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Abstract
We propose a novel unsupervised model for micro-gesture classification, called MSTCN-VAE, which follows the VAE structure
by adding the Multi-scale TCN and hidden feature extraction block to the encoder, and the decoder is embedded with
the Temporal Deconvolution block. The MSTCN-VAE model collects more temporal information from the input action
sequences due to the advanced time series information integration method and thus exhibits better classification performance.
By evaluation of the iMiGUE dataset, our approach outperforms the current state-of-the-art unsupervised methods in
micro-gesture classification and is comparable to the accuracy of slightly earlier supervised models. Also, we validate the
effectiveness of our model on the SMG dataset.
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1. Introduction
The recognition of human gestures and actions plays a

crucial role in various domains, ranging from human-
computer interaction [1][2][3] to video surveillance
[4][5][6] and robotics [7][8][9][10]. Over the years, there
has been significant progress in the field of skeleton-
based action recognition [11][12], where the skeletal rep-
resentation of human body movements is utilized for
analyzing and understanding human gestures. Skeleton-
based approaches [13][14][15] offer a compact and in-
formative representation that captures the spatial and
temporal dynamics of human actions, enabling the effi-
cient processing of gestures and facilitating the extrac-
tion of relevant features for recognition tasks. While
skeleton-based action recognition has achieved remark-
able success, there is a growing interest in exploring
micro-gesture recognition, which focuses on recognizing
subtle and fine-grained hand movements. Micro-gestures
are characterized by intricate hand poses and subtle tem-
poral variations, making them challenging to capture and
understand. To address this research frontier, manymeth-
ods have been proposed. In supervised micro-gesture
recognition, approaches like deep learning-based convo-
lutional neural networks (CNNs) [16][17] and attention
convolutional networks [18] have been widely employed.
On the other hand, unsupervised methods aim to learn
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representations or discover patterns from unlabeled or
weakly labeled data. Some articles explore techniques
such as hidden Markov models [19], sparse coding [20] ,
and local temporal features [21]. Unsupervised methods
play a crucial role in scenarios where annotated training
data is scarce or unavailable, allowing for the discovery of
meaningful micro-gesture representations directly from
raw data.

Micro-gesture recognition networks in themainstream
are predominantly supervised [22][23], relying on labeled
data for training. However, collecting micro-gesture
datasets presents challenges due to the difficulty of cap-
turing and annotating subtle hand movements. This pro-
cess often results in multiple labels for the same sample,
introducing ambiguity. To address the limitations of su-
pervised methods, researchers have explored unsuper-
vised approaches for micro-gesture datasets. One notable
method is Predict & Cluster framework [24], which pro-
vides a way to automatically recognize actions from skele-
tal data with the special form of GRU and shows promis-
ing results on multiple benchmark datasets. Another one
is unsupervised S-VAE (U-S-VAE) [25], which indicates
the effectiveness of using multi-layer BLSTM to extract
information from a skeleton-based dataset. These studies
highlight the significance of temporal modeling and la-
tent space representations in unsupervised micro-gesture
recognition. However, both GRU (Gated Recurrent Unit)
[26] and LSTM (Long Short-Term Memory) [27] have cer-
tain limitations because of the computational complexity
and limited time information integration when it comes
to effectively modeling long-term dependencies and in-
tegrating time information. These limitations have led
to the development of alternative architectures like TCN
(Temporal Convolutional Network) [28], which benefits
from the inherent parallelism of convolutional operations
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and the ability to increase the receptive field exponen-
tially with depth to learn patterns over extended time
horizons and the stability of gradient. These qualities
make TCN a promising alternative for tasks involving
time series data.

To address these issues, an innovative unsupervised
network model for gesture classification is proposed in
this paper. The network is based on a VAE structure [29]
using a temporal convolutional network (TCN) [28] and
a multiscale temporal convolutional network (MSTCN)
as the encoder and a TDCN (Temporal Deconvolutional
Network) as the decoder. By conducting experiments
on the original skeleton data as well as on the data after
extraction of angular information, we demonstrate the
advantages of the model, such as label dependence on the
dataset and capturing the hidden feature vectors that are
crucial for micro-gesture classification. Different variants
of our network are evaluated on the now popular micro-
gesture dataset iMiGUE [25] and compared with state-
of-the-art supervised unsupervised methods. The wide
applicability of the network is validated on the SMG
dataset [30]. The potential of our approach in advancing
skeleton-based micro-gesture recognition and further
improving human-computer interaction is highlighted.

