
26

Finding a Bit-Sliced Representation of 4×4 S-Boxes
based on Typical Logic Processor Instructions

Yаroslav Sovyn1, Ivan Opirskyy1, and Olha Mykhaylova1

1 Lviv Polytechnic National University, 12 Stepan Bandera str., Lviv, 79000, Ukraine

Abstract
The paper is devoted to the development of a method for generating bit-sliced-

bioactive descriptions of 4×4 S-Boxes with a reduced number of logic gates. The

bit-sliced descriptions generated by the proposed method can improve the

performance and security of software implementations of crypto algorithms using

4×4 S-Boxes on various processor architectures (CPU, MCU, GPU). The paper

develops a heuristic method for finding a bit-sliced representation that uses

typical logical instructions AND, OR, XOR, NOT, AND-NOT, available in most

8/16/32/64-bit processors. Due to the combination of various heuristic techniques

in the method (previous calculations, exhaustive search to a certain depth, IDDFS

algorithm, refinement search), it was possible to reduce the number of gates in S-

Boxes bit-sliced descriptions compared to other known methods. It has been

established that the developed method, in 57% of cases, generates a bit-sliced

description with fewer gates compared to the best-known methods implemented

in the LIGHTER/Peigen utilities if the standard set of processor logical

instructions (AND, OR, XOR, NOT) is used. If the processor additionally

supports the AND-NOT instruction, then in 54% of cases, it is also possible to

generate a bit-sliced description with a smaller number of gates.

Keywords 1
Bit slicing, 4×4 S-Box, processor instructions, logical minimization.

1. Introduction

The current problem of information protection

is to ensure sufficiently high performance of

cryptographic algorithms (CA) for a wide class of

microprocessor architectures used in various

applied tasks [1–3]. In addition, for software

implementations of cryptographic algorithms, it is

necessary to simultaneously ensure resistance to

attacks through side-channel attacks: for low-end

CPUs (8/16/32-bit microcontrollers) these are

primarily energy consumption analysis attacks,

for high-end CPUs (x86, ARM Cortex-A) is a

cache attack [4].

To ensure the high performance of crypto

algorithms, various approaches to their software

implementation are used: the creation of listed

tables (Lookup Tables, LUT) for certain

operations, integration of hardware crypto

accelerators into the processor (for example,

CQPC-2023: Classic, Quantum, and Post-Quantum Cryptography, August 1, 2023, Kyiv, Ukraine
EMAIL: yaroslav.r.sovyn@lpnu.ua (Y. Sovyn); ivan.r.opirskyi@lpnu.ua (I. Opirskyy); olha.o.mykhailova@lpnu.ua (O. Mykhaylova)

ORCID: 0000-0002-5023-8442 (Y. Sovyn); 0000-0002-8461-8996 (I. Opirskyy); 0000-0002-3086-3160 (O. Mykhaylova)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

AES-NI in x86 processors), application of SIMD

technology. 2, AVX-512 in x86-64 CPU), etc.

However, these approaches have several

disadvantages and limitations and cannot

consistently be implemented in a specific

processor, especially in low-end processors

focused on IoT and embedded systems, which are

characterized by limited resources and computing

capabilities [5].

Bit slicing [6] is a promising approach that

provides a high-performance constant-time

implementation of a CA with immunity to time

and cache attacks [7], makes maximum use of the

capabilities of modern high-end microprocessors

to increase performance due to the parallelization

of both code execution and data processing and

also allows adaptation for low-end CPUs and

hardware implementation on FPGAs and ASIC

[6]. For many CA, the bit-sliced technology

provides the highest speed in software

27

implementation (if hardware crypto accelerators

are not used) for various types of processor

architectures [6–15].

The main idea of Bitslicing is to convert СA

into a sequence of bit logical operations AND,

XOR, OR, NOT, etc. Each such logical operation

can be represented in processors by a

corresponding instruction, in hardware—by a

corresponding gate. The high speed of software

Bitslicing is achieved since the CPU processes

many cipher elements (bytes, blocks) in parallel,

using fast logical instructions and easier execution

of some operations (for example, bit

permutations, shifts, etc.). The absence of

references to precomputed tables in memory and

cache and the use of simple logical instructions

makes bit-sliced implementations invulnerable to

timing and cache attacks and at the same time

complicates attacks through third-party channels

[16].

To get the maximum speed, you need to

minimize the number of logical operations

included in the bit-sliced description of the crypto

algorithm. Most cryptographic operations

produce an unambiguous description when going

to a bit-sliced description, or don’t give much

room for minimization except for non-linear

transformations. In СA, nonlinear replacement

operations are given in the form n×m LUT tables,

so-called S-Boxes, preferably having size 4×4 (n

= 4) or 8×8 (n = 8) bit. Tables of 4×4 bits are

characteristic of both lightweight crypto-

algorithms specially designed for efficient

implementation on resource-limited processors

(e.g. block ciphers PRINCE, LED, Piccolo, hash

functions PHOTON, Spongent) and general-

purpose crypto algorithms (e.g. block symmetric

ciphers Serpent, Twofish, hash functions

BLAKE, Whirlpool) [17].

The main problem with the bit-sliced

implementation of the CA is to represent the S-

Box with the minimum possible number of logic

gates/instructions. This problem is NP-complete

and admits an exact solution only for very simple

cases (n ≤ 3 and some n = 4). Therefore, most

modern methods and utilities for generating bit-

sliced descriptions of S-Boxes use heuristic

approaches. Given the number of gates, this does

not guarantee that the resulting solution is

optimal. However, they provide a much better

result compared to the universal methods for

minimizing logical functions (for example, the

Karnaugh map method or the Quine-McCluskey

method of simple implicants). Therefore, the

problem of finding the optimal bit-sliced

representation even for small S-Boxes (4×4) is far

from being solved, which requires the search for

new heuristic approaches, one of which is

presented in our work.

2. Bit-Sliced Implementation

The most difficult stage in the bit-sliced

implementation, which largely determines the

speed in general, is the logical representation of

tables of non-linear substitution of S-Boxes. In the

case of hardware implementation, logic gates

(Gate Equivalent, GE) {AND, OR, XOR, NOT}

act as the logical basis, in software bit-sliced

implementation, the gates are replaced by

corresponding instructions that are present in

most processor architectures. Therefore, in the

future, we will use the concepts of valve and

instruction as synonyms. It should be noted that

some processors do not have the NOT instruction,

which is emulated by the XOR instruction. Since

the logic instructions of the processor mainly

process two operands, the logic elements must

also be two-input (Fig. 1) so that one can

unambiguously pass from the logical

representation to the software one.

AND

t0

t1

t2

CPU instruction
and t2, t1, t0

C Code
t2 = t1 & t0;

Figure 1: The transition from logical to
programmatic bit-sliced representation

The bit-sliced approach to cryptographic

representation was first proposed by E. Biham in

[6] to speed up the software implementation of the

DES cipher. In the same paper, the algorithm of

bit-sliced representation of DES S-Boxes (6×4)

with logic gates XOR, AND, OR, NOT is

described, for which, on average, one DES S-Box

requires 100 gates.

In [16], M. Kwan proposed a much more

efficient approach to finding a bit-sliced

representation using DES S-Boxes as an example.

It treats each S-Box output bit as a function of the

six input bits, represented by a Karnaugh map, and

placed in a 64-bit variable. All input and

intermediate variables can also be considered as

6-bit Karnaugh maps described by 64-bit

numbers. Then the task is formulated as follows:

it is necessary to combine the existing input and

intermediate maps in such a way as to obtain the

desired output variable. One input variable acts as

28

a selector combining the functions of five

variables. To find the representation of functions

of five variables with the minimum number of

gates, brute force is used, and the gates are found

in the previous steps. Depending on the order in

which the search will be performed, there are 6!

available options for input variables and 4!

options for output variables. This gives a total of

17280 search options, among which the option

with the minimum number of gates is selected. As

a result, the average number of gates for a bit-

sliced description of one DES S-Box has

decreased from 100 to 56.

