
OntoPair: Towards a Collaborative Game for

Building OWL-Based Ontologies

Peyman Nasirifard, Slawomir Grzonkowski and Vassilios Peristeras

Digital Enterprise Research Institute
National University of Ireland, Galway

IDA Business Park, Lower Dangan, Galway, Ireland
firstname.lastname@deri.org

Abstract. Collective Intelligence takes advantage of collaboration, com-
petition and integration. It often uses mixed groups of humans and com-
puters to research in new unexplored ways. Ontologies, which are the
main building block of the Semantic Web, are usually prepared by do-
main experts. We introduce a novel approach, which employs Collective
Intelligence, towards building simple domain ontologies through a game
called OntoPair, an entertaining web-based game that is able to build
simple OWL-based ontologies based on collected information from play-
ers. The game collects properties and common-sense facts regarding an
object by means of some fixed templates and translates them into OWL
representation by aid of a mediator/mapper and builds simple domain
ontologies after refinement in several iterations. We define the game and
preform a small experiment that proves our idea.

1 Introduction

Ontologies are the main building blocks of the Semantic Web technologies. They
try to define a specific domain in a systematic way. The can be expressed using
different standards and languages like RDFS [3] and OWL [10]. One of the
main concerns of Semantic Web researchers is building domain ontologies and
collect sufficient instances for them. Because building domain ontologies is not
an entertaining task, they are usually build by domain experts

In computer science, human-based computation is a technique in which a
computational process performs its function via outsourcing certain steps to hu-
mans [16]. In other words, there are some tasks that most humans can do easily,
but current computers can not perform them in a logical time (e.g. CAPTCHA
[13]).

Collective Intelligence is a form of intelligence that emerges from the collab-
oration and competition of many individuals [17]. This phenomenon has been
observed by many researchers for years. Among them, Pierre Levy [6] described
its potential for the internet technologies. He pointed out that rapid and open
data exchange would coordinate the intelligence in new unexpected ways.

In this paper we present a game called OntoPair which aims at harnessing the
benefits of the Collective Intelligence phenomenon to create ontologies. We show

how to create them by a number of human-human competitions. We describe
how computers should proceed and integrate the obtained results in a way that
leads us to obtain well-defined ontologies.

2 OntoPair Structure

OntoPair is a two- or one-player game which provides an interactive environ-
ment between anonymous players to play and build simple ontologies. The game
is based on traditional word guessing games [15] with some fixed templates which
have been carefully chosen to be translated into OWL by means of a media-
tor/mapper. The game is composed of two different phases which are separated
from each other, but the result of first phase is the input of next phase. Roughly
speaking, these two main phases can be called Collecting properties and Col-
lecting common sense facts about an object by means of some fixed templates.
The game is mainly for two players, but it can be also played in single mode.
The players do not know each other, they can not communicate, and they are
randomly paired. The game can be played in two main modes: graphic-based
and text-based. In the graphic mode, the players look at a same image and play,
whereas in the text mode, the players look at a same text-based word or keyword
and they play; e.g. in the graphic mode, the players may look at an image of a
car, a house or a bicycle, but in text mode, they will see the explicit words of
a car, a house, or a bicycle. In next sections, we describe each phase in a more
detailed manner.

2.1 Collecting Properties

In first phase of OntoPair, collecting properties, the main goal is collecting prop-
erties, components, and characteristics of a specified object. This phase is very
similar to ESP Game [7] and Google Image Labeler [5], but there exist several
cruicial differences. The main difference is that in ESP game or Google Image
Labeler, the players try to annotate an image and catch the objects that are
located in images, whereas in this phase of OntoPair, players play to catch the
properties and characteristics of a specific object in text-based or graphic-based
mode. The other main difference is that ESP game and Google Image Labeler
work only in graphic mode and text-based ESP game does not make sense;
whereas in OntoPair, as we mentioned earlier, the game can be played in both
graphic and text mode.

The graphic mode of this phase should be based on ESP game or Google
Image Labeler, as we need the explicit name of objects that are located in the
image. In other words, the result of ESP game or Google Image Labeler can be
used in this phase of graphic mode of OntoPair. In graphic mode of OntoPair,
the players will look at the same image and they have a hint which is actually
the name of one of the objects that is located in image and the players should
mention properties of that object and agree upon a property. In the text-based

mode, again both players will look at the same word which is fetched from a
database of objects.