2. Related Work
Skeleton-based action recognition has been a growing

area of focus in computer vision research. The related
works broadly cover methodologies from hand-crafted
features to deep learning models.

An early approach [31], in which a skeleton-based rep-
resentation called Actionlet Ensemble is used for action
recognition. It identifies and groups related parts of the
skeletons that form meaningful sub-actions, termed Ac-
tionlets. The advent of deep learning has significantly im-
proved the performance of skeleton-based action recogni-
tion. Additionally, a hierarchical RNN [32] was proposed
for skeleton-based recognition. The model hierarchically
constructs five parts of the body and then connects them
in a temporal recurrent layer. More recent works leverage
attention mechanisms to focus on discriminative joints
or frames. Moreover, an attention mechanism in Long
Short-Term Memory (LSTM) networks [33] is proposed,
which can selectively focus on informative joints in the
skeleton.

Although there are already many excellent supervised
skeleton-based methods to recognize, these methods rely
on labels that we have made. Manual annotation not only
requires a lot of manpower and financial resources, and
accuracy cannot be guaranteed. If we take a supervised
approach, we must classify this set of actions into the
types of actions we already know, and there may be
some kinds we can’t discern. Besides, when we train a

supervised neural network, we can only use data that we
have labeled, and more unmarked data will be wasted.
The unsupervised method based on skeleton data has

come into view to conquer the aforementioned prob-
lems. Graph convolutional neural networks are widely
used in graph correlation recognition [34][35], but action
recognition depends on long-term information. Most of
the frameworks are based on recurrent neural networks
(RNNs), convolutional neural networks (CNNs), or graph-
based CNNs. Employing methods directly tends to ignore
the most important information in action recognition,
which includes the interrelationship and timing of the
movements. Different from the above framework, a novel
model-aware gesture-to-gesture translation method is
proposed, which presents novel approaches, called Self-
Attention Network (SAN) [36]. Furthermore, a Focal
and Global Spatial-Temporal Transformer network (FG-
STFormer)[37].

Different from the previous form of network opti-
mization, a new unsupervised model [24] is based on
an encoder-decoder system. The encoder is responsible
for feature extraction from the original data to obtain a
feature vector that can be separated. The decoder needs
to restore the extracted features to the original action
sequence. They set up an evaluation system to measure
the difference between the original data and the restored
data. The cluster used the intermediate feature vectors
generated by the encoder. Specifically, the encoder is a
multi-layered bidirectional Gated Recurrent Unit (GRU)
and the decoder is a uni-directional GRU. Afterward, an-
other structure U-S-VAE [25], which is different from
[5] in that BLSTM is used instead of BI-GRU. Our struc-
ture is also similar to several approaches [24][25]. The
encoder-decoder system is also a vital part of our network
structure. We adopt the hidden representation from the
encoder as our classification feature vector. Furthermore,
we incorporated TCN and multi-scale TCN in the en-
coder to integrate temporal information. In addition, due
to the excellent performance of deconvolutional neural
networks in GAN networks for data generation [38], we
embedded TDCN (temporal deconvolutional network) in
the decoder.

3. Methods

3.1. Preliminary
Data angle information extraction: The skeleton

data is a sequence 𝑋 3𝐾
𝑇 of T frames, and each frame is the

2D location information and confidence about the K-th
joints node:

𝑋 3𝐾
𝑇 = {𝑥1, 𝑥2, ...𝑥𝑡, ..., 𝑥𝑇}

𝑥𝑡 = {𝑥1𝑡 , 𝑦1𝑡 , 𝑐1𝑡 , 𝑥2𝑡 , 𝑦2𝑡 , 𝑐2𝑡 , … , 𝑥𝐾𝑡 , 𝑦𝐾𝑡 , 𝑐𝐾𝑡 }



Figure 1: BLocks for MSTCN-VAE model and TCN-VAE model. ‘TCN’ and ‘TDCN’ denotes temporal convolutional blocks and
temporal deconvolutional blocks, respectively. N, M, C, T, V represents batch size, number of people per frame, number of
channels in the data set, frame length after downsampling, number of joints.