M. Kwan’s algorithm with some

improvements is implemented in the form of the

sboxgates utility, which generates a bit-sliced

description for arbitrary S-Boxes up to 8×8

inclusive [17]. This utility allows you to specify

an arbitrary set of two-input gates, use LUT-like

ternary logic instructions that have become

available in GPUs and x86-CPUs with AVX-512

support, specify the number of iterations of the

search algorithm, parallelize the search between

processor cores, etc.

SAT-Solvers programs can be used to

minimize S-Boxes. These programs are designed

to effectively solve the feasibility problem of

Boolean formulas (SATisfiability problem, SAT).

The object of the SAT problem is a Boolean

formula consisting only of constants (0/1),

variables, AND, OR, and NOT operations. The

problem is as follows: can all variables be

assigned the values False and True so that the

formula becomes True? Specialized SAT-Solvers

programs, built on efficient solution algorithms,

accept a set of equations as input and output the

result in the form of SAT if a solution is found and

UNSAT if no solution is found. To find a logic

circuit with a given number of gates, you can form

an equation where the variables specify all

possible connections between gates and

operations and try to solve them with the help of

SAT-Solvers. The advantage of this approach is

that if a solution with n gates (SAT) is found and

UNSAT is obtained for n – 1 gates, then we are

guaranteed to have found the minimum possible

bit-sliced description.

In [18], SAT-Solvers were used to find the bit-

sliced representation of 4-bit S-Boxes, and some

of the results are presented in Table 1 [14], where

the Bitslice Gate Complexity (BGC) criterion

denotes the optimal solution with the minimum

number of gates/operations.

Table 1

SAT minimization of S-Boxes by the BGC criterion

S-Box
Size
n×m

Bit Slice Gate Complexity

Prost 4×4 8 (4 AND, 4 XOR)
Piccolo/
Piccolo-1

4×4
10 (1 AND, 3 OR,

4 XOR, 2 NOT)

Lac 4×4
11 (2 AND, 2 OR,

6 XOR, 1 NOT)

Rectangle 4×4
 12,11,10 (4 OR,

7 XOR, 1 NOT)

Rectangle-1 4×4
 12,11 (1 AND 3 OR,

7 XOR, 1 NOT)
Minalpher 4×4  11

Data in Table 1 should be interpreted as

follows. For example, for the S-Box of the Piccolo

cipher, it was possible to find a bit-sliced

representation of ten gates with the help of SAT-

Solvers and to prove that the representation from

BGC = 9 does not exist (UNSAT) and, therefore,

BGC(Piccolo) = 10. For the S-Box of the

Rectangle cipher, it was not possible to represent

from BGC = 12, which means that there is no

solution with BGC = 10 or 11. For the Minalpher

cipher, it was not possible to find bit-sliced

descriptions at all, but it was only possible to

prove that solutions from BGC = 10 do not exist.

So, the problem with SAT-Solvers is that they

don’t always find solutions for “heavy” S-Boxes,

such as Minalpher, which may require more than

12–13 gates. For relatively simple S-Boxes with

11–13 gates, SAT-Solvers cannot always prove

that the found representation is minimal, as can be

seen in the Rectangle example. In addition, the

disadvantage of this method is poor scalability:

the SAT approach only works for small S-Boxes,

up to 5×5 in size, however, for 8×8 S-Boxes, this

approach cannot be implemented in terms of

computational complexity.

In [19], using SAT-Solvers to minimize S-

Boxes is also proposed. The difference in the

approach is that initially with the help of SAT-

Solvers, they find the logical representation of the

S-Box according to the criterion of Multiplicative

Complexity (MC) that is, a representation

containing the minimum possible number of non-

linear gates (AND). Thus, the logical

representation of the S-Box is divided into two

parts: non-linear (AND gates) and linear (XOR,

NOT gates), after which the linear part is

minimized separately, also using SAT-Solvers.

29

This approach is characterized by all the

shortcomings of the previously considered

approach: finding the Multiplicative Complexity

is also an NP-complete problem that can be solved

with the help of SAT-Solvers for relatively simple

S-Boxes, poor scalability. In addition, although

the solution at each of the two steps is optimal,

this does not guarantee that the overall solution is

also optimal.

[20] describes the open-source utility

LIGHTER, which is currently the most effective

utility for finding the bit-sliced description of

4×4-bit S-Boxes. LIGHTER can flexibly specify

a set of two- and three-inlet valves and their

weighting factors, which are taken into account

during minimization. This allows more realistic

optimization in the case of hardware

implementation, when different logic gates differ

in crystal area, power consumption, delay, etc.,

due to the consideration of these parameters in the

weighting factors. When logical instructions are

equivalent for software implementation, setting

the same weighting coefficients for all gates is

enough. The LIGHTER search algorithm itself

combines two approaches: search using the

breath-first-search algorithm and the meet-in-the-

middle strategy. Two graphs are built: one starts

from the base vectors and searches forward, and

the other starts from the desired vectors and

searches back. Both graphs move towards each

other using the given logical operations until they

meet. Next, a path is selected that combines these

two graphs with the minimum cost, taking into

account the weighting factors for each gate. The

utility demonstrates high time efficiency

compared to SAT methods, and its results, which,

although cannot be considered optimal, are quite

close to the results obtained by SAT utilities and

are much better than the results of the sboxgates

utility.

The paper [20] describes the Peigen open-

source utility (Platform for Evaluation,

Implementation, and Generation of S-boxes),

which allows you to find bit-sliced descriptions of

S-Boxes in various logical bases, applying

specified minimization criteria for hardware and

software implementations. The Peigen utility can

evaluate the cryptographic properties of S-Boxes,

generate S-Boxes according to specified criteria,

and search for an optimized representation of S-

Boxes according to certain criteria, in particular,

according to BGC, MC criteria, etc. The search

algorithms for the bit-sliced description of the

Peigen utility are based on the algorithms from the

LIGHTER utility [21], but their temporal

efficiency has been improved, in particular,

enumerations and several additional techniques

have been used. However, even with the

improvements made, the utility only works

effectively with 4-bit S-Boxes.

Generating an optimized bit-sliced CA

implementation requires a significant amount of

time to write and debug code and requires a good

knowledge of processor architecture, low-level

tools, and optimization techniques at the hardware

and software levels. Therefore, in [21], a high-

level Usuba language is presented, which allows

for describing a symmetric cryptographic

primitive, and the Usuba compiler itself will

generate a highly optimized, parallelized, and

vectorized bit-sliced code. However, to generate a

bit-sliced S-Box description, either a simple

minimization algorithm is used, which gives a far

from the optimal result, or a ready-made

optimized description is taken from the database

included in Usuba if the S-Box is present in it.

Thus, description generation for the S-Box is a

weak point of the bit-sliced compiler Usuba.

2.1. Research Objective

The purpose of this paper is to present a

method for generating a bit-sliced description of

4×4 S-Boxes, which provides better results

compared to existing ones, which will increase the

speed and security of hardware and software

implementations of a wide range of cryptographic

algorithms using S-Boxes of a given type.

Features of S-Boxes representation for bit-

sliced implementation

In the CA specifications, S-Boxes are

preferably defined as LUT. For example, the 4×4

S-Box of the PRESENT cipher has the form

shown in Table 2. In Bit-sliced, LUT-Tables are

considered logical functions given by truth tables.

For example, the S-Box PRESENT cipher will

look shown in Table 3.

