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Abstract
We consider multi-agent item allocation problems where we differentiate between items that are good for all agents or bad for
all agents. For this model with social items, we study six new properties that relax economic equity: three of them are based on
the idea of removing one good or removing one bad; the other three of them are based on the idea of removing one good or
duplicating one bad. We also give solutions for returning allocations of limited agent pairwise inequality, whenever agents have
additive preferences for the items. Some of these solutions run in polynomial time, which makes them practical as opposed to
standard intractable approaches such as minimizing the Gini index.
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1. Introduction
Reducing inequalities and ensuring no one is left behind
are integral to achieving the United Nations’ Sustainable
Development Goals. Inequality within and among coun-
tries is a persistent cause for concern. Despite some pos-
itive signs toward reducing inequality in some dimen-
sions, such as reducing relative income inequality in some
countries and preferential trade status benefiting lower-
income countries, inequality still persists. Inequalities
are also deepening for vulnerable populations in coun-
tries with weaker health systems and those facing existing
humanitarian crises. Refugees and migrants, as well as
indigenous peoples, older persons, people with disabil-
ities, and children, are particularly at risk of being left
behind. There are many obstacles when it comes to reduc-
ing inequalities. For example, we often do not perceive
inequalities of others as a problem but rather as an oppor-
tunity for our own development. Also, we are often not
fully aware of the main factors causing inequalities and
the current mechanisms reducing inequalities, simply due
to the fact that these factors and mechanisms are not as
transparent and explainable as we would like them to be.
As a consequence, we are often part of the problem and
not part of the solution, thus compensating regularly for
the successful efforts made by the United Nations in the
direction of reducing inequalities. Indeed, we agree that it
is hard to imagine a world without inequalities. But, can
we imagine a world where inequalities are limited?
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We do so in this paper in the context of a multi-agent
resource allocation [1, 2, 3]. An extremely popular case
for allocation is when the resource is represented by a
collection of indivisible items. This is an appealing case
when studying inequalities because most possessions in
our life are indivisible. For example, if the neighbour
has a car and we do not, we might be jealous of them.
Furthermore, if they have a house and a car, our jealousy
increases, but not as much as when we also have a house
or a car. Perceiving lower inequalities might, therefore,
relate to how comfortable we feel living in a given neigh-
bourhood, district, and city and, consequently, to how
well we perform in society. That is, reducing inequalities
improves our well-being in the community!

Dividing private items is, however, not the only applica-
tion in which we may want to reduce inequalities. Often,
we may need to decide how to divide public (social) items
among agents. For instance, consider two friends, say An-
ton and Bob, deciding what film to watch. Both of them
obviously like films if they are deciding that. However, let
us suppose that Anton prefers action films, whereas Bob
prefers thriller films. When there is only a single decision
to make, Nash [4] proposed maximizing the Nash welfare
as an elegant solution to arrive at a mutually agreeable
decision. However, in this single-decision setting, it might
be impossible to make both Anton and Bob happy. By
comparison, if we could get to make multiple decisions
for multiple items, we might be able to reach a consensus
by making sure that both Anton and Bob are happy with at
least some of the decisions. For example, if they were to
follow their movie with a beer, then Bob might be willing
to agree to watch an action movie if he got to pick his
favorite bar, and Anton might accept this compromise.
Likewise, Anton might be willing to agree to watch a
thriller movie if he got to pick his favorite bar, and Bob
might accept this compromise.
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Table 1
Symbol key: ✓ - the property can be achieved in all instances, × - the property may not be achieved in some instances,
𝑛 - number of agents, 𝑚 - number of items.

Property Goods and Bads Goods Bads
DJFX0 (additive) × (by Theorem 1) × (by Theorem 1)
JFX0 (additive) × (by Theorem 1) × (by Theorem 1)
DJFX (additive) ✓, leximin++, 𝑂(𝑛𝑚) (Theorem 2)
JFX (additive) ✓, Algorithm 1, 𝑂(𝑚𝑛 log𝑚) (Theorem 3)

DJF1 (additive) ✓, Algorithm 2, 𝑂(𝑚𝑛) (Theorem 4)
JF1 (additive) ✓, Algorithm 1, 𝑂(𝑚𝑛 log𝑚) (by Theorem 3)

Mathematically, this scenario can be modelled as hav-
ing two indivisible items (a cinema location and a bar
location) and two agents (Anton and Bob) who have addi-
tive utilities for the items (Anton has a fixed utility for the
movie location but this utility increases if they get to pick
the bar location as well). More generally, we consider
a number of items and a number of agents. We let each
item be either an social good (i.e. all agents weakly like
it and perhaps some agents strictly like it) or an social
bad (i.e. all agents weakly dislike it and perhaps some
agents strictly dislike it) [5, 6]. We let each agent have
additive utilities for bundles of items, which are sums of
their utilities for the individual items in the bundles [7, 8].

Indivisible social items appear naturally in a number
of real-world applications: (a) allocating research funds
and their associated responsibilities among multiple re-
search positions; (b) allocating paper tasks such as writ-
ing and editing, and their associated publication cred-
its among researchers; (c) sharing credit, rent, and fare
(http://www.spliddit.org/); (d) healthcare decisions regard-
ing utility-attractiveness of therapies of varying effective-
ness and societal benefit.

In such applications, after the agents submit their utili-
ties, a (central) planner decides on a complete allocation
that gives each item to an agent. Two common tasks of
the planner are to compute allocations that minimise envy
[9] or inequality [10] between the agents’ utilities. While
envy is a compelling notion in the private items setting,
it makes less sense for social items. In our example, ir-
respective of where Anton and Bob go for watching a
film, because they are watching the same film, it is not
clear what it would mean for Anton to envy Bob and
for Bob to envy Anton. If they could somehow trade
places, they would still be at the same location, watching
the same film, and not be any better off. Hence, their
perceived fairness would be determined not by their sub-
jective envy but by their objective satisfaction. This is also
confirmed in another experimental study, where human
subjects were asked to deliberate over an allocation of
indivisible items and they picked outcomes minimised
the inequalities far more often than they minimised the
envy [11]. Thus, reducing inequalities can be a significant
predictor of perceived fairness in practice.