The result of this phase is actually a collection of properties of different
objects. We store these properties in a data store and link them to the object.
To clarify what we are looking for, we give some hints to the players. These hints
are two general questions: What does an object X contain/have?, and Which
parts/components/characteristics does object X have?. in these templates, X is
replaced with the name of the object; e.g. What does a car contain? and Which
parts/components/characteristics does a car have?

One of key concepts in games is points. Games without points do not make
sense and players will lose their motivation to play after a while. In this phase of
the game, we also give points to the players. After agreement of the players upon
a property, both players get points and the game continues and shows another
image or text, depending on game’s mode. The game continues until one player
quits or time is up, as the game is played in time intervals. If one player quits
during the game, we try to find another player randomly. If it takes a long time,
as the number of players is not always even, the game can go through single
player version. The single player version is actually playing with a log file from
previous games with the same object. Actually we store all properties of an
object during each game. This will also help to evaluate the data source of the
properties. It is obvious that at startup of the game with an empty knowledge
base, the game can not be played in single player version and there should be
always an even number of players. To avoid the game being boring, the players
can skip current image/text and continue to see next random image/text, if the
players find an object boring and they can not agree upon a property.

It is obvious that there exist some properties in an object that most players
often mention, e.g. most players will say that a book has title or author, but
probably a few of them will say about ISBN, price, or publishing date. To fight
with these issues, we detect these often-used words and we prevent users to
mention such words again and again by indicating them as prohibited words.
The prohibited words which are assigned to the objects are calculated based on
the number of each property which has been mentioned in previous plays. There
is no doubt that a single object is played as long as the players are not able
to detect a new property in it and they always skip the object. The prohibited
words make the game more difficult, but more fun. The other advantage of
the prohibited words is that these words can be used as hints for players to
guess what information we are looking for as a property, part, characteristic, or
component.

As a concrete example, suppose that both players are looking at an image
of a book. They should play and mention the properties and different parts of
a book, one after the other. First player says title, the second player says au-
thor ; game continues: the first player says chapter, the second player says ISBN ;
game continues: the first player says publisher, the second player says title. At
this point, both players agreed upon title, so both players get points and the
game continues by showing another random image or word. It is obvious that

after several times of playing and putting common words to prohibited list, we
catch, say, a complete collection of book’s properties like author, chapter, ISBN,
publisher, etc.

2.2 Collecting Triples and Common Sense Facts

The second phase of OntoPair, collecting triples and common sense facts, is also
totally separated from the previous phase. Note that this phase is played by
different players which are not necessarily the same as players in the first phase.
The result of the first stage is used in this phase. Like the previous phase, there
are also two players in this phase, who do not know each other and they can
not communicate. The players are randomly paired. In this phase, we collect
some pieces of information which are called common sense facts about an object
by means of some fixed templates. Informally, a common-sense fact is a true
statement about the world that is known to most humans [8]: ”a book has one
title”, ”a human has two legs”, etc. As we mentioned earlier, collecting these
common sense facts is done through fixed templates and based partially on
properties that we have collected in the previous phase. This phase of OntoPair
is a word guessing game that one player (narrator) should guide the other player
(guesser) to guess a word which is actually the object that we are trying to find
some common sense facts about it. In other words, in this stage, an image or a
word is assigned to one player and he/she should complete pre-defined templates
to guide the next player to guess the word. As soon as one template is completed,
it will be sent to next player and as soon as the next player could come up with
the right word, both players get points, the role of players will switch and game
continues by showing another randomly-chosen image or word. These pre-defined
templates have been chosen for a purpose: To translate them simply into OWL
using a mediator/mapper. The explicit templates that we present to the players
are listed below:

– It has at least Y : The Y will be replaced by a list of real properties of
the item that comes actually from the knowledge base of properties that we
have collected in previous phase and the player can choose arbitrary property
from a combo box. Here we catch the minimum cardinality of the property,
if and only if it makes sense.

– It has at most Y : The Y will be replaced by a list of real properties of
the item that comes actually from the knowledge base of properties that we
have collected in previous phase and the player can choose arbitrary property
from a combo box. Here we catch the maximum cardinality of the property,
if and only if it makes sense.

– It is kind of : With this template, we catch hierarchical information of the
item.

– It could be either or (or more): From one perspective (see also next
template), this template provides different types of the item. The player can
extend this template by adding more items.