Table 2
S-Box LUT table of the PRESENT cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2

30

Table 3
Bit-sliced-oriented S-Box representation of the PRESENT cipher

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Hex

x0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0xff00
x1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0xf0f0
x2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0xcccc
x3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0xaaaa

S(x) 12 5 6 11 9 0 10 13 3 14 15 8 4 7 1 2 —
y0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0 0x0ed9
y1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0x3687
y2 0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0xa74c
y3 0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0x659a

So, a compact representation of the S-Box in

the form of a truth table will look like: S(x) = y,

where x = {x0, x1, x2, x3} = {0xff00, 0xf0f0, 0xcccc,

0xaaaa} is input bit-sliced variables, y = {y0, y1,

y2, y3} = {0x0ed9, 0x3687, 0xa74c, 0x659a} – the

output bit-sliced variables that define a specific

substitution table, and the 16-bit numbers that

specify x and y will be called vectors.

We are looking at the bit-sliced representation

of the S-Box for two typical sets of logical

instructions, which are most commonly used in

processor command systems:

● Standard set (STD), consisting of

instructions NOT, AND, OR, XOR. This

instruction set is supported by almost any

8/16/32/64-bit processor and is universal.

● The extended set (EXT), in addition to the

instructions of the standard set (NOT, AND, OR,

XOR), additionally contains the AND-NOT

(bac &=) instruction, which is present in some

processors, for example, with the x86-64 or ARM

architecture.

The task of searching for a bit-sliced S-Box

representation by the BGC criterion can be

formulated as follows: given four base vectors

base = {x0, x1, x2, x3}, y previous calculations ou

need to find the vectors y = {y0, y1, y2, y3} using

the minimum number of logical instructions from

the given set of STD or EXT.

2.2 Previous Calculations

At the precalculation stage, certain data is

found and stored once, which is then repeatedly

used in our bit-sliced description search

algorithm. This data is of two types:

1. For each 16-bit vector V, BGC (V) is a

minimal number of GE valves required to

represent it, the so-called “complexity” of the

vector.

Since vectors are represented by 16-bit

numbers, there are 65536 vectors in total, four of

them are base vectors base = {x0–x3} and two are

logical constants const = {0x0000, 0xffff} for

which BGC is 0, so there are 65530 vectors whose

complexity needs to be estimated. In Table 4

shows the found distribution of vectors by their

BGC value for the STD and EXT instruction sets.

Table 4
Distribution of 16-bit vectors over BGC

BGC 0 1 2 3 4 5 6 7 8

Number of vectors (STD) 6 22 126 691 3181 12639 27165 19670 2036
Number of vectors (EXT) 6 34 258 1465 6549 17404 24596 13864 1360

As seen in Table 4, the maximum complexity

is 8, which means that any 16-bit vector can be

represented with at most 8 gates. This gives an

upper bound for the bit-sliced complexity of an

arbitrary S-Box described by four vectors y0–y3,

equal to 32 gates.

2. Building LUT tables to represent all graphs

at a given depth.

Furthermore, LUT tables were built containing

all possible combinations that can be formed

using a given number of ge operations from the

STD/EXT instruction set. These sequences of

vectors we shall call called graphs. Tables are

formed by sequentially using the GEN_TABLE

function, which takes an n×m table as input and

returns nnew×(m + 1) table containing all possible

combinations formed by a given set of

instructions from input table rows.

31

LUT tables is used in the search algorithm to

speed up the selection of candidate graphs in the

first step. Thus, for the set of instructions STD, a

table q5 was built containing all possible

118491958 graphs to a depth of 6 instructions (ge

= 6), and for the set EXT, a table q4 was built

containing 21832210 graphs to a depth of 5

instructions (ge = 5). Further construction of the

listed tables is impractical since it will require too

much memory.

The obtained step-by-step results are presented

in the Table 5.

Table 5
Properties of LUT tables q0–q5

Table q0 (ge = 1) q1 (ge = 2) q2 (ge = 3) q3 (ge = 4) q4 (ge = 5) q5 (ge =6)

Dimension STD 22×1 429×2 8593×3 186434×4 4462108×5 118491958×6
Dimension EXT 34×1 927×2 24899×3 706608×4 21832210×5 —

3. Bit-Sliced Implementation

3.1 Bit-Sliced Representation
Search Algorithm

At the top level of the search algorithm,

iterates over all values у0-у3, generates each of

them from the listed LUT table of the matrix of

candidate graphs gri = FIRST_STEP(yi), and

passes them to the depth-first search algorithm

FIND_BS(gri). The FIND_BS depth-first search

algorithm finds the remaining values in an attempt

to use a minimum of gates and returns the

constructed augmented graph matrices gr0–gr3.

From the results obtained, graphs with the

minimum BGC value are selected (Fig. 2).

Thus, the search algorithm performs four

iterations, starting from different values у. Note

this initial value for уstart. At the stage gri =

FIRST_STEP(уstart), using the LUT-table q, a

matrix of graphs gri, is generated, containing all

possible graphs with vector уstar at a certain gate

depth dstart. Depending on which BGC group the

u-start vector belongs to, heuristically selected d-

start values are presented in Table 6 in order to

ensure acceptable calculation time and amount of

required memory.

MIN_BGC grmin

STEP_0y0 FIND_BS
gr0 gr0

STEP_0y1 FIND_BS
gr1 gr1

STEP_0y2 FIND_BS
gr2 gr2

STEP_0y3 FIND_BS
gr3 gr3

Figure 2: Generalized structure of the S-Box bit-
sliced description search algorithm

Depending on which BGC group the u-start

vector belongs to, heuristically selected d-start

values are presented in the Table 6 in order to

ensure acceptable calculation time and amount of

required memory. If, for example, bgc(y0) = 1,

then the graph matrix gr0 after FIRST_STEP will

contain all graphs with a length of 6 gates (dstart =

6) in which the vector у0 occurs.

Table 6

Depth of generating graphs containing ystart in the
FIRST_STEP

BGC-
group
уstart

1 2 3 4 5 6 7 8

dstart 6 6 7 8 8 8 8 9

Further, all graphs of the candidate in gri are

sorted into three groups: gr_1y, gr_2y, gr_3y with

the same number of vectors in each group graph

are 1, 2, and 3, respectively. Note this number

y_find. Further, the search is carried out for each

non-empty group separately in accordance with

Fig. 3.

gr

gr_1y
y_find = 1

gr_2y
y_find = 2

gr_3y
y_find = 3

ESTIMATE_DEPTH GEN_DEPTH y_find == 4

No

Yes gr
gr gr

dmin y_find += 1

FIND_NEXT

gr

MIN_BGC

FIND_NEXT

FIND_NEXT

FIND_NEXT

grmin

FIND_BS

gr0

gr1

gr2

Figure 3: Generalized search scheme for bit-
sliced representations by the FIND_BS algorithm

32

The FIND_NEXT algorithm searches уі, ui

one by one until all four values у0-у3 are found.

The graph matrix gr is given as an input in the

form of an n×m table, each row of which contains

y_find values from the set {у0–у3}. Each row of

the table stores m vectors explicitly and vectors

х0–х3 implicitly.

First, the minimum distance dmin is estimated

for group gr, at which the nearest unfound value

уx is located among all graphs

ESTIMATE_DEPTH. For this, the fast

FAST_FIND function of comprehensive forward

search to a given depth of 1/2/3/4 steps has been

developed. The search and selection of options are

carried out using the algorithm of depth-first

search with iterative deepening—Iterative

Deepening Depth-First Search (IDDFS).

If in the set gr at all search depths (1/2/3/4) not

a single value ух is found (dmin ≥ 5), then a step

forward is made and a new table of size nnew×(m

+ 1), is generated from the table gr using the

GEN_TABLE function, after which the search is

repeated, etc. (Fig. 4). After the estimate dmin ≤ 4

is found, using the GEN_DEPTH algorithm, the

transition is made from the set of graphs from

y_find = n_y to the set of graphs from y_find = n_y

+ 1.