Eliminating inequalities is a special case of reducing in-
equalities. An appealing axiomatic property that encodes
the absence of inequalities is jealousy freeness [12]. An
agent is jealous of another agent if the utility of the former
agent for their own bundle is strictly lower than the utility
of the latter agent for their own bundle. Otherwise, the
former agent is jealousy-free of the latter agent. An allo-
cation is jealousy-free if all agents derive equal utilities
from their bundles.

In the setting with Anton and Bob, we can observe that
jealousy-free allocations do not exist if there were just one
indivisible item. As a response, we next investigate how
we might relax jealousy freeness for limiting inequalities.

2. Limiting Inequalities
We propose three new relaxations of jealousy freeness. An
allocation is Jealousy-Free Up To Every Removed Item
(JFX0) if it is jealousy-free and, otherwise, an agent who
is jealous becomes jealousy-free of another agent, after
any bad is removed from the jealous agent’s bundle or any
good is removed from the jealousy-free agent’s bundle.
Also, an allocation is Jealousy-Free Up To Every Non-
zero valued Removed Item (JFX) whenever the removed
item is non-zero valued, and Jealousy-Free Up To Some
Removed Item (JF1) whenever the removal concerns some
items. Further, we propose three alternatives to JFX0,
JFX, and JF1. An allocation is Jealousy-Free Up To Every
Removed or Duplicated Item (DJFX0) if each agent is
jealousy-free of any other agent, otherwise, an agent who
is jealous becomes jealousy-free of another agent, after
any bad from the jealous agent bundle is duplicated to
the jealousy-free agent’s bundle or any good is removed
from the jealousy-free agent’s bundle. Also, an allocation
is Jealousy-Free Up To Every Non-zero valued Removed
or Duplicated Item (DJFX) whenever the removed or
duplicated item is non-zero valued, and Jealousy-Free Up
To Some Removed or Duplicated Item (DJF1) whenever
the removal or duplication concerns some items. In this
paper, we investigate the following question: With additive
utilities for indivisible social goods and bads, are there
allocations of limited inequality in every instance?
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These properties relate to limiting inequalities, which is
a task considered in economics for more than one hundred
years [13]. However, unlike minimising the Gini index in
an allocation, which is intractable [14], satisfying some
of these properties is notably tractable. Table 1 contains
our results. We show that DJFX0 or JFX0 allocations
may not exist in some instances (see Theorem 1). Also,
we give solutions (i.e. leximin++, Algorithms 1 and 2)
for returning DJFX, JFX, DJF1, or JF1 allocations in
every instance (see Theorems 2-4). As we can observe in
Table 1, some of these solutions terminate in polynomial
time. This enables limiting inequalities in various real-
world resource allocation applications: see e.g. (a)-(d).

3. Related Works
In instances with strictly positive additive utilities,
Gourvès et al. [12] considered computing near jealousy-
free allocations. In such instances, an allocation is JFX0

(JFX, DJFX0, or DJFX) iff it is near jealousy-free. It
follows that their approach returns such allocations in in-
stances with goods. In contrast, we prove that DJFX0

and JFX0 allocations may not exist as soon as the utility
functions are non-negative (see Theorem 1). With additive
utilities, removing goods was used in [15] and removing
bads was used in [16]. Freeman et al. used these tech-
niques in isolation for defining equitability up to every
non-zero valued (some) item. Unlike them, we combine
these techniques for defining our properties. But, in in-
stances with either goods or bads, an allocation is JFX
(JF1) iff it is equitable up to every non-zero item (some
item). In our instances with goods and bads, we prove
that DJFX allocations and JFX allocations exist. In partic-
ular, we prove that the leximin++ solution [17] satisfies
DJFX (see Theorem 2). Computing this solution relates
to computing max-min fair allocations, which is shown to
be intractable [18, 19]. By contrast, JFX allocations can
be computed in a tractable manner (see Theorem 3). The
same holds for DJF1 allocations (see Theorem 4).

4. Comparing Properties
We next compare the triple DJFX0, DJFX, and DJF1, and
the triple JFX0, JFX, and JF1. For example, in general,
each property limits from above the absolute inequality
pairwise difference between agent utilities in an alloca-
tion. The limit is the maximum absolute agent utility
for an item. So, we might be indifferent between the
triples. But, in Example 1, we show that the former triple
might be preferred to the latter triple. Indeed, achieving
DJFX0, DJFX, and DJF1 might optimise various welfares
whereas achieving JFX0, JFX, and JF1 might fail to do so.
The planner could use this as a secondary criterion when
deciding which triple of properties to use in practice.

Example 1. Let us consider agents 1, 2, and 3 with utility
profiles (−𝜖,−𝜖,−𝜖), (−𝜖,−𝜖,−𝜖), and (−1,−1,−1),
respectively. We let 𝜖→ 0 hold. Giving one item to each
agent gives us a JFX0, JFX, and JF1 allocation. We note
that each such allocation: (1) minimises the product of
agents’ utilities (i.e. Nash welfare) to −𝜖2; (2) achieves
a sum of agents’ utilities (i.e. the utilitarian welfare) of
(−1−2𝜖); (3) gives a difference between the minimum and
maximum agent’s utilities (i.e. the inequality difference)
of (−1 + 𝜖). By comparison, an allocation, that shares
the three items only among agents 1 and 2, maximises
the Nash welfare to 0 > −𝜖2 and the utilitarian welfare
to −3𝜖 > (−1 − 2𝜖), whilst minimising the inequality
difference to −2𝜖 > (−1 + 𝜖).

