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Abstract
Recent advances in deep learning and data-driven approaches have facilitated the perception and com-
prehension of objects and their environments in a perceptual subsymbolic manner. Consequently, these
autonomous systems can now perform tasks such as object detection, sensor data fusion, and language
understanding. However, there is an increasing demand to further enhance these systems to attain a more
conceptual and symbolic understanding of objects and their environments and acquire the underlying
reasoning behind the learned tasks. Achieving this level of powerful artificial intelligence necessitates
considering both explicit teachings provided by humans (e.g., describing a situation or explaining how
to act) and implicit teaching obtained through observing human behavior (e.g., through the system’s
sensors). Hence, it is imperative to incorporate symbolic and subsymbolic learning approaches to support
implicit and explicit interaction models. This integration enables the system to achieve multimodal input
and output capabilities. In this extended abstract, we argue for considering these input types, along with
human-in-the-loop and incremental learning techniques, to advance the field of artificial intelligence
and enable autonomous systems to emulate human learning. We propose several hypotheses and design
guidelines aimed at achieving this objective.
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1. Introduction and Related Work

Human-centered artificial intelligence (HCAI) is an exciting new area of research that is attract-
ing increasing attention from researchers of both artificial intelligence (AI) and human-computer
interaction (HCI) [1, 2, 3, 4]. Despite the significant progress that has been made in developing
autonomous systems, these systems still rely heavily on human operators, whether local or
remote, to step in and assist or take control in situations where the system is unable to proceed.
This highlights the need for HCAI techniques to promote trust, control, and reliability between
users and machines [4]. However, developing and implementing these concepts remains a
challenging and complex task [2]. As a result, there is still much room for improvement and
further research in this field [3]. Several approaches have proposed ways to insert human
knowledge into neural networks as a way of initialization, to guide the refinement of the net-
work, and to extract symbolic information from the network [5, 6]. More recent attempts have
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Figure 1: Overview of the envisioned user-centered neuro-symbolic human-in-the-loop learning system.
The novice user and the learning agent (e.g., robot or autonomous vehicle) are in a continuous feedback
loop, starting with the user’s demonstrations, then judging the agent’s output and providing support
through thorough feedback.

tried to combine deep learning with knowledge bases in joint models (e.g., for construction and
population) [7, 8]. Some work has focused on integrating neural networks with classical plan-
ning by mapping subsymbolic input to a symbolic one, which automatic planners can use [9].
Others have used Logic Tensor Networks to enable learning from noisy data in the presence of
logical constraints by combining low-level features with high-level concepts [10, 11]. Other
approaches include psychologically inspired cognitive architectures by having a goal-directed
organizational hierarchy with parallel subsymbolic algorithms running in the lower levels and
symbolic ones running serially in the higher levels [12]. Thus, we suggest that future work
should focus on building autonomous systems that can learn and adapt to new situations, such
as new classes, domains, or tasks [13, 6]. This will require shifting the focus from data-driven
learning to interactive learning or human-in-the-loop learning, where the human plays a crucial
role in supporting the system’s learning process. The proposed research concept focuses on
developing adaptive and personalized approaches for human-in-the-loop learning that will
enhance system performance and promote trust toward a reliable and controllable HCAI, as
highlighted in Figure 1.



2. Approach

We propose the following research questions1 as guidelines for future research on human-
centered artificial intelligence. We focus on three factors: Input features (i.e., Agent World View),
Underlying design aspects (i.e., Multimodal interaction), and Learning method (i.e., Neuro-symbolic
Adaptation and Continuous Learning).

• Agent World View (RQ1): Which features of the agent (i.e., autonomous system) and
the context (i.e., human behavior) can be used to detect and classify user interaction
situations, and which devices are available to provide them efficiently (e.g., investigating
user behavior as in [14])?
Given the multitude of sensors available for an autonomous system, possibly dynamic and
not permanently available, a specific question will be to select the right level of granularity
and fusion at which it can be combined with symbolic knowledge. This involves merging
the available context information, both from sensors and world knowledge, combined
with implicit user input [15, 16], to characterize the situation in a structured way. For
example, in an industry scenario, a worker’s current task and the available robots would
provide such input. In an autonomous vehicle scenario, knowledge about other passengers
may help interpret the user’s goals and possible interaction. Based on available plans and
solutions, a system has to estimate the success of a particular solution.

• Multimodal Interaction (RQ2): What aspects of system and interface design can be
utilized of the given modalities in terms of fusion techniques, temporal dependencies,
and learning models to achieve optimal performance (e.g., reference detection as in [17]
and estimation of mental workload in [18, 19])?
To achieve an end-to-end multimodal fusion framework, it is vital to exhaustively in-
vestigate the interaction between the given modalities in terms of performance, timing,
user behavior, and fusion techniques. While well-established, widely used data fusion
approaches, such as late- and early-fusion approaches, are utilized here, more novel and
empirical hybrid approaches should also be considered that combine heuristics with
learning-based data fusion to achieve optimum performance. Additionally, there exists
a timing dependency (e.g., modalities’ relative onset) between the modalities that the
system can exploit. Thus, the time frames can be analyzed separately with no connection,
or a pattern could be learned from intra- (within the modality) and inter- (among the
modalities) dependencies.

• Neuro-symbolic Adaptation and Continual Learning (RQ3): How can the system
adapt to the performance of user-specific tasks [17, 19]? How can the system be designed
to continuously gather feedback from the user (both implicitly and explicitly) to guarantee
constant development and enhancement of the underlying algorithms? How would that
affect the system’s reliability and user trust?
Adaptation can be achieved at the architecture level using incremental learning [20].
Transfer learning (i.e., naive fine tuning) faces several challenges such as forgetting
previously learned information (i.e., catastrophic forgetting), ever-changing features (i.e.,
concept shift), and how fast a model should be adapted (i.e., stability-plasticity dilemma).

1Full paper presented at AI&HCI Workshop at ICML2023 and in-proceedings of ICMI2023 Blue Sky Papers.



Some solutions have been proposed for each of these challenges [21, 22, 6]. For continuous
learning, there is a focus on increasing the number of classes a neural network can predict,
expanding datasets, and exploring the influence of update intervals and batch sizes used
for adaptation [23, 13]. To adapt an initial model to a different domain, we find suitable
methods in the domain of incremental learning [24, 25, 26].

3. Conclusion

In conclusion, while designing user-specific interfaces is a complex and multifaceted process
involving various considerations that this work cannot entirely describe, our position paper
examines several essential aspects to facilitate this design process. Specifically, we discuss
adapting learning models, including incremental and transfer learning, to enable personalized
interaction with the system. This work also emphasizes the importance of system engineering
considerations, such as real-time processing and system robustness, to ensure that user-specific
interfaces are reliable and trustworthy. This paper highlights important considerations for
future studies focused on human-centered artificial intelligence and trustworthy interfaces. In
particular, we emphasize the importance of continuous learning and hybrid learning approaches
to enable user-centered design that enhances the user experience. By following these guide-
lines, researchers can develop personalized and adaptive interfaces that respond to individual
users’ needs and behaviors, ultimately improving their satisfaction and engagement with the
system. Furthermore, future research in this area should focus on developing frameworks and
methodologies to assess the effectiveness of user-specific interfaces and explore the ethical and
societal implications of these technologies.
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