Where 𝑐𝑘𝑡 is the confidence of the 2D location information
(𝑥1𝑡 , 𝑦1𝑡 ), which is about the k-th joints node in the t frame.

To overcome the difference in the position information
of the character in the view, we choose to use Angle in-
formation instead of the original 2D Cartesian coordinate
data.The Angel data is a sequence 𝑋 2𝐴

𝑇 of T frames, and
each frame is the angular formation of three nodes in
sequence and confidence:

𝑋 2𝐴
𝑇 = {𝑥1, 𝑥2, ...𝑥𝑡, ..., 𝑥𝑇}

𝑥𝑡 = {𝑎1𝑡 , 𝑐1𝑡 , 𝑎2𝑡 , 𝑐2𝑡 , ..., 𝑎𝐴𝑡 , 𝑐𝐴𝑡 }

Where 𝑐𝑖𝑡 is the confidence of 𝑎𝑖𝑡 .𝑇 ℎ𝑒𝐴𝑛𝑔𝑙𝑒 is the order of
the three adjacent nodes (e.g., right shoulder, right elbow,
right hand). To deal with the unity of left and right angles,
we take counterclockwise or clockwise angles on both
sides (for example, the angles of the right shoulder, right
elbow, and right hand is counterclockwise, and the angles
of the left hand, left elbow and left hand is clockwise).

While we use the angular information,we should note
that we can no longer convert Angle data to coordination
data.Therefore, when this transformation happens, we
lose some information that we can’t be sure of useful.So
we propose two data supplement solutions.Both methods
add distance information to the original Angle data.The
first is the distance from the center of the Angle to the
center of the body, which is the shoulder center, and
the other is the length of the second side formed by the
Angle.

𝑋 3𝐴
𝑇 = {𝑥1, 𝑥2, … 𝑥𝑡, … , 𝑥𝑇}

𝑥𝑡 = {𝑎1𝑡 , 𝑑1𝑡 , 𝑐1𝑡 , 𝑎2𝑡 , 𝑑2𝑡 , 𝑐2𝑡 , … , 𝑎𝐴𝑡 , 𝑑𝐴𝑡 , 𝑐𝐴𝑡 }

For the sake of convenience in the later part of this
paper, we will refer to the data extracted from the angle
information as AE data, while the data in the dataset that
has not been changed in any way, i.e. original skeleton
data, will be referred to as OS data.

3.2. Model Architecture
MSTCN-VAE network structure: The advantage of

unsupervised methods over fully supervised methods is
that they do not require manually labeled data. In this pa-
per, referring to the VAE unsupervised model proposed
by previous researchers [25][24], an encoder-decoder
model is introduced to learn unlabeled micro-gesture
sequence data (key points-based or angle-information-
extracted). However, compared to existing unsupervised
models our network has the following key differences:
1) We put TCN and Multi-scale TCN (MSTCN) into the
encoder for integration of temporal information, respec-
tively. This is because TCN has been shown to have
better integration of temporal information compared to
RNNs, LSTMs, and GRUs [39]. Also, MSTCN will collect
more information than TCN due to the joint effect of
different size receptive fields [40]. 2) We embed a tem-
poral deconvolutional network module in the decoder
to generate an initial sequence of gesture actions based
on hidden features. On the one hand, deconvolutional
neural networks are widely used in Generative adversar-
ial networks to generate data [41],[42], and on the other



Figure 2: Overview of TCN-VAE and MSTCN-VAE model.

hand to use operations in the decoder similar to those
in the encoder as a way to better generate the original
micro-gesture sequence data. In terms of the loss func-
tion, similar to U-S-VAE [25] we use a linear combination
of 𝐿𝑟 and 𝐿𝑘 as the plausible loss. 𝐿𝑟 computes the MSE
loss between the decoder-generated vector and the input
vector, and this term aims to make the decoder-generated
result as similar as possible to the input action sequence
data. 𝐿𝑘 computes the Kullback-Leibler (KL) divergence,
and the KL divergence norm term is to ensure a closer
approximation to the joint distribution and the product of
the marginals, i.e. makes the encoder-generated hidden
variables conform to the standard normal distribution as
much as possible.