5. Relations to Responsible AI
Responsible AI is the practice of designing, developing,
and deploying AI with good intentions to empower em-
ployees and businesses, and fairly impact customers and
society. We respond to this by defining the six inequality
properties DJFX0, DJFX, DJF1, JFX0, JFX, and JF1 that
rely on the human emotion of jealousy and designing solu-
tions for satisfying these properties, thus limiting this neg-
ative emotion. Like the Gini index, the properties provide
measures of how humans might perceive fairness in prac-
tice. Unlike the Gini index, the properties operate on the
individual level of each agent and not on the social level of
all agents directly. Nevertheless, limiting the inequalities
between the agent pairwise individual utility levels also
limits naturally the social level and, therefore, the Gini
index. From this perspective, the properties encode the
well-being of individuals and society. This enables the
implementation of individually and socially responsible
AI for well-being in various application domains.

6. Application Domains
Limiting inequalities is a relevant task in various domains:
in static domains like ours where the entire resource is
fixed and available at one point in time; in dynamic do-
mains where, for each out of multiple points in time, we
have a static problem; in repeated domains such as al-
locating resources in multiple rounds. This work offers
therefore a stepping stone for a better understanding of
limiting inequalities in these domains. For example, in
static domains, such allocations limit the agent pairwise
difference in utility levels. Also, in dynamic domains,
there are multiple points in time and, at each next point,
we could bias the computation of allocations of the current
resources with respect to (w.r.t.) the (aggregated) utility
levels agents received in the previous points in time. Fi-
nally, in repeated domains, we can also do that w.r.t. the
utility levels agents received in the previous rounds.
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7. Formal Preliminaries

7.1. Model
We look at instances with [𝑛] = {1, . . . , 𝑛} of 𝑛 ∈ N≥2

agents and [𝑚] = {1, . . . ,𝑚} of 𝑚 ∈ N≥1 indivisible
items. We let each 𝑎 ∈ [𝑛] use a utility function 𝑢𝑎 :
2[𝑚] → R. We let 𝑢𝑎(∅) = 0 hold. We write 𝑢𝑎(𝑜) for
𝑢𝑎({𝑜}). For 𝑀 ⊆ [𝑚], we say that 𝑢𝑎(𝑀) is additive
iff 𝑢𝑎(𝑀) =

∑︀
𝑜∈𝑀 𝑢𝑎(𝑜). The utilities are identical iff,

for each 𝑜 ∈ [𝑚], 𝑢𝑎(𝑜) = 𝑢𝑏(𝑜) for each 𝑎, 𝑏 ∈ [𝑛]. We
may write 𝑢(𝑜) in this case. Further, let us consider agent
𝑎 ∈ [𝑛] and item 𝑜 ∈ [𝑚]. We say that 𝑜 is good for 𝑎 if
𝑢𝑎(𝑜) ≥ 0 holds. We refer to 𝑜 as pure good whenever
𝑢𝑎(𝑜) > 0 holds for each 𝑎 ∈ [𝑛]. Similarly, we say that
𝑜 is bad for 𝑎 if 𝑢𝑎(𝑜) ≤ 0 holds. We refer to 𝑜 as pure
bad whenever 𝑢𝑎(𝑜) < 0 holds for each 𝑎 ∈ [𝑛]. We let
[𝑚] be partitioned into (social) goods and (social) bads,
respectively 𝐺 = {𝑜 ∈ [𝑚]|∀𝑎 ∈ [𝑛] : 𝑢𝑎(𝑜) ≥ 0} and
𝐵 = {𝑜 ∈ [𝑚]|∀𝑎 ∈ [𝑛] : 𝑢𝑎(𝑜) ≤ 0}. A complete
allocation 𝐴 = (𝐴1, . . . , 𝐴𝑛) is such that (1) 𝐴𝑎 is the
bundle of agent 𝑎 ∈ [𝑛], (2)

⋃︀
𝑎∈[𝑛] 𝐴𝑎 = [𝑚] holds, and

(3) 𝐴𝑎 ∩𝐴𝑏 = ∅ holds for each 𝑎, 𝑏 ∈ [𝑛] with 𝑎 ̸= 𝑏.

7.2. Properties
Let us consider an allocation and a pair of agents, say 𝑎
and 𝑏. One of them is jealousy-free of the other one, say
𝑏. Some of our notions rely on the idea of decreasing the
utility of the agent who is jealousy-free, i.e. the 𝑏’s utility.

Thus, agent 𝑎 is DJFX0 of agent 𝑏 whenever 𝑎’s utility
is at least as much as 𝑏’s utility, after duplicating each in-
dividual bad from 𝑎’s bundle into 𝑏’s bundle and removing
each individual good from 𝑏’s bundle.

Definition 1. (DJFX0) 𝐴 is DJFX0 if, ∀𝑎, 𝑏 ∈ [𝑛] s.t.
agent 𝑎 is not jealousy-free of agent 𝑏, (1) ∀𝑜 ∈ 𝐴𝑎

s.t. 𝑢𝑎(𝐴𝑎) ≤ 𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜): 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏) +
𝑢𝑏(𝑜) and (2) ∀𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑏(𝐴𝑏) ≥ 𝑢𝑏(𝐴𝑏) − 𝑢𝑏(𝑜):
𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏)− 𝑢𝑏(𝑜).

Also, agent 𝑎 is DJFX of agent 𝑏 whenever the above
requirements hold for each individual non-zero bad in 𝑎’s
bundle, strictly increasing 𝑎’s utility, and each individual
non-zero good in 𝑏’s bundle, strictly decreasing 𝑏’s utility.