ESTIMATE_DEPTH

FAST_FIND dmin < 5 gr, dmin
Yes

gr = GEN_TABLE(gr)

No

dmin

gr gr

Figure 4: Estimation of the search depth to find
the next vector ух

For each of the gr groups, the graphs are

selected to find the values of dmin and for the grmin

group, run ahead gr = GEN_TABLE(grmin). For

the generated set gr, the graphs with the known

values d = dmin – 1 are selected again, for them to

fight ahead and so far, until d becomes equal to 0.

After that, only those graphs are selected into the

group, to avenge n_y + 1 value y. These steps are

repeated until all the у values are found.

The FIND_BS algorithm at each step estimates

the minimum distance dmin, at which the nearest

value of уx is located, and generates the

corresponding graphs. As shown in Fig. 5 this

route starts with graphs containing ya, generated

using FIRST_STEP, from which the nearest value

yb is located at a distance of dab gates then we go

to yс located at the minimum distance dbc from yb

and at the distance dcd we find the last vector yd.

However, the movement with minimal steps

along the trajectory from the vector ya to yd does

not always give the optimal result in general

(although this is the case in most cases). There

may be a situation where the choice of the

minimum value of d in the first steps leads to large

values of d in the following steps and, as a result,

to a non-optimal logical representation. For

example, let's assume that in the first step we got

dab = 1, in the second dbc = 4, and in the third dcd

= 3, that is, the route will be a total of 8 gates

(Fig. 5), but it is possible that if in the first step,

we followed a different route and graphs with dab

= 2 were selected, then in the second step we

could find the value of ус with dbc = 3 and in the

third yd with dcd = 2, and we would get a shorter

total route with 7 valves. Consequently, the

second route resulted in a bit-sliced representation

with a lower BGC value.

ybya

dab=1

yc yd

dbc=4 dcd=3

yb

dab=2

yc yd

dbc=3 dcd=2

ya

Figure 5: Finding the bit-sliced description for
different routes

In order to take into account different possible

routes in the search algorithm, refining searches

are carried out according to the scheme presented

in Fig. 6. If we have a set of graphs containing 3

out of 4 possible values of y, then the search for

the fourth value is always carried out at the

minimum possible depth dmin (SEARCH_3Y). For

graphs with two values in у (y_find = 2), the third

value is searched for by two routes: dmin and dmin

+ 1, after which the SEARCH_3Y search is

applied to the found graphs with y_find = 3. For

graphs with one value in у (y_find = 1), the search

for the second value takes place along three

routes: dmin, dmin + 1 and dmin + 2, after which the

SEARCH_2Y search is applied to the found

graphs with y_find = 2.

3.2 Results and Discussion

The method proposed in the work was

implemented in the Python language, and to

ensure speed, the main data processing functions

are implemented based on the numpy and

pyopencl libraries.

33

gr_3y
y_find = 3

(ya, yb, yc)

SEARCH_3Y

yddmin

dmin
yc

gr_2y
y_find = 2

(ya, yb)

SEARCH_3Y

dmin+1 yc
SEARCH_3Y

SEARCH_2Y

dmin
yb

gr_1y
y_find = 1

(ya)

SEARCH_2Y

dmin+1 yb
SEARCH_2Y

SEARCH_1Y

dmin+2 yb
SEARCH_2Y

-

Figure 6: Refinement search scheme in the FIND_BS algorithm

To evaluate our algorithm, 225 4×4 S-Boxes

of various cryptographic algorithms were taken.

We used the open-source projects LIGHTER and

PEIGEN to obtain a BGC score for selected S-

Boxes and compare it with our results. Bit-sliced

descriptions of S-Boxes obtained by our method

are available at the link [22].

The results are presented in Table 7. Column

data in the table should be interpreted as follows:

LUT is a tabular representation of the S-Box,

where the line ‘0123456789abcdef’ should be

understood as S(x) = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15.

BSL representation of S-Box in bit-sliced

format. The line ‘0ed9_3687_a74c_659a’ should

be understood as follows: y0 = 0x0ed9, y1 =

0x3687, y2 = 0xa74c, y3 = 0x659a.

CY is BGC of vectors у0–y3. The line ‘6285’

should be interpreted as: BGC(y0) = 6, BGC(y1) =

2, BGC(y2) = 8, BGC(y3) = 5.

R is the results, contain the BGC value

obtained using the method described in the article.

L/P contains the BGC value obtained using the

LIGHTER/PEIGEN utilities [15, 16]. These

utilities use the same search algorithm, but due to

optimizations, they can sometimes give different

results for the same S-Box, in these cases, the

minimum value was chosen.

S-Boxes that have a higher BGC value

compared to the one obtained by our method are

marked in red, and those that have the same BGC

value as our results are marked in yellow.

Table 7
Comparison of BGC for different S-Boxes

S-Box LUT BSL STD EXT
CY R L/P CY R L/P

Piccolo e4b238091a7f6c5d cd94_1e1d_fc03_aaa5 6533 10 11 6533 10 10
Piccolo-1 68341eca5792df0b b714_aaa5_3369_b4e2 7346 10 11 6345 10 10

Lac e9f0d4ab128376c5 9996_3ac5_f035_44d7 3566 11 11 3566 11 11
Prost 048f15e927acbd63 b2b8_d748_6a6a_3ccc 5622 8 8 5622 8 8

Rectangle 65ca1e79b03d8f42 2dd2_a569_6867_39ac 4466 12 12 3466 12 12
Rectangle-1 94fae106c7382b5d e625_369c_c396_a91d 7437 12 12 7437 12 12
Minalpher b34128cf5de069a7 a38b_d493_97c4_66e1 7876 15 16 7866 15 16

SKINNY c6901a2b385d4e7f cd94_e1e2_fc03_aaa5 6533 11 11 6433 10 10
TWINE c0fa2b9583d71e64 1ee4_6a3c_ec85_256d 6577 15 15 5577 15 15
PRINCE bf32ac916780e5d4 62c7_131f_f322_5473 7557 16 18 7546 16 17

Lucifer_S0 cf7aedb026319458 5c66_075e_6237_907b 5657 15 17 5557 14 15
Lucifer_S1 72e93b04cd1a6f85 a639_3837_b385_6b2c 7577 16 18 7577 16 16
PRESENT c56b90ad3ef84712 659a_a74c_3687_0ed9 4777 14 14 3677 14 14

PRESENT-1 5ef8c12db463079a 69a5_ad46_2697_c19e 4786 14 14 4786 14 14
JH_S0 904bdc3f1a26758e 31d9_9ec8_b8b4_c2b9 7658 16 16 7648 15 15
JH_S1 3c6d5719f204bae8 11f9_7325_493e_f18a 7766 16 18 6766 16 16

Iceberg_S0 d7329ac1f45e60b8 4597_592e_1f43_c971 7678 15 16 7578 15 15
Iceberg_S1 4afc0d9be6173582 3ce4_9b86_2b2d_41ee 6764 15 15 5764 14 15

Luffa de015a76b39cf824 1759_53e2_98d3_3d23 7786 13 14 7686 12 13
Noekeon 7a2c48f0591e3db6 7741_d847_a959_6a6a 6852 12 12 6852 12 12
Hb1_S0 865f1ca9eb2470d3 d29c_974a_592e_43e9 6666 15 16 6656 14 15
Hb1_S1 07e15b823ad6fc49 953a_1ba6_7c16_b664 6766 14 15 5766 14 15
Hb1_S2 2ef5c19ab468073d e16c_6587_a61e_89d6 6666 16 16 6666 15 15
Hb1_S3 0734c1afde6b2895 c9a6_1ec6_879a_6bd0 6666 14 16 6665 14 15