– It could be union of and (and more): From the other perspective (see
also previous template), this template provides different types of the item.
The player can extend this template by adding more items.

– It is complement of the : This template provides complement objects/-
concepts of the item.

– It is disjoint with (opposite of) : This template provides the objects/con-
cepts that are disjoint with the item.

– It is equivalent to the : This template provides equivalent objects/concepts
to the item.

Note that in this phase we have also the notion of prohibited statements.
Prohibited statements are actually those statements that most players decide to
choose first. we are not interested to collect these statements all time, so we do
not give the opportunity to the player (narrator) to use them.

However, the players should use these templates, as we build OWL ontologies
by aid of these templates, but we give also the option to the narrator to build
arbitrary sentences as well, if the templates can not be useful. These arbitrary
sentences will build comments for the generated ontology.

3 Generating OWL-based Ontology

In this section, we introduce the translation mechanism that we use to generate
OWL-based ontologies. The Ontology will be created for the object that the
players are playing, e.g. book, computer, car. After every play using an object
(item), we collect some common sense facts about that item and we can build
an ontology for that. The first iteration of generating ontologies is draft and can
not be considered as a complete ontology. In other words, the ontology is created
during several iterations and not at the first time.

3.1 Concepts

For the approved properties, i.e. the properties that their frequencies are more
than a threshold, a owl:class is generated. These classes are actually the transfor-
mation of properties into OWL representation using a mediator/mapper which
is simply able to generate classes and their properties. Suppose a domain like a
book : For every approved property or concept, a class and a link will be generated
to associate this class to main concept which in our example is a book. Figure 1
illustrates the mapping between some selected properties and their OWL repre-
sentations. As we mentioned earlier, the properties will be stored in a knowledge
base (KB) and as soon as they are mature enough to be linked, the mapper will
translate them into OWL and link them to the main concept. In the following
sections, we provide a more detailed description.

Fig. 1. Generating OWL for Properties Using a Mapper/Mediator

Pre-Refinement of Concepts (Refining Before Mediation). As we men-
tioned earlier, the concepts need to be refined. The refinement process is as
follows: Because a specific object can be played more than once, we assign a
counter to every object and the counter increases if the players are playing that
object. We call this counter objectCounter in which the word object will be re-
placed with the explicit name of the object. A counter is also assigned to every
property that the players agree upon that during the game and after further
agreement by other players, the counter increases. We call this counter object-
PropertyCounter which object will be replaced with the explicit name of the
object and property will be replaced with the explicit name of the property of
the object. The variance is defined for each property and is calculated by object-
Counter minus objectPropertyCounter. If the result is greater than threshold1,
the property will be moved to prohibited list, as many pairs agreed upon that
property and if it is less than threshold2, the property will be deleted, as only very
few pairs agreed upon that property. Note that, we do not care about uppercase
and lowercase of alphabetic letters. Listing 1.1 demonstrates the pseudocode of
this refinement.

Listing 1.1. Pseudocode of Refining Concepts
1 i f (ob je c t i s s e l e c t e d) then
2 objectCounter ++;
3
4 i f (objec tPrope rty i s s e l e c t ed) then
5 objectPropertyCounter ++;
6
7 var iance (obj ectProper ty) = objectCounter − objectPropertyCounter ;
8
9 i f (normal i ze (var iance (obje ctPrope rty)) > thr esho ld1) then

10 move obje ctPrope rty to p roh i b i t ed l i s t ;
11
12 i f (normal i ze (var iance (obje ctPrope rty)) < thr esho ld2) then
13 d e l e t e objec tPrope rty ;

Concept Mediator/Mapper. Concept mediator/mapper is simply a mapper
that gets the property or concept as input and generates OWL statements as
output. The OWL statement contains also the link that associates the property
to the main object. Figure 1 demonstrates some sample inputs and outputs of
the mediator/mapper. However, in this step, we do not have our ontology and
we have just gathered only properties and built their links. The ontology will be
created after gathering sufficient facts about the object.

Post-Refining (Refinement After Mediation). After generating OWL rep-
resentations of properties, they need also to be purified. Refining statements is
an iterative task and tries to build a summarized version of statements based on
resource URIs. Figure 2 demonstrates a sample of this post-refinement.