Definition 2. (DJFX)𝐴 is DJFX if, ∀𝑎, 𝑏 ∈ [𝑛] s.t. agent
𝑎 is not DJFX0 of agent 𝑏, (1) ∀𝑜 ∈ 𝐴𝑎 s.t. 𝑢𝑎(𝐴𝑎) <
𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜): 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) and (2)
∀𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑏(𝐴𝑏) > 𝑢𝑏(𝐴𝑏) − 𝑢𝑏(𝑜): 𝑢𝑎(𝐴𝑎) ≥
𝑢𝑏(𝐴𝑏)− 𝑢𝑏(𝑜).

Furthermore, agent 𝑎 is DJF1 of agent 𝑏 whenever
the above requirements hold for some bad in 𝑎’s bun-
dle, strictly increasing 𝑎’s utility, or some good in 𝑏’s
bundle, strictly decreasing 𝑏’s utility.

Definition 3. (DJF1) 𝐴 is DJF1 if, ∀𝑎, 𝑏 ∈ [𝑛] s.t. agent
𝑎 is not DJFX of agent 𝑏, (1) ∃𝑜 ∈ 𝐴𝑎 s.t. 𝑢𝑎(𝐴𝑎) ≥
𝑢𝑏(𝐴𝑏)+𝑢𝑏(𝑜) or (2) ∃𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏)−
𝑢𝑏(𝑜).

A DJFX0 allocation satisfies further DJFX, i.e. DJFX0

is stronger than DJFX. Also, DJFX is stronger than DJF1.
These relations follow directly by the definitions of these
axiomatic concepts.

In a similar fashion, we define JFX0, JFX, and JF1
for a given allocation, where 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜)
in each of the definitions of DJFX0, DJFX, and DJF1 is
replaced with 𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜) ≥ 𝑢𝑏(𝐴𝑏), respectively.
JFX0 is stronger than JFX and JFX is stronger than JF1.

Definition 4. (JFX0) 𝐴 is JFX0 if, ∀𝑎, 𝑏 ∈ [𝑛] s.t. agent
𝑎 is not jealousy-free of agent 𝑏, (1)⋆ ∀𝑜 ∈ 𝐴𝑎 s.t.
𝑢𝑎(𝐴𝑎) ≤ 𝑢𝑎(𝐴𝑎)−𝑢𝑎(𝑜): 𝑢𝑎(𝐴𝑎)−𝑢𝑎(𝑜) ≥ 𝑢𝑏(𝐴𝑏)
and (2) ∀𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑏(𝐴𝑏) ≥ 𝑢𝑏(𝐴𝑏) − 𝑢𝑏(𝑜):
𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏)− 𝑢𝑏(𝑜).

Definition 5. (JFX) 𝐴 is JFX if, ∀𝑎, 𝑏 ∈ [𝑛] s.t. agent
𝑎 is not JFX0 of agent 𝑏, (1)⋆ ∀𝑜 ∈ 𝐴𝑎 s.t. 𝑢𝑎(𝐴𝑎) <
𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜): 𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜) ≥ 𝑢𝑏(𝐴𝑏) and (2)
∀𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑏(𝐴𝑏) > 𝑢𝑏(𝐴𝑏) − 𝑢𝑏(𝑜): 𝑢𝑎(𝐴𝑎) ≥
𝑢𝑏(𝐴𝑏)− 𝑢𝑏(𝑜).

Definition 6. (JF1) 𝐴 is JF1 if, ∀𝑎, 𝑏 ∈ [𝑛] s.t. agent 𝑎 is
not JFX of agent 𝑏, (1)⋆ ∃𝑜 ∈ 𝐴𝑎 s.t. 𝑢𝑎(𝐴𝑎)− 𝑢𝑎(𝑜) ≥
𝑢𝑏(𝐴𝑏) or (2) ∃𝑜 ∈ 𝐴𝑏 s.t. 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏)− 𝑢𝑏(𝑜).

By definition, DJFX0, DJFX, and DJF1 coincide re-
spectively with JFX0, JFX, and JF1 in instances with just
goods, whereas DJFX0, DJFX, and DJF1 differ respec-
tively from JFX0, JFX, and JF1 in instances with bads:
see Example 1.

8. Jealousy Freeness Up To
Every Item

The strongest concepts DJFX0 and JFX0 might be violated
by any allocation even in instances with identical additive
utilities, which are often considered by [8]. The result
holds whenever some of the items are valued with zero
utilities.

Theorem 1. There are instances with 2 agents and iden-
tical additive utilities, where none of the allocations satis-
fies DJFX0 (JFX0).

Proof. We will show the result in an instance with goods
and in an instance with bads, where there is one item that
delivers zero utility to each agent. Such items might be
good in cases when agents do not mind carrying another
item (e.g. have space in the knapsack) with them but bad
in cases when agents do mind carrying another item (e.g.
do not have space in the knapsack) with them.
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We first show the result with goods. Let us consider
2 agents, item 𝑔, and item 𝑏. We define the utilities
as: 𝑢1(𝑔) = 𝑢2(𝑔) = 1, 𝑢1(𝑏) = 𝑢2(𝑏) = 0. By
the symmetry of the utilities, we consider only two al-
locations: 𝐴 = ({𝑔}, {𝑏}), 𝐵 = ({𝑔, 𝑏}, ∅). We argue
that none of these allocations is DJFX0. To see this, we
next give all violations of this property for each alloca-
tion: (1) 𝑢2(𝐴2) = 0 < 1 = 𝑢1(𝐴1 ∪ {𝑏}) and (2)
𝑢2(𝐵2) = 0 < 1 = 𝑢1(𝐵1 ∖ {𝑏}). We argue in a sim-
ilar way that none of the allocations is JFX0. To see
this, we observe the following violations of this prop-
erty: (1) 𝑢2(𝐴2 ∖ {𝑏}) = 0 < 1 = 𝑢1(𝐴1) and (2)
𝑢2(𝐵2) = 0 < 1 = 𝑢1(𝐵1 ∖ {𝑏}). The result follows.