Hb1_S0-1 d4afb21c07695e83 9a59_a63c_368b_689d 6587 15 16 6587 14 15
Hb1_S1-1 0378e4b16f95da2c 1ec6_6356_9b34_b658 6666 15 15 6566 14 15
Hb1_S2-1 c50e93adb6784f12 65b2_a768_368b_29d9 6686 16 16 6686 15 15
Hb1_S3-1 05c23fa1de6b4897 c9b2_8e78_9726_6b64 6676 14 16 6675 14 15
Hb2_S0 7ce9215fb6d048a3 85e9_c395_16c7_658e 7686 15 16 7686 15 16

34

Hb2_S1 4a168f7c30ed59b2 7964_c56a_1ce9_6cb2 7576 15 16 7576 15 15
Hb2_S2 2fc156ade8340b97 e49a_a563_89b6_63c6 7665 15 15 7665 14 15
Hb2_S3 f4589721a30e6cdb c2b5_9b61_7827_e919 7766 15 16 7766 14 15

Hb2_S0-1 b54fc690d3e81a27 934b_e629_853e_2d59 7777 16 16 6767 15 16
Hb2_S1-1 92f80c364d1e7ba5 b645_78c6_9ba4_6a2d 7667 16 17 6667 15 15
Hb2_S2-1 c30ab45f9e6d2781 a9d2_369a_2ee1_4b99 6666 15 15 6666 14 15
Hb2_S3-1 a76912c5348fdeb0 599a_6927_3ac6_7c49 5768 15 16 5758 14 15
DES_S0_0 e4d12fb83a6c5907 b16c_8771_9c27_2ae5 5766 15 16 5766 14 15
DES_S0_1 0f74e2d1a6cb9538 78c6_4b36_265e_9d52 6676 13 14 6676 13 13
DES_S0_2 41e8d62bfc973a50 5d92_39e4_4b35_279c 6586 14 15 5585 14 15
DES_S0_3 fc8249175b3ea06d 87e1_5e89_c993_9a27 6868 15 15 6868 15 15
DES_S1_0 f18e6b34972dc05a 4b63_8679_5a99_992d 6656 14 14 6656 13 14
DES_S1_1 3d47f28ec01a69b5 e41b_58b9_919e_69d2 5855 15 15 5855 14 14
DES_S1_2 0e7ba4d158c6932f b1cc_e81e_8d66_965a 5653 12 12 4653 12 12
DES_S1_3 d8a13f42b67c05e9 a539_47b4_6e61_c927 6666 15 17 6566 15 16
DES_S2_0 a09e63f51dc7b428 1be4_5879_2ed8_964d 4777 15 16 4777 15 16
DES_S2_1 d709346a285ecbf1 e41b_69d2_5c63_7a89 5567 14 15 5567 14 15
DES_S2_2 d6498f30b12c5ae7 9369_e562_d827_6939 6755 13 15 6755 13 14
DES_S2_3 1ad069874fe3b52c 3aa5_5e92_a794_9666 6553 13 14 6553 13 13
DES_S3_0 7de3069a1285bc4f 994b_92ad_e827_b4c6 6776 15 16 6776 14 16
DES_S3_1 d8b56f03472c1ae9 92ad_66b4_4b39_e827 7677 14 17 7577 14 16
DES_S3_2 a690cb7df13e5284 17e4_2d63_99d2_49b5 6757 15 16 6757 14 16
DES_S3_3 3f06a1d8945bc72e 2d63_e81b_b64a_99d2 7765 15 16 7765 14 16
DES_S4_0 2c417ab6853fd0e9 9e58_4cf1_5a96_d962 6745 15 16 6735 14 15
DES_S4_1 eb2c47d150fa3986 35e2_9c27_8579_6c4b 7677 15 16 7677 15 15
DES_S4_2 421bad78f9c5630e 2b6c_b15a_9d61_87b8 7575 16 17 7575 16 16
DES_S4_3 b8c71e2d6f09a453 ca99_9369_63ac_1aa7 6657 15 16 6657 15 15
DES_S5_0 c1af92680d34e75b e61a_b46c_7a49_929d 6666 15 16 6566 15 15
DES_S5_1 af427c9561de0b38 66d2_691b_0db6_ac63 6766 15 17 5756 15 16
DES_S5_2 9ef528c3704a1db6 718d_c996_a54e_6867 7566 16 16 7556 15 16
DES_S5_3 432c95fabe17608d 8d72_1bc6_9a69_c3d8 4665 14 14 4565 13 13
DES_S6_0 4b2ef08d3c975a61 9d92_691e_5a99_26da 5556 14 15 5556 14 15
DES_S6_1 d0b7491ae35c2f86 266d_b38c_ad19_69a5 7584 14 14 7484 14 14
DES_S6_2 14bdc37eaf680592 626d_87e4_26da_4b9c 6666 15 16 6666 14 16
DES_S6_3 6bd814a7950fe23c 4b96_78c3_9aa5_994e 5555 14 14 5555 13 14
DES_S7_0 d2846fb1a93e50c7 96e1_8d72_d839_4b65 6477 14 15 6477 14 14
DES_S7_1 1fd8a374c56b0e92 4a67_ac72_27c6_691e 8765 15 16 8765 15 15
DES_S7_2 7b419ce206adf358 781b_36c3_5a65_9c72 7555 14 15 7555 13 13
DES_S7_3 21e74a8dfc90356b b58a_d12d_639c_87e4 5646 14 15 5636 14 14

Serpent_S0 38f1a65bed42709c 52cd_19b5_9764_c396 8863 14 14 7763 14 14
Serpent_S1 fc27905a1be86d34 6359_568d_b44b_2e93 7848 14 14 7848 14 14
Serpent_S2 86793cafd1e40b52 639c_a4d6_4da6_25e9 4766 13 13 3766 13 13
Serpent_S3 0fb8c963d124a75e 63a6_b4c6_e952_913e 6667 15 15 5666 14 15
Serpent_S4 1f83c0b6254a9e7d d24b_69ca_e692_b856 6675 15 15 6675 14 15
Serpent_S5 f52b4a9c03e8d671 d24b_662d_7493_1ce9 6687 15 15 6687 14 15
Serpent_S6 72c5846be91fd3a0 3e89_69c3_196d_5b94 8486 14 14 8486 14 14
Serpent_S7 1df0e82b74ca9356 7187_a9d4_c716_1cb6 7676 16 16 7675 15 16

Serpent_S0-1 d3b0a65c1e47f982 3947_9a36_1ee1_7295 8648 14 14 8648 14 14
Serpent_S1-1 582ef6c3b4791da0 3d91_45bc_2679_695a 7774 14 14 7673 14 14
Serpent_S2-1 c9f4be12036d58a7 9a56_c6b4_9c2d_6837 4676 13 13 4666 13 13
Serpent_S3-1 09a7be6d35c248f1 c39a_497c_56e8_64b6 5766 15 15 5766 14 15
Serpent_S4-1 5083a97e2cb64fd1 e469_2dd8_7ac1_66b4 7576 15 15 7575 14 15
Serpent_S5-1 8f2941deb6537ca0 1d6a_5b86_36d2_61cb 5666 15 15 5666 14 15
Serpent_S6-1 fa1d536049e72c8b 8a3d_9c63_2d59_e60b 7478 14 14 7477 14 14
Serpent_S7-1 306d9ef85cb7a142 2d59_9c65_4b6c_16f8 7765 16 16 7765 15 16

GOST_1 4a92d80e6b1c7f53 f614_b38a_7991_2ab6 6686 15 16 6686 15 15
GOST_2 eb4c6dfa23810759 ea62_23d3_607d_84eb 5577 16 16 5577 15 16
GOST_3 581da342efc7609b ca2d_9bb0_1f49_c71a 8776 16 18 8676 16 16
GOST_4 7da1089fe46cb253 d0cb_b585_4f83_19e6 7554 15 16 7554 14 14
GOST_5 6c715fd84a9e03b2 647c_ea25_0977_4ee2 7677 17 19 6676 16 17
GOST_6 4ba0721d36859cfe 59d2_c336_ea91_f486 6577 15 17 5476 15 16
GOST_7 db413f590ae7682c 08fb_5e32_9c65_a6a3 5775 14 16 5675 14 15
GOST_8 1fd057a4923e6b8c 2537_3e62_98b6_e946 6676 16 16 6676 15 16