Fig. 2. Properties Refinement Sample

3.2 Statements

In the previous section, we presented the fixed templates that we use to gather
common sense facts about objects. As we mentioned, those templates were care-
fully chosen for two main purposes: First, to be able to be translated into OWL
using a mediator/mapper and second, to avoid the game being boring, as we need
to entertain players, instead of assigning tasks to them. Table 1 demonstrates the
general translation of templates. Note that &xsd; refers to XSD namespace which
is actually xmlns:xsd = ”http://www.w3.org/2001/XMLSchema#”. To avoid a
huge messy table, we decided to use acronyms.

Table 1: Templates and Their OWL Representations

Template Generated OWL
X has at least Y <owl:Restriction>

<owl:onProperty rdf:resource = ”#hasY” />

<owl:minCardinality rdf:datatype =

”&xsd;nonNegativeInteger”> some value

</owl:minCardinality>

</owl:Restriction>

X has at most Y <owl:Restriction>

<owl:onProperty rdf:resource = ”#hasY” />

<owl:maxCardinality rdf:datatype =

”&xsd;nonNegativeInteger”> some value

</owl:maxCardinality>

</owl:Restriction>

X is kind of <owl:Class rdf:ID = ”some value”/>

<rdfs:Class rdf:resource = ”#X”>

<rdfs:subClassOf rdf:resource = ”#some value”/>

</rdfs:Class>

X could be either or <owl:Class rdf:ID = ”some concept”/>

(or more) <owl:Class rdf:ID = ”other concept”/>

<owl:Class rdf:ID = ”more concept”/>

<owl:Class rdf:ID = ”X”>

<owl:intersectionOf rdf:parseType = ”Collection”>

<owl:Class rdf:about = ”#some concept”/>

<owl:Class rdf:about = ”#other concept”/>

<owl:Class rdf:about = ”#more concept”/>

</owl:intersectionOf>

</owl:Class>

X could be union of and <owl:Class rdf:ID = ”some concept”/>

(and more) <owl:Class rdf:ID = ”other concept”/>

<owl:Class rdf:ID = ”more concept”/>

<owl:Class rdf:ID = ”X”>

<owl:unionOf rdf:parseType = ”Collection”>

<owl:Class rdf:about = ”#some concept”/>

<owl:Class rdf:about = ”#other concept”/>

<owl:Class rdf:about = ”#more concept”/>

</owl:unionOf>

</owl:Class>

X is complement of <owl:Class rdf:ID = ”some concept”/>

<owl:Class rdf:ID = ”X”>

<owl:complementOf>

<owl:Class rdf:about = ”#some concept”/>

</owl:complementOf>

Continued on next page

Table 1 – continued from previous page
Template Generated OWL

</owl:Class>

X is disjoint with (opposite of) <owl:Class rdf:ID = ”some concept”/>

<owl:Class rdf:ID = ”X”>

<owl:disjointWith>

<owl:Class rdf:about = ”#some concept”/>

</owl:disjointWith>

</owl:Class>

X is equivalent to <owl:Class rdf:ID = ”some concept”/>

<owl:Class rdf:ID = ”X”>

<owl:equivalentClass>

<owl:Class rdf:about = ”#some concept”/>

</owl:equivalentClass>

</owl:Class>

Pre-Refinement of Statements (Refinement Before Mediation). The
main goal of Pre-Refinement is to select the statements that can be translated
into correct OWLs. The process is as follows: Like previous refinement, we assign
a counter to an object. we call this counter objectCounter2. We assign also a
counter to every instance of a template related to object. We call this counter
objectTInstanceCounter. We log all instances that will be sent to guesser. If the
instance was helpful and the guesser could guess the word correctly, we increase
the objectTInstanceCounter, but if the instance was not useful and the guesser
was not able to guess the word, we decrease the objectTInstanceCounter. We
compare the objectTInstanceCounter with some thresholds and then we decide
whether to keep, delete or move it into the prohibited list. Note that in this
refinement, we do not care about uppercase and lowercase of alphabetic letters.
Listing 1.2 demonstrates the pseudocode of this refinement.

Listing 1.2. Pseudocode of Refining Instances
1 i f (ob je c t i s s e l e c t e d) then
2 objectCounter2 ++;
3
4 i f (objec tTInstance was h e l p fu l) then
5 objectTInstanceCounter ++;
6 e l s e
7 objectTInstanceCounter −−;
8
9 var iance (obje ctTInstance) = objectCounter2 − objectTInstanceCounter ;

10
11 i f (normal i ze (var iance (objec tTInstance)) > thr esho ld3) then
12 move objec tTInstance to p roh i b i t ed l i s t ;
13 i f (normal i ze (var iance (objec tTInstance)) < thr esho ld4) then
14 d e l e t e objectTInstance ;

Statement Mediator/Mapper. Statement mediator/mapper is simply a map-
per that gets the template instance as input and generates OWL statements as
output. The OWL statements also contain all necessary links to the main object.