We next show the result with bads. Let us consider
2 agents, item 𝑔, and item 𝑏. We define the utilities
as: 𝑢1(𝑔) = 𝑢2(𝑔) = −1, 𝑢1(𝑏) = 𝑢2(𝑏) = 0. By
the symmetry of the utilities, we consider only two al-
locations: 𝐶 = ({𝑔}, {𝑏}), 𝐷 = ({𝑔, 𝑏}, ∅). We argue
that none of these allocations is DJFX0. To see this, we
next give all violations of this property for each alloca-
tion: (1) 𝑢1(𝐶1) = −1 < 0 = 𝑢2(𝐶2 ∖ {𝑏}) and (2)
𝑢1(𝐷1) = −1 < 0 = 𝑢2(𝐷2 ∪ {𝑔}). We argue in a
similar way that none of the allocations is JFX0. To see
this, we observe the following violations of this prop-
erty: (1) 𝑢1(𝐶1) = −1 < 0 = 𝑢2(𝐶2 ∖ {𝑏}) and (2)
𝑢1(𝐷1 ∖ {𝑏}) = −1 < 0 = 𝑢2(𝐷2). The result follows.
This concludes the proof.

In instances with additive pure goods, an allocation
is DJFX0 (JFX0) iff it satisfies equitability up to every
non-zero item [15]. Hence, such allocations exist in such
instances. We conclude that adding bads to the instances
ruins these properties.

9. Jealousy Freeness Up To
Every Non-zero valued Item

By definition, DJFX0 coincides with DJFX whenever the
instance contains only pure goods and pure bads. This
is not true in instances with goods and bads. In such
instances, DJFX0 allocations may not exist by Theorem 1
whereas DJFX allocations always exist by Theorem 2.

Such allocations are returned by the leximin++ solu-
tion, proposed by [17]. To define it, we let −→𝑢 (𝐴) ∈ R𝑛

denote the utility vector in 𝐴, which is (re-)arranged in
some non-decreasing order. We write next 𝐴 ≻++ 𝐵 if
there exists an index 𝑖 ≤ 𝑛 such that −→𝑢 (𝐴)𝑗 = −→𝑢 (𝐵)𝑗
and |𝐴𝑗 | = |𝐵𝑗 | for each 1 ≤ 𝑗 < 𝑖, and either−→𝑢 (𝐴)𝑖 >−→𝑢 (𝐵)𝑖, or −→𝑢 (𝐴)𝑖 =

−→𝑢 (𝐵)𝑖 and |𝐴𝑖| > |𝐵𝑖|.
The leximin++ solution is defined as a maximal ele-

ment under ≻++. It maximises the least agent’s utility,
then maximises the bundle’s size of an agent with the least
utility, before it maximises the second least utility and the
second least utility bundle’s size, and so on.

Theorem 2. In fair division with additive utilities for
goods and bads, the leximin ++ solution could return in
𝑂(𝑚𝑛) time a DJFX allocation.

Proof. Let 𝐴 denote a leximin++ allocation. Suppose
that 𝐴 is not DJFX for a pair of agents 𝑎, 𝑏 ∈ [𝑛] with
𝑎 ̸= 𝑏. That is, 𝑢𝑎(𝐴𝑎) < 𝑢𝑏(𝐴𝑏). Also, (1) 𝑢𝑎(𝐴𝑎) <
𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) holds for 𝑜 ∈ 𝐴𝑎 with 𝑢𝑎(𝐴𝑎) <
𝑢𝑎(𝐴𝑎)−𝑢𝑎(𝑜) or (2) 𝑢𝑎(𝐴𝑎) < 𝑢𝑏(𝐴𝑏)−𝑢𝑏(𝑜) holds
for 𝑜 ∈ 𝐴𝑏 with 𝑢𝑏(𝐴𝑏) > 𝑢𝑏(𝐴𝑏) − 𝑢𝑏(𝑜). Wlog, let
𝑢1(𝐴1) ≤ . . . ≤ 𝑢𝑛(𝐴𝑛) denote the utility order induced
by 𝐴. We let 𝑘 = argmax{𝑖 ∈ [𝑛]|𝑢𝑖(𝐴𝑖) ≤ 𝑢𝑎(𝐴𝑎)}.
We note 𝑎 ≤ 𝑘 and 𝑘 < 𝑏. We next consider two cases
depending on whether condition (1) or condition (2) holds.

Case 1: Let (1) hold for bad 𝑜 ∈ 𝐴𝑎. Let us move 𝑜
from 𝐴𝑎 to 𝐴𝑏. We let 𝐶 denote this new allocation. That
is, 𝐶𝑎 = 𝐴𝑎 ∖ {𝑜}, 𝐶𝑏 = 𝐴𝑏 ∪ {𝑜} and 𝐶𝑐 = 𝐴𝑐 for
each 𝑐 ∈ [𝑛] ∖ {𝑎, 𝑏}. We argue that 𝐶 ≻++ 𝐴 holds.