35

LBlock_0 e9f0d4ab128376c5 9996_3ac5_f035_44d7 3566 11 11 3566 11 11
LBlock_1 4be9fd0a7c562813 c53a_9996_0f35_22be 4366 11 11 4365 11 11
LBlock_2 1e7cfd06b593248a 0f35_9996_22be_c53a 6364 11 11 6354 11 11
LBlock_3 768b0f3e9acd5241 9969_22eb_5ca3_0fac 4655 11 11 4655 11 11
LBlock_4 e5f072cd1849ba63 9996_f035_44d7_3ac5 3665 11 11 3665 11 11
LBlock_5 2dbcfe097a631845 9996_0f35_c53a_22be 3646 11 11 3645 11 11
LBlock_6 b94e0fad6c573812 5ca3_9969_0fac_22eb 5456 11 11 5456 11 11
LBlock_7 daf0e49b218375c6 3ac5_9996_f035_44d7 5366 11 11 5366 11 11
LBlock_8 87e5fd06bc9a2413 c53a_9996_22be_0f35 4366 11 11 4356 11 11
LBlock_9 b5f0729d481cea36 44d7_f035_9996_3ac5 6635 11 11 6635 11 11
SC2000_4 25ac7f1bd609483e 49f2_c2b5_933a_a9ac 6755 15 16 5754 15 16

MIBS 4f38dac0b57e2619 c716_3d26_2e53_897a 7786 17 17 7686 16 17
KLEIN 74a91fb0c3268ed5 c279_2e65_e923_716c 7777 17 17 7777 16 17
Panda 0132fc9ba6875ed4 58d6_2b9c_fa30_65f0 7655 14 15 7644 13 13

MANTIS cad3ebf789150246 0eec_a0fa_c8d5_0377 6465 13 14 5465 13 14
GIFT 1a4c6f392db7508e 1ee1_8d72_9a3c_c6aa 4454 11 11 4454 11 11

UDCIKMP11 086d5f7c4e2391ba 7878_ce64_03fc_d2aa 2424 8 8 2424 8 8
Luffa_v1 7dbac4835f60912e 3387_c68d_8733_925e 5666 13 13 5655 12 12

Enocoro_S4 139a5e72d0cf486b 8957_c8ea_5d70_ad2c 7567 16 17 7466 15 16
Qarma_sigma0 0e2a9f8b6437dc15 dcb0_0dae_bb22_30fa 6646 14 14 6544 13 14
Qarma_sigma1 ade6f735980cb124 31f2_507d_88be_1b17 6656 15 15 5656 14 15
Qarma_sigma2 b68fc09e3745d21a 5b49_a38b_1e9a_90dd 7757 16 17 7756 16 16

Midori_Sb0 cad3ebf789150246 0eec_a0fa_c8d5_0377 6465 13 14 5465 13 14
Midori_Sb1 1053e2f7da9bc846 0dcd_8af8_d1d4_3f50 6556 15 17 5555 15 17
Anubis_S0 d7329ac1f45e60b8 4597_592e_1f43_c971 7678 15 16 7578 15 15
Anubis_S1 4afc0d9be6173582 3ce4_9b86_2b2d_41ee 6764 15 15 5764 14 15
Khazad_P 3fe054bcda967821 9553_5a47_19b6_27c6 6666 15 17 6666 15 15
Khazad_Q 9e56a23cf04d7b18 7945_317a_1d8e_a993 6766 16 17 6666 16 16

Fox_S1 2519eac8647fdb03 bc0e_ad31_1f52_38f8 7875 16 17 6765 15 16
Fox_S2 b41f03eda875c296 4cad_a569_9cca_53c9 7467 13 13 7457 13 13
Fox_S3 dab14389572cf06e 13ad_d626_db11_98c7 7577 16 18 7577 16 17

Whirlpool_E 1b9cd6f3e874a250 44d7_35e2_4d78_135e 6777 16 18 6776 16 16
Whirlpool_R 7cbde49f638a2510 62cd_1b95_21bb_0cde 6866 15 16 6765 15 16

SMASH_256_S1 6dc7f13a8b5024e9 867a_52d9_641f_c396 6883 14 14 6773 14 14
SMASH_256_S2 1b60ed5ac29738f4 5c63_5a96_c974_65b2 6476 13 13 6376 13 13
SMASH_256_S3 429c81e7f50b6a3d cba4_79c2_93c9_a95c 7665 15 15 7665 14 15

CS_cipher_G a602be18d453fc79 dd50_583b_7722_b1b1 5834 13 14 4734 13 13
GOST2_1 6af43850de712bc9 ad54_3617_474d_e326 6667 16 17 6666 16 17
GOST2_2 e0817a56d2493fcb b958_b2b1_65d1_e925 7666 16 17 7666 15 16
Magma_1 c462a5b9e8d703f1 ece0_695c_4d27_47d1 4676 16 17 4676 15 16
Magma_2 68239a5c1e47bd0f b958_9a2d_aec1_b2b2 7774 16 17 7774 16 16
Magma_3 b3582fade174c960 26a7_4573_5da4_31e9 7767 16 16 7767 16 16
Magma_4 c821d4f670a53e9b d958_b5c4_29f1_e453 7788 15 15 6678 15 15
Magma_5 7f5a816d093eb42c 16a7_5c4b_a8c7_9a9a 8773 15 16 8772 15 15
Magma_6 5df692cab78143e0 2b17_63ac_524f_45d6 6576 15 17 6576 15 16
Magma_7 8e25691cf4b0da37 d568_e516_939a_35a3 7656 16 17 7656 15 16
Magma_8 17ed05834fa69cb2 52ab_ce86_2b2e_764c 7666 16 17 7656 16 17

CLEFIA_SS0 e6ca872fb14059d3 f3a0_81eb_54a7_619d 5767 15 17 4767 15 15
CLEFIA_SS1 640d2ba39cef8751 e9a8_2cf1_6e0b_1f68 6675 15 16 6675 14 15
CLEFIA_SS2 b85ea64cf72310d9 db05_0f39_43ec_c19b 6557 16 16 6557 15 16
CLEFIA_SS3 a26d345e0789bfc1 ba58_3297_62ec_7c89 6667 15 16 6667 15 16
Golden_S0 035869c7dae41fb2 71a6_e692_2dd4_6768 6766 15 15 6765 14 15
Golden_S1 03586cb79eadf214 59c6_36d2_9ab4_1f68 6665 15 15 6665 14 15
Golden_S2 03586af4ed9217cb b646_a972_63d4_c768 5766 15 16 5766 14 14
Golden_S3 03586cb7a49ef12d b4c6_59d2_9ab4_9d68 6666 14 16 6566 14 14

Twofish_Q0_T0 817d6f320b59eca4 0e6e_52f4_b43c_7a29 6648 15 16 5538 15 16
Twofish_Q0_T1 ecb81235f4a6709d d1d4_1d65_9b83_c50f 5676 16 17 5676 15 17
Twofish_Q0_T2 ba5e6d90c8f32471 cc65_5c1b_653c_076b 5767 15 16 5757 15 15
Twofish_Q0_T3 d7f4126e9b3085ca 2717_86e6_60cf_d385 6658 14 15 6658 14 15
Twofish_Q1_T0 28bdf76e31940ac5 873c_21f5_c8f8_649e 5656 16 17 4646 15 16
Twofish_Q1_T1 1e2b4c376da5f908 3ac9_15ce_1bb2_b62a 6766 15 16 6666 14 15
Twofish_Q1_T2 4c75169a0ed82b3f e45c_f2a4_862f_aec2 7576 15 17 6576 15 16
Twofish_Q1_T3 b951c3de647f208a 0c6f_9da1_0fd4_c8d3 6757 16 17 6757 15 16

