
conditions of regular and critical external influences that correspond to the real characteristics of the
external environment.

Reliability of IS software is usually defined as the ability of a set of programs to perform specified
functions while maintaining the value of certain indicators within specified limits over time. There are
technologies for the development of reliable software complexes, proposed methods and models for
researching their reliability and safety, but a single universal approach to solving the problem of
creating reliable software has not been proposed [5]. The reason for this is the uniqueness of each
software complex.

Each project should purposefully create a coordinated set of methods and means of ensuring the
given reliability of the software under the conditions of a realistically possible reduction in the level
of defects and program development errors. It is necessary to study the specific factors that affect the
quality of the functioning of the software from the side of actually existing and potentially possible
defects in the programs implemented in the IS [6].

The basic principles of creating reliable software can be divided into four groups: avoiding,
detecting, correcting and making errors. Avoidance of errors combines principles, the observance of
which will ensure the minimization of errors in the software development process. Error detection
relies on error correction mechanisms. When, during the testing process, errors are detected in the
components or the software as a whole, then the components or the software as a whole are refined.
Testing continues until the specified reliability index is reached. Error tolerance involves the means
and methods of ensuring the correct execution of a given function in the presence of errors.

In the general case, IS software is a collection of individual program modules (formally
independent parts) connected by probabilistic links. Such modules can be software complexes,

10

individual programs, blocks or even operators. The number of software modules can be significant, so
modules are grouped by type. Each type contains software modules that are similar in properties, in
particular, in terms of reliability. Knowing the structure of IS software, which is a collection of
software modules with known reliability indicators, applying the decomposition method, it is possible
to assess the reliability of IS software. So, for example, let's assume that the IS software is a set of M
program modules, then, taking into account the structure of the software and the operation of the IS,
you can build a corresponding stochastic graph that will have M+2 vertices. Vertex 0 will be the
initial (loop), and vertex M+1 will be the final (drain). Each software module is called to work with a
given probability, which is determined based on the task of operation or initial data. The probability
of error-free operation of IS software can be determined by the probability of error-free operation of
all software modules and the probability of transitions between them. Usually, the reliability
indicators of the software modules that are part of the software, as well as their probabilistic
dependencies in the stochastic graph, are known. So, under these conditions, it is possible to assess,
for example, the reliability of such complex software as in automated system of organization
management, using the decomposition method.

Reliability control of software components is necessary at all stages of the IS life cycle. One of the
effective ways to increase the reliability of software is the standardization of technological processes
and objects of design, development and support of programs. Prevention of errors in software is
possible thanks to high-quality documentation in the process of developing software modules and
software as a whole.

7. Conclusions

Functional stability is an important characteristic of IS, especially for those involved in management
processes. The indicator of the functional stability of the IS significantly depends on the basis on
which the system is created, in particular, the use of multi-version, the principles of multi-parameter
adaptation to failures, increasing the reliability of IS software etc. "Successful" functional overlapping
and distribution of functions and resources between IS components allows to increase the indicator of
functional stability, thanks to the organization and implementation of dynamic reconfiguration
procedures.

8. Acknowledgements

The authors are grateful to colleagues who took part in discussions on research materials at scientific
and scientific-technical seminars and conferences.

9. References

[1] Oleksandr Dodonov, Olena Gorbachyk, Maryna Kuznietsova. Dynamic Reconfiguration in
Automated Organizational Management Systems. In: CEUR Workshop Proceedings vol. 2859,
pp.129-141 (2020). http://ceur-ws.org/Vol-2859/paper11.pdf

[2] Kharchenko, V.S., Yakovlev, S.V. (Eds.): Provision of Functional Safety of Critical Information-
control Systems. Konstanta, Kharkov (2019). 272 p. (in Ukrainian)

[3] Korolev, A.N.: Functional Stability of Navigation and Information Systems. In: University news.
Instrument making, vol 61, no.7. Pp.559-565 (2018) (in Russian)

[4] H. Frank and I.T. Frisch Networks, Communication and Flows. Translation from English. Ed.
D.A.Pospelov. Svyaz, Moscow (1978). 448 p. (in Russian)

[5] Letychevsky O.O., Peschanenko V.S., Hryniuk Y.V., Radchenko V.Yu., Yakovlev V.M. An
Overview of the Modern Methods of Security and Protection of Software Systems // Cybernetics
and system analysis, vol. 55, pp. 840-850 (2019).

[6] Shen Z., Chen S.: A Survey of Automatic Software Vulnerability Detection, Program Repair, and
Defect Prediction Techniques. Security and Communication Networks, vol.2020. Article ID
8858010 (2020). https://doi.org/10.1155/2020/8858010.