Hidden feature vector clustering: A vital feature
in our network architecture is that we use two fully con-
nected layers after multi-scale convolution in the tempo-
ral dimension and use this to form feature clusters. In
other words, the feature clusters consist of hidden fea-
tures integrated by temporal convolution [43]. Such a
strategy is effective and promising when unsupervised
methods are used for clustering multidimensional se-
quences, such as in body and gesture junction sequences
[44][25]. It has been experimented with and displayed
that fully connected layers are extensively applicable to
RNN architectures [24], and in our demonstration, it can
be found that fully connected layers under VAE struc-
tures will also help temporal convolution extract hidden
features to some extent. Therefore, we put a hidden fea-
ture extraction (HFE) block which consists of two fully
connected layers into the end of the encoder to extract
the multi-nodal temporal information after MSTCN in-
tegration. In this way, we implement a codec system,
called Multi-Scale Temporal Convolutional variational
autoencoder (MSTCN-VAE), in which the original time
series is input to the encoder and the encoder passes the
low-dimensional hidden feature vectors to the decoder.

MSTCN-VAE Motion Prediction: Our proposed
MSTCN-VAE network framework is depicted in detail in
Figure 1 and Figure 2. A four-dimensional data 𝑋 of the
shape (𝑁 ⋅ 𝑀, 𝐶, 𝑇 , 𝑉 ), where 𝑁 is equal to the size of the
batch size, 𝑀 represents the number of people in each
frame, 𝐶 represents the number of channels, 𝑇 represents
the frame length of each action sample, and 𝑉 represents
the number of human features in each frame. It is impor-
tant to clarify that 𝐶 = 3 in OS data and consists of the
x-coordinate and y-coordinate of the joint point and the
confidence level of that point, and 𝐶 = 3 in AE data and
consists of the angle value of the pinch angle, the length
of the line segment of the corresponding joint point, and
the corresponding confidence level. 𝑋 is first extracted by
the MSTCN module of the encoder with different scales
of convolutional kernels for temporal information, and
then the data is stitched according to the 𝐶 dimension
for data stitching and then shaped into (𝑁 ⋅ 𝑀, 𝐶′ ⋅ 𝑇 ⋅ 𝑉 )
data (𝐶′ represents the size of 𝐶 dimension after stitch-
ing). Subsequently, a HFE block consisting of two fully
connected layers performs dimensionality reduction on
this data, reducing the computational effort for clustering
while not losing information as much as possible. For
the dimensionality reduction, the data is then shaped
into (𝑁 ⋅ 𝑀, 𝐶, 𝑇 ⋅ 𝑉 ) three-dimensional data 𝑋̃ after the
deconvolution module and the initial time series data 𝑋
which reshaped as (𝑁 ⋅ 𝑀, 𝐶, 𝑇 ⋅ 𝑉 ) is used to calculate
the Loss value by 𝐿 = 𝐿𝑟 + 𝜆 ⋅ 𝐿𝑘, where 𝐿𝑟 = ‖𝑋 − 𝑋̃ ‖2, 𝜆
is used to describe the weight of the kl-divergence loss.

3.3. Classification methods
Unsupervised K-nearest neighbors classifier: In

order to evaluate our action classification effect more
explicitly, for the hidden feature vectors generated by
the encoder, we use the K-nearest neighbors classifier
(KNN). In other words, all the sequence data in the train-
ing set are forward propagated in the current training



network to obtain the hidden feature vectors of all the
training data when calculating the accuracy, and this is
used to form the KNN classification space. After the same
forward propagation for each sample in the test set, the
KD-tree algorithm is used to quickly search for the neigh-
boring samples in the just-formed classification space.
It is worth noting that although the composition of the
KNN classification space uses the labels of the training
set, the labels are only used to assign categories and are
not involved in model training.