36

Serpent_type_S0 03567abcd4e9812f a956_c47a_879c_9de0 3767 13 13 3666 13 13
Serpent_type_S1 035869a7bce21fd4 71a6_2dd2_e694_6768 6476 12 12 6375 12 12
Serpent_type_S2 035869b2d4e1af7c 6966_74d2_e714_b568 4666 12 13 3556 11 12
Serpent_type_S3 03586af4ed9217cb b646_a972_63d4_c768 5766 15 16 5766 14 14
Serpent_type_S4 03586cb79eadf214 59c6_36d2_9ab4_1f68 6665 15 15 6665 14 15
Serpent_type_S5 03586cb7a49ef12d b4c6_59d2_9ab4_9d68 6666 14 16 6566 14 14
Serpent_type_S6 03586cb7ad9ef124 36c6_59d2_9ab4_1f68 4665 12 12 4565 12 12
Serpent_type_S7 03586cb7dae41f29 b1c6_66d2_2db4_a768 6656 13 13 5556 11 13
Serpent_type_S8 03586cf1a49edb27 b4c6_e952_9a74_3d68 6656 14 15 6655 13 14
Serpent_type_S9 03586cf2e9b7da41 9e46_2dd2_5974_3768 7455 13 13 7355 12 12

Serpent_type_S10 03586df19c2ba74e 29e6_bc52_e274_9b68 6656 13 14 6656 12 12
Serpent_type_S11 03586df274eba19c 6966_1dd2_8774_dc68 4666 12 13 3556 12 12
Serpent_type_S12 03586df2c9a4be17 d266_b4d2_a974_3768 5455 12 13 5455 11 12
Serpent_type_S13 03586fa179e4bcd2 53a6_9572_6d34_7668 6766 14 15 5766 14 15
Serpent_type_S14 0358749ef62badc1 a956_1f92_63b4_79c8 3767 13 13 3666 13 13
Serpent_type_S15 035879beadf4c261 8676_65d2_5e94_17e8 6675 14 14 5675 13 14
Serpent_type_S16 03589ce7adf46b12 6696_b5c2_1ee4_2778 4665 12 14 3655 12 13
Serpent_type_S17 0358ad94f621cb7e 6966_e712_d3a4_b178 4665 12 13 3565 11 12
Serpent_type_S18 0358bc6fe9274ad1 ca96_2dd2_59e4_63b8 6477 13 13 6377 13 13
Serpent_type_S19 035a7cb6d429e18f a956_94da_93b4_d968 3767 13 13 3767 13 13

BLAKE_1 ea489fd61c02b753 f170_b8a3_62e5_127b 6786 16 17 6786 15 16
BLAKE_2 b8c052fdae367194 74d1_1f61_9ad4_43c7 5876 15 16 5876 15 15
BLAKE_3 7931dcbe265a40f8 445f_4bc5_56b1_c8f2 6886 16 17 5785 15 17
BLAKE_4 905724afe1bc683d c68d_55d8_99ac_adc1 6558 15 16 6558 15 15
BLAKE_5 2c6a0b834d75fe19 dea0_34ad_3f06_b26a 6766 16 16 6756 15 16
BLAKE_6 c51fed4a0763928b 9a2e_ae98_067b_d0b9 5577 15 16 5577 15 15
BLAKE_7 db7ec13950f4862a 05e7_e44e_2d1d_949b 7456 15 15 7456 14 15
BLAKE_8 6fe9b308c2d714a5 9c3a_4a37_ad07_459e 6857 14 16 6757 14 15
BLAKE_9 a2847615fb9e3cd0 57d0_1b33_69b8_6f05 6566 15 17 6566 15 16

GOST_IETF_1 96328b17a4efc0d5 c8e5_0dae_de82_5d31 7667 16 17 7567 16 17
GOST_IETF_2 37e98af0526cb4d1 d14b_1667_6d46_587c 7877 15 15 7876 15 15
GOST_IETF_3 e462b3d8cf5a0719 e670_2a3d_2747_8bd1 6776 16 17 6776 15 17
GOST_IETF_4 e7acd13902b4f856 54f2_9647_d81b_349d 6768 15 16 6768 15 16
GOST_IETF_5 b5198df0e423c7a6 286f_ed41_b362_5179 7767 16 16 7767 15 16
GOST_IETF_6 3adc120b75948fe6 2795_e1a3_eb0c_748e 8766 13 14 7766 13 14
GOST_IETF_7 1d297a608c45f3be 781b_f074_9e52_d32a 7557 15 17 7456 15 16
GOST_IETF_8 baf50ce8623917d4 7c0d_2747_e16c_48e7 7766 15 16 7766 16 16

Kuznyechik_nu0 253b69ea04f18dc7 ac2e_84dd_e652_74e8 6676 17 18 6676 16 17
Kuznyechik_nu1 76c90f8145bed23a 56a9_ec23_1b27_9c6c 4553 11 12 4553 10 11

Kuznyechik_sigma cd048bae3952f167 b722_d9e0_d48b_12f3 5676 15 16 5676 15 16
Optimal_S0 012d47f68bc93ea5 9a6a_72e4_a4f8_6f48 3567 13 14 3566 13 14
Optimal_S1 012d47f68be359ac 3a6a_4ee4_94f8_e748 4465 12 13 4465 11 12
Optimal_S2 012d47f68be3ac59 ca6a_1ee4_64f8_b748 4673 12 13 4563 12 13
Optimal_S3 012d47f68c53aeb9 cc6a_78e4_26f8_f348 5664 14 15 4564 14 14
Optimal_S4 012d47f68c9bae53 cc6a_b8e4_62f8_3f48 5674 14 15 4664 14 15
Optimal_S5 012d47f68cb9ae35 cc6a_74e4_a2f8_3f48 5654 15 16 4654 14 15
Optimal_S6 012d47f68cb9ae53 cc6a_b4e4_62f8_3f48 5574 14 15 4464 14 14
Optimal_S7 012d47f68ceba935 e86a_5ce4_86f8_3f48 5774 14 15 5674 14 14
Optimal_S8 012d47f68e95ab3c 6c6a_72e4_8af8_b748 6553 12 12 5553 12 12
Optimal_S9 012d47f68eb359ac 3c6a_4ee4_92f8_e748 6465 14 15 5465 13 14

Optimal_S10 012d47f68eb5a93c 6c6a_56e4_8af8_b748 6653 15 15 5653 14 15
Optimal_S11 012d47f68eba59c3 b46a_8ee4_52f8_6f48 6647 15 16 6646 14 15
Optimal_S12 012d47f68eba93c5 b46a_2ee4_c2f8_5f48 6766 15 16 6665 14 15
Optimal_S13 012d47f68ec95ba3 b86a_e2e4_16f8_6f48 5657 15 15 5656 14 15
Optimal_S14 012d47f68ecb395a 786a_9ae4_46f8_af48 6766 15 15 5766 15 15
Optimal_S15 012d47f68ecb93a5 b86a_6ae4_86f8_5f48 5776 15 16 5675 15 15

Num1_DL_04_0 0bc5619a3ef8d427 956a_c792_b61c_1ec6 3556 12 14 3556 12 13
Num1_DL_04_1 0cda5be7f6213894 59b4_17e8_83d6_616e 6556 12 13 6555 11 13
Num1_DL_13_0 0c9761f23b4ed8a5 936c_4bd8_9c5a_7a46 3656 12 12 3656 11 12
Num1_DL_13_1 0c97f2613b4ea5d8 639c_1b78_6c5a_da16 4656 12 12 3655 11 12
Num1_DL_13_2 0b85fc36e47921da 6c5a_95d2_47b8_c936 5643 12 12 5643 11 12
Num1_DL_13_3 0d4b7e926a3581fc 6c5a_47b8_c936_d26a 5436 11 12 5435 11 12
Num1_DL_22_0 0d82eb75f63c419a 65e2_8778_1bd2_c936 6363 11 11 6363 11 11