Table 1 demonstrates the OWL translation of some fixed templates. Note that
the italic words are those variable words that are used by the narrator.

Post-Refinement (Refinement After Mediation) and Ontology Assem-
bler. After generating OWL representations, they need to be purified. Refining
statements is an iterative task that tries to build a summarized version of state-
ments based on resource URIs. Figure 3 demonstrates a sample of statement
refinement.

As we mentioned earlier, the fixed templates are just highly-recommended
proposals to be used. If they are not helpful for the narrator to help the guesser,
he/she may simply use English sentences. As these sentences have no structure,
we keep them as comments for the ontology, if they were helpful for guesser.

Fig. 3. Statement Refinement Sample

After all these processes, the general assembler is able to merge these state-
ments and build the first version of the ontology. This is an iterative task and
the ontology will be completed after several plays. Every Ontology has a ver-
sion track using owl:versionInfo that enables us to keep the history of generated
ontologies. Figure 4 demonstrates the iterative life cycle of generating ontologies.

4 Experimental Results

To evaluate the quality of the generated ontologies, we have checked how they
change with an increasing number of rounds. To make our presentation feasible,
we have reduced the number of rounds to ten and the number of concepts to
two (tree and book).

In the first round (see Section 2.1), the properties color, height, and age were
collected for the word tree. After ten rounds, we additionally collected leaves and
species. The same test performed for the word book resulted in five properties:

Fig. 4. Iterative Life Cycle of Generating Ontologies

author, language, publisher, title, and year of publishing. Five more rounds gave us
additionally three more properties: number of pages, language and index. Tables
2 and 3 present the results that we have collected; we show both the words
that affected the created ontology and the words that were rejected. However,
the rejected words can become properties of the ontology, if we perform more
rounds.

By analyzing more and more examples, we noticed that the number of prop-
erties does not grow linearly with the number of rounds. Additionally, some of
the players were using plural versions of the words. This problem can be solved,
however, by using dictionaries. Moreover, the results provided by the native
speakers were much more accurate and they responded faster. We suggest using
the lists of forbidden words; such lists impose users, specially non-English-spoken
players, to use more and more sophisticated vocabularies, otherwise they stop
getting points at some time. Hence, they have to learn new vocabularies.

The next part of our experiment was to evaluate the second phase (see Section
2.2), in which each person was asked a set of questions related to the common
sense facts. Again we used the same words: tree and book. For the word tree,
there were just three questions that let the players to successfully complete a
round: it is a kind of a plant ; it has at least 1 height ; it could be either oak or
larch. Five more rounds introduced additionally two more facts to our knowledge
base: it is disjoint with animals ; and it has at least 1 root. The same example for
the word book resulted in three common sense facts in five rounds: it has at least
1 edition; it has at least 1 language; it could be either hard-copy or electronic.
Five more rounds resulted in two new statements: it has at least 1 author ; and
it has at least 1 title. Again we note that more and more rounds are necessary
to improve the quality of the ontologies.

Table 2: Results of Phase 1: Tree

Rounds Accepted Words Rejected Words
5 Color, Height, Age Bark, Animals, Location, Kind, Fruit,

Root, Branches, Green, Flower, Species,

Width, Status, Leaves Falling, Seeds,

Continued on next page

Table 2 – continued from previous page
Rounds Accepted Words Rejected Words

Kind

10 Color, Height, Age, Bark, Animals, Location, Kind, Fruit,

Leaves, Species Root, Branches, Green, Flower, Width,

Status, Type, Name, Leaves Falling,

Seeds, Kind

Table 3: Results of Phase 1: Book

Rounds Accepted Words Rejected Words
5 Author, Language, Pages, Chapters, Words, Paragraph, Index,