Supervised random forest classifier: The super-
vised classification method was used to evaluate the
performance of our model from multiple perspectives.
Specifically, for the hidden feature vector generated by
the encoder, we put it into a Random Forest classifier (RF
classifier). All training sets are also forward propagated
under the current network to obtain the hidden feature
vectors. The RF classifier is used to fit these vectors and
the accuracy is calculated on the test data after forward
propagation in the evaluation phase. It is important to
clarify that since the RF classifier uses the label informa-
tion to form the classification space, the model at this
point belongs to the supervised network.

4. Experiment

4.1. Dataset
iMiGUE: iMiGUE dataset [25] focuses on unconscious

micro-gesture movements without identity information.
The dataset uses the OpenPose video dataset [45] ges-
ture estimation toolbox to extract 18499 action samples
from 359 post-race press conference videos, which are
categorized into 31 micro-gesture action categories as
well as one non-micro-gesture category. Each frame of
the skeleton map consists of V = 22 upper body joints as
nodes, and the coordinates of each point consist of data in
three dimensions: two-dimensional spatial coordinates
and prediction confidence scores. In MiGA Workshop
& Challenge 2023, the entire dataset was divided into a
training dataset consisting of 13670 samples and a test
dataset consisting of 4562 samples.

SMG: SMG dataset [30] is a novel spontaneous micro-
gesture dataset. From 414 long video instances con-
taining 40 participants, the SMG dataset extracted 3712
micro-gesture action clips, where the average length of
these clips was 51.3 frames, and labeled them with 16
micro-gesture action categories as well as one non-micro-
gesture category. Based on the authors’ suggestion, we
evaluated our proposed model with 610 test samples in
the body skeleton data model of this dataset. Following
the convention of some articles [46] [47], we show the
accuracy of Top1 and Top5 on this dataset.

iMiGUE dataset
Methods Top1 Top5
S-VAE 27.38 60.44
ST-GCN 46.97 84.09
Shift-GCN 51.51 88.18
MS_G3D 54.91 89.98

TCN_VAE(with RFC)
(OS data)(Our ) 39.11 48.55

MSTCN_VAE(with RFC)
(OS data)(Our ) 41.23 51.64

MSTCN_VAE(with RFC)
(AE data)(Our ) 35.73 45.20

Super-
vised

MSTCN_VAE(with RFC)
(AE data + OS data)(Our ) 47.69 56.36

P&C 31.67 64.93
U-S-VAE 32.43 64.30

TCN_VAE (with out HFE)
(OS data) (Our ) 24.44 39.54

TCN_VAE
(OS data)(Our ) 28.50 44.91

MSTCN_VAE
(OS data)(Our ) 30.84 45.22

Unsuper-
vised

MSTCN_VAE
(AE data + OS data)(Our ) 35.38 50.07

Table 1
Comparison of micro-gesture recognition accuracy (%) with
state-of-the-art algorithms on the iMiGUE dataset (best super-
vised method: Black with bold, best unsupervised method:
Blue with bold). HFE and RFC denotes hidden feature ex-
traction block and random forest classifier.

SMG dataset
Methods Top1 Top5
ST-GCN 41.48 86.07
Shift-GCN 55.31 87.34
MS_G3D 64.75 91.48Super-

vised MSTCN_VAE(with RFC)
(OS data)(Our ) 42.59 49.54

Unsuper-
vised

MSTCN_VAE(OS data)
(Our ) 30.06 45.28

Table 2
Validation on the SMG dataset and Comparison with currently
known methods(best supervised method: Black with bold,
best unsupervised method: Blue with bold).RFC denotes
random forest classifier.

4.2. Implementation Details
To train the network, each action sample was down-

sampled by up to 100 frames. The joint point data in each
skeleton map were also normalized. For the optimiza-
tion hyperparameters, unless otherwise stated, all models
were optimizer: SGD, batch size: 32, an initial learning
rate: 0.0001, epoch: 200, LR decay rate: 0.1, LR decay step:



(100, 150). By random hyperparametric grid search, 1) for
the encoder that only uses TCN blocks, setting the follow-
ing network structure: Encoder: using one TCN block,
each of which convolves T-dimension into 75, 50, 25, and
1, Gradually; Decoder: by one TDCN block, which de-
convolutes T-dimension of sizes 50 and 100, Gradually.
2) for the encoder that uses TCN block and HFE block,
the following network structure is set: Encoder: consists
of one TCN block and one HFE block, TCN block con-
volves T-dimension into 75, 50, 25, 1, Gradually; Decoder:
one TDCN block, deconvolutes T-dimension into 50, 100,
Gradually. 3) For the encoder using one MSTCN block
and HFE, the following network structure is set: Encoder:
similar to the setting for MSTCN blocks [48], utilizing
one MSTCN block and one HFE block; Decoder: consists
of one TDCN block, which deconvolutes the T-dimension
into 50, 100, Gradually.