37

Num1_DL_22_1 0be1a7d46c9f5832 5c6a_c936_1be4_2e56 6346 11 11 6346 11 11
Num1_DL_22_2 0b69c53ed7842af1 c36a_72c6_4bb4_659a 5644 11 11 5633 11 11
Num1_DL_22_3 0e95f8a73b6c41d2 639c_87d2_5c9a_4a76 4466 11 11 3466 11 11

mCrypton_S0 4f38dac0b57e2619 c716_3d26_2e53_897a 7786 17 17 7686 16 17
mCrypton_S1 1c7a6d53fb20849e 43e5_879c_a176_d32a 8677 16 18 8676 16 17
mCrypton_S2 7ec209da3f5864b1 c761_538b_3647_4ae6 7877 16 17 7776 16 17
mCrypton_S3 b0a7d642ce3915f8 7c19_46ad_6378_cb15 8867 17 18 8867 16 17

Σ 3190 3349 3097 3231

In general, as the results in Table 7, our method

showed better results than the

LIGHTER/PEIGEN utilities for both the STD and

EXT instruction sets. It provides a bit-sliced

description with fewer gates for 129 S-Boxes out

of 225 (57.3%) using the standard processor logic

instruction set and for 123 S-Boxes out of 225

(54.7%) using the extended instruction set. The

total number of gates for the bit-sliced description

of all 225 S-Boxes in our method is less by 5.0%

and 4.3% for the STD and EXT instruction sets,

respectively.

The LIGHTER/PEIGEN utilities did not

generate a bit-sliced description with fewer

instructions for any S-Box than obtained by our

method, and the maximum difference in the

number of instructions for an S-Box description is

3 and 2 for the STD and EXT sets, respectively.

It should also be noted that the developed

method for ‘simple’ S-Boxes (BGC ≤ 12)

generates the smallest possible description

indicating the same results as those obtained using

SAT-Solvers.

4. Conclusion

The paper presents a method for generating a

bit-sliced description of arbitrary 4×4 bijective S-

Boxes, focused on software implementations on

any 8/16/32/64-bit processors that support AND,

OR, XOR, NOT, AND-NOT instructions. To

date, the method proposed in the paper is the most

effective method known to us according to the

BGC criterion, which is confirmed by the research

results presented in the work. The method

combines heuristic techniques at various stages of

searching a bit-sliced representation, in particular:

recalculation, exhaustive search to a depth of up

to four gates, IDDFS algorithm for searching and

cutting options, and refining search. If necessary,

the developed approach can be adapted to support

additional logical instructions.

5. References

[1] I. Opirskyy, Y. Sovyn, O. Mykhailova,

Heuristic Method of Finding Bitsliced-

Description of Derivative Cryptographic S-

Box, in IEEE 16th International Conference

on Advanced Trends in Radioelectronics,

Telecommunications and Computer

Engineering (2022) 104–109. doi:

10.1109/TCSET55632.2022.9766883.

[2] Y. Sovyn, et al., Minimization of Bitsliced

Representation of 4×4 S-Boxes based on

Ternary Logic Instruction, in Cybersecurity

Providing in Information and

Telecommunication Systems, vol. 3421

(2023) 12–24.

[3] S. Yevseiev, et al., Development of

Niederreiter Hybrid Crypto-Code Structure

on Flawed Codes, Eastern-European Journal

Of Enterprise Technologies, 1(9) (2019) 27–

38. doi: 10.15587/1729-4061.2019.156620

[4] V. Buriachok, V. Sokolov, P. Skladannyi,

Security Rating Metrics for Distributed

Wireless Systems, in: Workshop of the 8th

International Conference on “Mathematics.

Information Technologies. Education:”

Modern Machine Learning Technologies and

Data Science, vol. 2386 (2019) 222–233.

[5] I. Kuzminykh, et al., Investigation of the IoT

device lifetime with secure data

transmission, Internet of Things, Smart

Spaces, and Next Generation Networks and

Systems, vol. 11660 (2019) 16–27. doi:

10.1007/978-3-030-30859-9_2

[6] E. Biham, A Fast New DES Implementation

in Software, in International Workshop on

Fast Software Encryption (1997) 260–272.

[7] E. Kasper, P. Schwabe, Faster and Timing-

Attack Resistant AES-GCM, in 11th Inter-

national Workshop Cryptographic Hardware

and Embedded Systems (2009) 1–17.

[8] A. Adomnicai, T. Peyrin, Fixslicing AES-

Like Ciphers: New Bitsliced AES Speed

Records on ARM-Cortex M and RISC-V,

IACR Transactions on Cryptographic

38

Hardware and Embedded Systems, 1 (2021)

402–425.

[9] P. Schwabe, K. Stoffelen, All the AES You

Need on Cortex-M3 and M4, in International

Conference on Selected Areas in

Cryptography (2016) 180–194.

[10] J. Zhang, M. Ma, P. Wang, Fast

Implementation for SM4 Cipher Algorithm

based on Bit-Slice Technology, in

International Conference on Smart

Computing and Communication (2018) 104–

113.

[11] N. Nishikawa, H. Amano, K. Iwai,

Implementation of Bitsliced AES Encryption

on CUDA-enabled GPU, in International

Conference on Network and System Security

(2017) 273–287.

[12] S. Matsuda, S. Moriai, Lightweight

Cryptography for the Cloud: Exploit the

Power of Bitslice Implementation, in

International Workshop on Cryptographic

Hardware and Embedded Systems (2012)

408–425.

[13] M. Kwan, Reducing the Gate Count of

Bitslice DES, IACR Cryptology ePrint

Archive, 51 (2000).

[14] M. Dansarie, Sboxgates: A Program for

Finding Low Gate Count Implementations of

S-Boxes, Journal of Open Source Software,

6(62) (2021) 1–3.

[15] K. Stoffelen, Optimizing S-Box Implemen-

tations for Several Criteria Using SAT

Solvers, in 23rd International Conference on

Fast Software Encryption (2016) 140–160.

[16] F. Kipchuk, et al., Assessing Approaches of

IT Infrastructure Audit, in: IEEE 8th

International Conference on Problems of

Infocommunications, Science and Techno-

logy (2021). doi: 10.1109/picst54195.2021.

9772181

[17] V. Sokolov, P. Skladannyi, H. Hulak,

Stability Verification of Self-Organized

Wireless Networks with Block Encryption,

in: 5th International Workshop on Computer

Modeling and Intelligent Systems, vol. 3137

(2022) 227–237.

[18] N. Courtois, T. Mourouzis, D. Hulme, Exact

Logic Minimization and Multiplicative

Complexity of Concrete Algebraic and

Cryptographic Circuits, International Journal

On Advances in Intelligent Systems, 6(3,4)

(2013) 165–176.

[19] J. Jean, et al., Optimizing Implementations of

Lightweight Building Blocks, IACR

Transactions on Symmetric Cryptology, 4,

(2017) 130–168.

[20] Z. Bao, et al., Peigen—A Platform for

Evaluation, Implementation, and Generation

of S-boxes, IACR Transactions on

Symmetric Cryptology (2019) 330–394.

[21] D. Mercadier, Usuba, Optimizing Bitslicing

Compiler, PhD Thesis, Sorbonne University,

France (2020).

[22] Y. Sovyn, Bitsliced 4x4 S-Boxes 2023

(2023). https://drive.google.com/drive/

|folders/1vK2ng__UiVmk-cQAUzDOxS-

X1x3DZp1T?usp=drive_link