We note that 𝐶𝑐 = 𝐴𝑐 holds for each 𝑐 ∈ [𝑘] ∖ {𝑎}.
We show 𝑢𝑎𝑘 (𝐶𝑎𝑘 ) > 𝑢𝑘(𝐴𝑘) where 𝑎𝑘 is the 𝑘th agent
in the utility order induced by 𝐶. If this agent is 𝑎, then
𝑢𝑎(𝐶𝑎) = 𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑜) > 𝑢𝑎(𝐴𝑎) = 𝑢𝑘(𝐴𝑘) by
(1). If this agent is 𝑏, then 𝑢𝑏(𝐶𝑏) = 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) >
𝑢𝑎(𝐴𝑎) = 𝑢𝑘(𝐴𝑘) by (1). Otherwise, 𝑢𝑎𝑘 (𝐶𝑎𝑘 ) =
𝑢𝑘+1(𝐴𝑘+1) > 𝑢𝑘(𝐴𝑘) by the choice of 𝑘. It follows in
each case that 𝑢𝑑(𝐶𝑑) ≥ 𝑢𝑎𝑘 (𝐶𝑎𝑘 ) > 𝑢𝑘(𝐴𝑘) holds for
each agent 𝑑 ∈ [𝑛] ∖ [([𝑘] ∖ {𝑎}) ∪ {𝑎𝑘}]. Therefore, 𝐴
cannot be leximin++.

Case 2: Let (2) hold for good 𝑜 ∈ 𝐴𝑏. Let us move only
item 𝑜 from 𝐴𝑏 to 𝐴𝑎. We let 𝐵 denote this allocation:
𝐵𝑎 = 𝐴𝑎 ∪ {𝑜}, 𝐵𝑏 = 𝐴𝑏 ∖ {𝑜} and 𝐵𝑐 = 𝐴𝑐 for each
𝑐 ∈ [𝑛] ∖ {𝑎, 𝑏}. We next argue that 𝐵 ≻++ 𝐴 holds.

As item 𝑜 is good, it follows 𝑢𝑎(𝐵𝑎) ≥ 𝑢𝑎(𝐴𝑎). If
𝑢𝑎(𝐵𝑎) = 𝑢𝑎(𝐴𝑎), then 𝐵𝑐 = 𝐴𝑐 holds for each 𝑐 < 𝑎,
|𝐵𝑎| = |𝐴𝑎| + 1 and 𝐵𝑑 = 𝐴𝑑 for each 𝑑 ∈ (𝑎, 𝑘].
Moreover, it follows that 𝑢𝑒(𝐵𝑒) > 𝑢𝑘(𝐴𝑘) = 𝑢𝑎(𝐴𝑎)
holds for each agent 𝑒 ∈ [𝑛] ∖ [𝑘], including for agent 𝑏
by (2). As≻++ maximises the bundle size as a secondary
objective, it follows that 𝐵 ≻++ 𝐴 holds. Hence, 𝐴
cannot be the leximin++ solution. If 𝑢𝑎(𝐵𝑎) > 𝑢𝑎(𝐴𝑎),
then we can derive a contradiction as in Case 1 but we use
in the proof condition (2) instead of condition (1). Hence,
the leximin++ solution satisfies DJFX.

Finally, we conclude with the time complexity needed
for computing the leximin++ solution. This solution can
be computed by a simple naive brute-force algorithm that
starts from a given allocation 𝑃 and, for each allocation 𝑄,
checks whether 𝑄 ≻++ 𝑃 holds and if it holds continues
with 𝑄 and, otherwise, with 𝑃 . The allocation returned by
this simple algorithm is maximal under the operator ≻++

and, therefore, the leximin++ solution. The algorithm
has to visit all 𝑂(𝑛𝑚) allocations (i.e. each out of 𝑚 items
can be allocated to each out of 𝑛 agents) in the worst case.
Therefore, it will terminate in 𝑂(𝑛𝑚) time at the latest.
This concludes the proof.
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On the one hand, we found it challenging to guaran-
tee DJFX in polynomial time for instances with additive
utilities for goods and bads, even though intractable such
allocations exist by Theorem 2. For this reason, we leave
open this question. On the other hand, we can do this for
JFX allocations in such instances. For this purpose, we
give Algorithm 1.

Algorithm 1 first partitions the items into goods and
bads. Until all goods are allocated, the algorithm then
picks the least utility agent and gives them their most
preferred remaining good. Until all bads are allocated, the
algorithm then picks the greatest utility agent and gives
them their least preferred remaining bad. This gives us a
JFX allocation.

Algorithm 1 A JFX allocation with additive utilities.
1: procedure JFX-ADDITIVE([𝑛], [𝑚], (𝑢𝑎)𝑛)
2: ∀𝑎 ∈ [𝑛] : 𝐴𝑎 ← ∅
3: 𝑀+ ← 𝐺
4: 𝑀− ← 𝐵
5: while 𝑀+ ̸= ∅ do ◁ i.e. allocate all goods
6: 𝑏← argmin𝑎∈[𝑛] 𝑢𝑎(𝐴𝑎)
7: 𝑜← argmax𝑡∈𝑀+ 𝑢𝑏(𝑡)
8: 𝐴𝑏 ← 𝐴𝑏 ∪ {𝑜}
9: 𝑀+ ←𝑀+ ∖ {𝑜}

10: while 𝑀− ̸= ∅ do ◁ i.e. allocate all bads
11: 𝑐← argmax𝑎∈[𝑛] 𝑢𝑎(𝐴𝑎)
12: 𝑜← argmin𝑡∈𝑀− 𝑢𝑐(𝑡)
13: 𝐴𝑐 ← 𝐴𝑐 ∪ {𝑜}
14: 𝑀− ←𝑀− ∖ {𝑜}
15: return 𝐴

Theorem 3. In fair division with additive utilities for
goods and bads, Algorithm 1 returns in 𝑂(𝑚𝑛 ln𝑚)
time a JFX allocation.

Proof. Let us consider the partial allocation 𝐴. We as-
sume that 𝐴 is JFX and, under this assumption, we prove
that extending 𝐴 with the chosen item 𝑜 preserves JFX.
The result would then follow by the observation that the
allocation when no item is allocated is JFX.