For the above 1) and 2) models, the hidden feature
vectors used for classification are all 66-dimensional,
and for the 3) model, the hidden feature vectors are 128-
dimensional. In order to avoid gradient explosion dur-
ing the training process, gradient truncation will be per-
formed when the maximum norm is greater than 10. In
calculating the loss and performing backpropagation, we
found that the overall training effect of the model was
best when the value of λ in the loss function was 0.8 after
several experiments. For the iMiGUE dataset, both the
original skeleton data and the pre-processed data with
the above angular information were input to the model
to demonstrate the improvement of the model accuracy
with the new data. However, for the SMG dataset, we
only validated the effectiveness of our model on the raw
skeleton data.

In the model evaluation session, for our different
MSTCN-VAE variants (a combination of the methods
described in Section 3.2), Top1 accuracy and Top5 accu-
racy are calculated uniformly using k=1 under the KNN
classifier and k=1, 2, 3, 4, 5 combined, and random_state
=1 under the Random forest classifier Top1 accuracy and
random_state =1, 2, 3, 4, 5 are used to calculate Top5
accuracy. In the top5 calculation, for the classification
results under five different parameters of the classifier,
the prediction is considered correct as long as it contains
the correct category. All experiments are based on an
RTX 3080 (10GB) GPU and a 12 vCPU Intel(R) Xeon(R)
Platinum 8255C CPU for training and evaluation.

4.3. Evaluation and Comparison
State-of-the-art supervised and unsupervised action

recognition methods based on skeleton data have been
applied to the iMiGUE dataset and the SMG dataset, e.g.
[48],[49],[50],[51],[24],[25]. To highlight the advantages
of our model, the above methods and the detailed ac-
curacy of our method on these two data are presented

comparatively in table 1 and table 2.
In table 1, first, compared between different MSTCN-

VAE variants. We find that the hidden feature extraction
block has about 3% improvement in the accuracy of the
model, and Multi-scale has a 7% positive impact on the
model. AE data has a negative impact on the model com-
pared to OS data, but when AE data and OS data are
judged together it brings a 4% improvement. In addition,
the application of supervised classification in the VAE
network structure brings a significant 10% increase in the
model. Second, compared to supervised algorithms that
are also based on skeleton recognition, our supervised
model is at a considerable disadvantage since the graph
connectivity property in the skeleton data is not taken
into account. It is worth mentioning that for the super-
vised algorithm S-VAE, which also does not consider this
property, our model has a considerable improvement in
prediction. Finally, compared to similar unsupervised
algorithms, the use of temporal convolution gives better
classification results for skeleton-based data under the
encoder-decoder system. However, since the process of
calculating the Top5 of P&C and U-S-VAE in article [25]
is ambiguous, this leads to the accuracy of our top5 and
the top5 of the two models mentioned above not being
directly comparable.

Of course, by validating the results on the SMG dataset
in table 2, it can be found that the supervised and unsu-
pervised MSTCN-VAE models are equally effective for
other micro-gesture datasets. It is worth noting that our
approach is the first to use a completely unsupervised
temporal convolution method in skeleton-based recog-
nition, and the results validate the effectiveness of our
approach.

5. Conclusion
In this paper, we propose a novel skeleton-based micro-

gesture recognition method. Our model connects a multi-
scale temporal convolutional network with a hidden fea-
ture extraction block as an encoder to aggregate out hid-
den feature vectors and uses a temporal deconvolutional
network in the decoder to generate action sequences from
the hidden feature vectors. Through experiments on the
iMiGUE dataset, we continuously improve and demon-
strate the improvement of the MSTCN-VAE model over
previous unsupervised methods, in addition to validation
on the SMG dataset to further illustrate the effectiveness
of our model.
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