Publisher, title, Foreword, Thickness, audience age, ISBN,

year of publishing Wtext, abstract, color

10 Author, Language, Pages, Chapters, Words, Paragraph, Index,

Publisher, title, Foreword, Thickness, audience age, ISBN,

year of publishing, text, abstract, color, cover type, domain

number of pages,

publishing, Language

5 Discussions

The aim of the OntoPair game is to build simple ontologies for different objects
that are located in images or even text-based objects in a short time. Our main
concern is that the game should be entertaining to encourage people to play it.
For this reason, we should avoid complex domains to be played. Some compli-
cated concepts like business categorizations can be out of scope of this game, as
these complicated domains may make the game boring and players will not come
back again. The other point is that the generated ontologies may not contain
all information regarding a domain, as the players are very ordinary people and
not from Semantic Web domain. This is the main advantage of the game, as it
cleverly uses people from different domains to help the Semantic Web domain
experts and scientists. However, we believe that ontologies will be complicated
after each play.

Even though we proposed that the players should be randomly paired, there
exist some cheating potentials; players could agree to login at the same time
to be paired together and maliciously annotate the objects. To avoid this case,
based on previous plays, at some random times, we propose presenting specific
images or texts that we know exactly the properties of objects in them and if
we notice that the players are not playing honestly, we let them play as long

as they want. The same solution is foreseen for second phase of the game. As
we mentioned, to increase certainty, we only assign properties and statements
to objects, if and only if a certain amount of players agreed upon that. As an
example, if only two players agreed upon a car has wing among other players, we
give a low ranking to wing and after filtering the properties using a threshold,
we omit the wing.

Statistics and our experiences show that word guessing games are played by
many people as these games are entertaining. Many people from non-English
speaking countries play these game to improve their English.

For evaluating the generated ontologies, the game can be played in single
mode and the single player will play against already-generated ontologies. If
generated ontologies contain sufficient knowledge, the guesser should be able to
guess the correct words, otherwise a low ranking will be assigned to the generated
ontology. The other approach towards evaluating OntoPair is comparing the
generated ontologies with ontologies that have been created by domain experts;
e.g. we can compare two ontologies for a domain like book, one from OntoPair
repository and the other which has been generated by hand.

6 Related Works

In [11], the authors present an approach for building ontologies using a game
called OntoGame. They use Wikipedia articles as conceptual entities, present
them to the players, and have the users judge the ontological nature and find a
common abstractions for a given entry [11]. Our approach is different, as we do
not build a tree structure for objects. In two phases, we gather properties and
cardinalities plus different instances of an object.

There exist also some efforts towards building a knowledge base by means of
computer-based games. These games have been designed mostly for two players.
The ESP game [7] tries to annotate images by enforcing players to come up with
the exact objects located in images. Peekaboom [9] is another game which tries
to come up with approximate location of objects in an image. Verbosity [8] is a
word guessing game which composes of two players: narrator and guesser; The
former should guide the latter to come up with the word that he is looking for
by using some fixed templates for this purpose. Common Consensus [4] is very
similar to Verbosity [8], but it has its own templates which begin mostly with
Wh* questions. Phetch [12] is another game which is composed of two players:
narrator and guesser; the narrator should give guesser some keywords to help
him/her to select the right image from a list of images. In other words, Phetch’s
main goal is finding a specific image in a bunch of similar images.

There exist also some other efforts in this general direction mostly for de-
signing single player games. Labelme [2] is one example which assigns you an
image for annotation. Cyc 1 is an artificial intelligence project that attempts
to assemble a comprehensive ontology and database of everyday common sense

1 http://www.cyc.com/

knowledge, with the goal of enabling AI applications to perform human-like rea-
soning [14]. Cyc offers a web-based game called FACTory 2 which gives the single
player several sophisticated common sense facts regarding different domains and
the player should mark them as true or false statements in a short time period.

At the beginning of 1980s Wille [18] initiated his work on a theory known
as Formal Concept Analysis. The aim of the theory is to analysis data and
identify conceptual structures among data sets. This work rapidly expanded
several years later and has been successfully applied for some specific domains,
e.g. bio-medicine [1]. However, such an approach often requires domain experts
to approve the results.

7 Conclusion and Future Works

We have presented our work towards OntoPair, a game that uses Collective In-
telligence for building OWL-based ontologies. OntoPair collects properties and
common sense facts about an object in an entertaining environment and builds
simple domain ontologies. We described how players should compete and how
computers should process and integrate results. We also performed a simple
experiment showing now our knowledge base grows. Our prototype implemen-
tation is still being implemented3 and it needs some work in the data and user
management areas. Moreover, the future work will include a reputation model
that will give more impact to users who are given high esteem. Linking different
ontologies together can be also considered as next phase. As an example, if we
build an ontology for a wheel, and we have a common sense fact indicating that
a car has wheel, we may link the car and wheel ontologies. Furthermore, we
would like to perform more experiments to research how long would it take for
a domain expert and ontology engineer to build an equivalent ontology. We also
would like to test OntoPair in more specific domains.