Case 1: If 𝑜 ∈ 𝑀+ is good for everyone, then 𝐴𝑏 =
𝐴𝑏 ∪ {𝑜}. Hence, 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) ≥ 𝑢𝑏(𝐴𝑏). Moreover,
we note that no agent has any bad in their bundle. This fact
follows from the observation that the algorithm allocates
all goods before any bads.

Sub-case 1.1 (𝑏→ 𝑎): 𝐴 is JFX. Therefore, 𝑢𝑏(𝐴𝑏) ≥
𝑢𝑎(𝐴𝑎)−𝑢𝑎(𝑔

+) for each non-zero marginal good 𝑔+ ∈
𝐴𝑎. As 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) ≥ 𝑢𝑏(𝐴𝑏), 𝑏 remains JFX of 𝑎
even after 𝑏 receives 𝑜.

Sub-case 1.2 (𝑎 → 𝑏): As 𝑏 is a minimum utility
agent in 𝐴, 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏). It immediately follows
𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜) − 𝑢𝑏(𝑜). Let 𝑔+ ∈ 𝐴𝑏 be a
non-zero marginal good.

If 𝑢𝑏(𝑜) > 𝑢𝑏(𝑔
+), then 𝑏 would have picked 𝑜 before

𝑔+ by the fact that agents pick goods in a non-increasing
utility order. Hence, it must be the case that each non-zero
marginal good 𝑔+ ∈ 𝐴𝑏 is such that 𝑢𝑏(𝑔

+) ≥ 𝑢𝑏(𝑜).
This implies 𝑢𝑏(𝐴𝑏)+𝑢𝑏(𝑜)−𝑢𝑏(𝑜) ≥ 𝑢𝑏(𝐴𝑏)+𝑢𝑏(𝑜)−
𝑢𝑏(𝑔

+) for each 𝑔+ ∈ 𝐴𝑏∪{𝑜}. 𝑎 remains JFX of 𝑏 even
after 𝑏 receives 𝑜.

Case 2: If 𝑜 ∈ 𝑀− is bad for everyone, then 𝐴𝑐 =
𝐴𝑐∪{𝑜}. Hence, 𝑢𝑐(𝐴𝑐)+𝑢𝑐(𝑜) ≤ 𝑢𝑐(𝐴𝑐). Recall, 𝑐 ∈
[𝑛] and 𝑜 ∈ 𝑀− are such that 𝑢𝑐(𝐴𝑐) is maximum and
𝑢𝑐(𝑜) is minimum. We note that all goods are allocated
at this point.

Sub-case 2.1 (𝑐 → 𝑎): By the choice of 𝑐, 𝑢𝑐(𝐴𝑐) ≥
𝑢𝑎(𝐴𝑎) holds for each 𝑎 ∈ [𝑛]. It follows 𝑢𝑐(𝐴𝑐) +
𝑢𝑐(𝑜) − 𝑢𝑐(𝑜) ≥ 𝑢𝑎(𝐴𝑎) and 𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑎(𝐴𝑎) −
𝑢𝑎(𝑔

+) for each non-zero marginal good 𝑔+ ∈ 𝐴𝑎. Let
𝑔− ∈ 𝐴𝑐 be a non-zero marginal bad.

If 𝑢𝑐(𝑜) < 𝑢𝑐(𝑔
−), then 𝑐 would have picked 𝑜 before

𝑔− by the fact that agents pick bads in a non-decreasing
utility order. Hence, it must be the case that each non-zero
marginal bad 𝑔− ∈ 𝐴𝑐 is such that 𝑢𝑐(𝑔

−) ≤ 𝑢𝑐(𝑜). This
implies 𝑢𝑐(𝐴𝑐) + 𝑢𝑐(𝑜)− 𝑢𝑐(𝑔

−) ≥ 𝑢𝑐(𝐴𝑐) + 𝑢𝑐(𝑜)−
𝑢𝑐(𝑜) for each 𝑔− ∈ 𝐴𝑐 ∪ {𝑜}. 𝑐 remains JFX of 𝑎 even
after 𝑐 receives 𝑜.

Sub-case 2.2 (𝑎 → 𝑐): As 𝐴 satisfies JFX, we have
𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑔

−) ≥ 𝑢𝑐(𝐴𝑐) for each non-zero bad
𝑔− ∈ 𝐴𝑎 and 𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑐(𝐴𝑐) + 𝑢𝑐(𝑔

+) for each
non-zero good 𝑔+ ∈ 𝐴𝑐. But, as 𝑢𝑐(𝑜) ≤ 0, it follows
𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑐(𝐴𝑐) + 𝑢𝑐(𝑜) and 𝑢𝑐(𝐴𝑐) − 𝑢𝑐(𝑔

+) ≥
𝑢𝑐(𝐴𝑐) + 𝑢𝑐(𝑜) − 𝑢𝑐(𝑔

+). 𝑎 remains JFX of 𝑐. This
concludes the proof.

The worst-case run time of Algorithm 1 is dominated
by computing a ranking of the 𝑚 items for each of the
𝑛 agents. Computing such rankings can be done in
𝑂(𝑚𝑛 ln𝑚) time and space.

To sum up, we might prefer JFX to DJFX in instances
with additive utilities because it remains unknown whether
DJFX allocations are tractable in every instance, even
though such allocations exist by Theorem 2.

10. Jealousy Freeness Up To
Some Item

As we showed, the leximin++ solution is DJFX and it
can be computed in 𝑂(𝑛𝑚) time. This might be fine for
a constant 𝑚. However, 𝑚 can be much larger than 𝑛 in
practice. For this reason, we may wish to return tractable
DJF1 allocations. We can do this with Algorithm 2.