Acknowledgments. The authors would like to thank Dr. Axel Polleres for his
valuable comments. This work is partially supported by Ecospace (Integrated
Project on eProfessional Collaboration Space) project: FP6-IST-5-35208, Lion
project supported by Science Foundation Ireland under Grant No. SFI/02/CE1/I-
131, and Enterprise Ireland under Grant No. *ILP/05/203*.

References

1. Franz Baader, Bernhard Ganter, Baris Sertkaya, and Ulrike Sattler. Completing
description logic knowledge bases using formal concept analysis. In Manuela M.
Veloso, editor, IJCAI, pages 230–235, 2007.

2. Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and William T. Freeman.
LabelMe: a database and web-based tool for image annotation. In MIT AI Lab
Memo AIM-2005-025, 2005.

2 http://207.207.9.186/
3 http://sourceforge.net/projects/OntoPair

3. Dan Brickley and R.V. Guha. Resource Description Framework (RDF) Schema
Specification. http://www.w3.org/TR/rdf-schema/, February 2004.

4. Henry Lieberman, Dustin Smith, and Alea Teeters. Common Consensus: A Web-
based Game for Collecting Commonsense Goals. In Workshop on Common Sense
for Intelligent Interfaces, ACM International Conference on Intelligent User In-
terfaces (IUI-07), Honolulu, Hawaii, USA, 2007. ACM Press.

5. Google Inc. Google Image Labeler. http://images.google.com/imagelabeler/, 2007.
Online; accessed 3-May-2007.

6. Pierre Levy. Collective Intelligence. Plenum Publishing Corporation, January 1997.
7. Luis von Ahn, and Laura Dabbish. Labeling images with a computer game. In CHI

’04: Proceedings of the 2004 conference on Human factors in computing systems,
pages 319–326. ACM Press, 2004.

8. Luis von Ahn, Mihir Kedia, and Manuel Blum. Verbosity: a game for collecting
common-sense facts. In CHI ’06: Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 75–78, New York, NY, USA, 2006. ACM
Press.

9. Luis von Ahn, Ruoran Liu, and Manuel Blum. Peekaboom: a game for locating
objects in images. In CHI ’06: Proceedings of the SIGCHI conference on Human
Factors in computing systems, pages 55–64, New York, NY, USA, 2006. ACM
Press.

10. Sean Bechhofer, and Frank van Harmelen, and Jim Hendler, and Ian Horrocks,
and Deborah L. McGuinness, and Peter F. Patel-Schneider, and Lynn Andrea
Stein. OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-
ref/, February 2004. Online; accessed 2-May-2007.

11. Siorpaes Katharina, and Martin Hepp. OntoGame: Towards Overcoming the In-
centive Bottleneck in Ontology Building. In 3rd International IFIP Workshop On
Semantic Web and Web Semantics (SWWS ’07), co-located with OTM Federated
Conferences, Vilamoura, Portugal, pages 1222–1232, 2007.

12. Luis von Ahn, Shiry Ginosar, Mihir Kedia, Ruoran Liu, and Manuel Blum. Im-
proving accessibility of the web with a computer game. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in computing systems, pages 79–82,
New York, NY, USA, 2006. ACM Press.

13. Wikipedia. Captcha — wikipedia, the free encyclopedia, 2007. [Online; accessed
14-December-2007].

14. Wikipedia. Cyc — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Cyc&oldid=125786119, 2007. [On-
line; accessed 7-May-2007].

15. Wikipedia. Guessing game — wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Guessing game&oldid=116214370,
2007. Online; accessed 6-May-2007.

16. Wikipedia. Human-based computation — wikipedia, the free
encyclopedia. http://en.wikipedia.org/w/index.php?title=Human-
based computation&oldid=122965665, 2007. [Online; accessed 7-May-2007].

17. Wikipedia. Collective intelligence — wikipedia, the free encyclopedia, 2008. [On-
line; accessed 17-March-2008].

18. R. Wille. Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In Ordered Setsand in I. Rivals (Ed.), volume 23, 1982.