Algorithm 2 allocates the items one by one. If the
current item is good, then the algorithm gives it to the
least utility agent. Otherwise, the algorithm gives it to
the greatest utility agent in a thought experiment, where a
copy of the bad is allocated to every agent.
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Algorithm 2 A DJF1 allocation with additive utilities.
1: procedure DJF1-ADDITIVE([𝑛], [𝑚], (𝑢𝑎)𝑛)
2: ∀𝑎 ∈ [𝑛] : 𝐴𝑎 ← ∅
3: 𝑀 ← [𝑚]
4: while 𝑀 ̸= ∅ do
5: 𝑜← an item from 𝑀
6: if 𝑜 is social good then
7: 𝑎← argmin𝑏∈[𝑛] 𝑢𝑏(𝐴𝑏)
8: else ◁ i.e. 𝑜 is social bad
9: 𝑎← argmax𝑏∈[𝑛] 𝑢𝑏(𝐴𝑏) + 𝑢𝑏(𝑜)

10: 𝐴𝑎 ← 𝐴𝑎 ∪ {𝑜}
11: 𝑀 ←𝑀 ∖ {𝑜}
12: return 𝐴

Theorem 4. In fair division with additive utilities for
goods and bads, Algorithm 2 returns in 𝑂(𝑚𝑛) time a
DJF1 allocation.

Proof. The proof is inductive. In the base case, no items
are allocated. This is DJF1. In the hypothesis, we let 𝐴
denote the partial allocation and assume that 𝐴 is DJF1.
In the step case, we show that allocating 𝑜 to agent 𝑎
preserves DJF1. By the hypothesis, agents 𝑏 ̸= 𝑎 and
𝑐 ̸= 𝑎 remain DJF1 after 𝑜 is allocated to 𝑎 because their
allocations remain intact.

Case 1: Let 𝑜 be a social good. In this case, 𝑢𝑏(𝐴𝑏) +
𝑢𝑏(𝑜) ≥ 𝑢𝑏(𝐴𝑏) and 𝑢𝑏(𝐴𝑏) ≥ 𝑢𝑎(𝐴𝑎) for each 𝑏 ∈ [𝑛].
Let us consider some agent 𝑐 ̸= 𝑎. If 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) >
𝑢𝑎(𝐴𝑎), it follows that 𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) −
𝑢𝑎(𝑜) holds. If 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) = 𝑢𝑎(𝐴𝑎), it follows
that 𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) holds. 𝑐 remains DJF1
of 𝑎.

In the opposite direction, as 𝐴 is DJF1, we conclude
𝑢𝑎(𝐴𝑎) ≥ 𝑢𝑐(𝐴𝑐)−𝑢𝐶(𝑔

+) for some non-zero marginal
good 𝑔+ ∈ 𝐴𝑐 or 𝑢𝑎(𝐴𝑎)− 𝑢𝑎(𝑔

−) ≥ 𝑢𝑐(𝐴𝑐) for some
non-zero marginal bad 𝑔− ∈ 𝐴𝑎. Thus, as item 𝑜 is
social good, we derive 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) ≥ 𝑢𝑎(𝐴𝑎) and
𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) − 𝑢𝑎(𝑔

−) ≥ 𝑢𝑎(𝐴𝑎) − 𝑢𝑎(𝑔
−). 𝑎

remains DJF1 of 𝑐.
Case 2: Let 𝑜 be a social bad. In this case, 𝑢𝑏(𝐴𝑏) +

𝑢𝑏(𝑜) ≤ 𝑢𝑏(𝐴𝑏) and 𝑢𝑏(𝐴𝑏)+𝑢𝑏(𝑜) ≤ 𝑢𝑎(𝐴𝑎)+𝑢𝑎(𝑜)
for each 𝑏 ∈ [𝑛]. Let us consider some agent 𝑐 ̸= 𝑎. For
the sake of contradiction, let us suppose that 𝑎 is not DJF1
of 𝑐. This implies that 𝑢𝑎(𝐴𝑎)+𝑢𝑎(𝑜) < 𝑢𝑐(𝐴𝑐)+𝑢𝑐(𝑜)
must hold. But, this contradicts the choice of 𝑎. 𝑎 remains
DJF1 of agent 𝑐.

In the opposite direction, as 𝐴 is DJF1, we conclude
𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑎(𝐴𝑎)+𝑢𝑎(𝑔

+) for some non-zero marginal
good 𝑔+ ∈ 𝐴𝑎 or 𝑢𝑐(𝐴𝑐) ≥ 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑔

−) for
some non-zero marginal bad 𝑔− ∈ 𝐴𝑐. Thus, as item 𝑜
is social bad, we derive 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) + 𝑢𝑎(𝑔

−) ≤
𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑔

−) and 𝑢𝑎(𝐴𝑎) + 𝑢𝑎(𝑜) − 𝑢𝑎(𝑔
+) ≤

𝑢𝑎(𝐴𝑎)−𝑢𝑎(𝑔
+). Agent 𝑐 remains DJF1 of agent 𝑎.

The input of Algorithm 2 is bounded by 𝑂(𝑚𝑛). Its
running time is dominated by computing a sorting of the
𝑛 agents’ bundle utilities for each of the 𝑚 items.

By Theorem 3, it follows that JFX allocations exist and,
as by definition, such allocations satisfy JF1, it follows
that Algorithm 1 returns JF1 allocations as well.

To sum up, we may be indifferent between DJF1 and
JF1 in instances where agents have additive utilities for
goods and bads, because both properties are tractable.

11. Future Directions
One future direction is to close the question we left open.
For example, by Theorem 2, we know that intractable
DJFX allocations exist in instances where agents have
additive utilities for goods and bads, but we could not
design a tractable algorithm that returns DJFX allocations
in such instances. Another future direction is to study
interactions of the proposed properties with economic
efficiency criteria such as Pareto optimality. Finally, as
social resources in practice are either public goods or
public bads, we focused on instances with such items.
However, in future work, we will also consider instances
in which a fixed item can be good for some agents and
bad for other agents.
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