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Abstract. We show that reasoning in the temporal conceptual model
ER−V T , a fragment of ERV T that only allows timestamping is complete
for 2-ExpTime. The membership result is based on an embedding of
the conceptual model into the description logic S5ALCQI . Hardness is
obtained by reducing a fragment of S5ALCQI , namely S5ALC with global
roles only, to ERV T .

1 Introduction

This paper studies the problem of reasoning over temporal conceptual data mod-
els, in particular the ERV T [3] model, a model equipped with both a linear
and a graphical syntax, and accompanied by a model-theoretic semantics. The
ERV T model is a temporal extension of the EER model (the Extended Entity-
Relationship data model [11]). In addition to the classical constructors, such as
inheritance (isa) between entities and between relationships, cardinality con-
straints restricting the participation of entities in relationships, and disjointness
and covering constraints, it is also able to express the following temporal con-
straints:

Timestamping that allows to classify constructs as snapshot—whose instances
must have a global lifespan—and as temporary—whose instances must have
a limited lifespan.

Dynamic Constructs that describe how an object can (or must) change its
class membership over time. Such constraints are often called transition con-
straints [13] and govern object migration.

Constraints expressed in the ERV T models can be captured using Temporal
Description Logics (TDLs), in particular the logic ALCQIUS—an undecidable
temporal extension of ALCQI [6] with the LTL (linear-time temporal logic)
temporal modalities until and since [3, 4]. In addition, it has been shown that
reasoning in temporal class diagrams alone (and hence in ERV T schemas) is
also undecidable [1] (hence the undecidability is not caused by choosing a loose
embedding).

The contribution of this paper is showing that S5ALCQI [5]—a temporal de-
scription logic that combines a simpler modal logic, S5, with the description



logic ALCQI—is sufficient to capture ER−V T , a fragment of ERV T that uses
timestamping as its sole temporal construct. The embedding then provides a 2-
ExpTime upper bound for reasoning in ER−V T , as reasoning in S5ALCQI is com-
plete for 2-ExpTime. In addition, the paper provides a matching 2-ExpTime
lower bound for reasoning in ER−V T , hence showing that the embedding is
complexity-wise optimal.

The rest of the paper is organized as follows: Sections 2 and 3 provide the
necessary background and definitions for S5ALCQI and ERV T , respectively. Sec-
tion 4 shows how ER−V T diagrams can be captured in S5ALCQI . Section 5 shows
ER−V T patterns that capture a sufficiently large fragment of S5ALCQI needed to
show hardness of reasoning in ERV T .

2 The Logic S5ALCQI

The logic S5ALCQI is a combination of the modal logic S5 and the description
logic ALCQI. It is similar in spirit to the multi-dimensional description logics
proposed, e.g., in [12, 14]. The syntax of formulae in S5ALCQI is built from
disjoint countably infinite sets NC and NR of primitive concept names and role
names. We assume that NR is partitioned into two countably infinite sets Nglo

and Nloc of global role names and local role names. The set ROL of roles is defined
as {r, r−,3r,3r−,2r,2r−}, with r ∈ NR. The set of concepts CON is defined
inductively: NC ⊆ CON; if C,D ∈ CON, r ∈ ROL, and n ∈ N, then the following
are also in CON: ¬C, C u D, (> n r C), and 3C. A TBox is a finite set of
general concept inclusions (GCIs) C v D with C,D ∈ CON.

The concept constructors C t D, ∃r.C, ∀r.C, (6 n r C), (= n r C), 2C,
>, and ⊥ are defined as abbreviations in the usual way. Concerning roles, note
that we allow only single applications of boxes and diamonds, while inverse
is applicable only to role names. It is easily seen that any role obtained by
nesting modal operators and inverse in an arbitrary way can be converted into an
equivalent role in this restricted form: multiple temporal operators are absorbed
and inverse commutes over temporal operators.

An S5ALCQI-interpretation I is a pair (W, I) with W a non-empty set of
worlds and I a function assigning to each w ∈ W an ALCQI-interpretation
I(w) = (∆, ·I,w), where the domain ∆ is a non-empty set and ·I,w is a function
mapping each A ∈ NC to a subset AI,w ⊆ ∆ and each r ∈ NR to a relation
rI,w ⊆ ∆ × ∆, such that if r ∈ Nglo, then rI,w = rI,v for all w, v ∈ W . We
extend the mapping ·I,w to complex roles and concepts as shown below:

(r−)I,w := {(y, x) ∈ ∆×∆ | (x, y) ∈ rI,w}
(3r)I,w := {(x, y) ∈ ∆×∆ | ∃v ∈W : (x, y) ∈ rI,v}
(2r)I,w := {(x, y) ∈ ∆×∆ | ∀v ∈W : (x, y) ∈ rI,v}
(¬C)I,w := ∆ \ CI,w

(C uD)I,w := CI,w ∩DI,w

(> n r C)I,w := {x ∈ ∆ | ]{y ∈ ∆ | (x, y) ∈ rI,w and y ∈ CI,w} ≥ n}
(3C)I,w := {x ∈ ∆ | ∃v ∈W : x ∈ CI,v}



An S5ALCQI-interpretation I = (W, I) is a model of a TBox T iff it satisfies
CI,w ⊆ DI,w for all C v D ∈ T and w ∈ W . It is a model of a concept C if
CI,w 6= ∅ for some w ∈W .

3 The ERV T Conceptual Language

In this section, the temporal model ERV T [3] is briefly introduced. We concen-
trate on a fragment ER−V T that only allows for timestamping as that is the main
focus of this paper.

An ER−V T schema is a tuple

Σ = (L,rel,att,card, isa,disj,cover,key, s,t),

in which L stands for a finite alphabet partitioned into the sets E (entity sym-
bols), A (attribute symbols), R (relationship symbols), U (role symbols), and
D (domain symbols). E is furthermore partitioned into a set ES of snapshot
entities (the S-marked entities in Figure 1)1; a set EM of Mixed entities (the
unmarked entities in Figure 1); and a set ET of temporary entities (the T-marked
entities in Figure 1). A similar partition applies to the set R, too. att is a func-
tion that maps an entity symbol in E to an A-labeled tuple over D, att(E) =
〈A1 :D1, . . . , Ah :Dh〉 (e.g., att(Project) = 〈ProjectCode :String〉). rel is a
function that maps a relationship symbol in R to an U-labeled tuple over E ,
rel(R) = 〈U1 :E1, . . . , Uk :Ek〉, and k is the arity of R (e.g., rel(Manages) =
〈man :TopManager, prj :Project〉). card is a function E×R×U 7→ N×(N∪{∞})
denoting cardinality constraints. We denote cmin(E,R,U) and cmax(E,R,U)
the first and second component of card (e.g., card(TopManager, Manages, man) =
(1, 1)). isa is a binary relationship isa ⊆ (E×E)∪(R×R). isa between relation-
ships is restricted to relationships with the same arity (Manager isaEmployee in
Figure 1). disj,cover are binary relations over 2E × E , describing disjointness
and covering partitions, respectively (e.g., Department and InterestGroup are
both disjoint and they cover OrganizationalUnit). key is a function that maps
a class symbol in C to its key attribute, key(E) = A. Keys are visualized as un-
derlined attributes. s,t are binary relations over E ×A containing, respectively,
the snapshot and temporary attributes of an entity (see S,T marked attributes
in Figure 1).

The model-theoretic semantics associated with the ER−V T modeling language
adopts the snapshot representation of abstract temporal databases and temporal
conceptual models [10]. Following this paradigm, given a set T of time points (or
chronons), a temporal database can be regarded as a mapping from time points
in T to standard relational databases, with the same interpretation of constants
and the same domain in time.

1 We adopt an EER graphical style where entities are in boxes and relationships inside
diamonds, isa are directed lines, generalized hierarchies could be disjoint (circle with
a ’d’ inside) or covering (double directed lines).
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Fig. 1. An ER−V T diagram

Definition 1 (ER−V T Semantics). Let Σ be an ER−V T schema. B = (T , ∆B ∪
∆BD, ·B,t) is a temporal database state for the schema Σ, where

– ∆B is a nonempty set disjoint from ∆BD.
– ∆BD =

⋃
Di∈D∆

B
Di

is the set of basic domain values used in the schema Σ
such that ∆BDi

∩∆BDj
= ∅ for i 6= j—we call ∆BDi

active domain.
– ·B,t is a function that for each t ∈ T maps
• Every domain symbolDi ∈ D to the corresponding active domainDB,ti =
∆BDi

—then, DB,ti does not depend on the time t of evaluation.
• Every entity E ∈ E to a set EB,t ⊆ ∆B.
• Every relationship R ∈ R to a set RB,t of U-labeled tuples over ∆B.
• Every attribute A ∈ A to a set AB,t ⊆ ∆B ×∆BD.

B is a legal temporal database state if it satisfies all of the integrity constraints
expressed in the schema (we mention here just the timestamped constructs,
see [3] for more details):

– For each snapshot entity, E ∈ ES , then, e∈EB,t → ∀t′∈T .e∈EB,t′

– For each temporary entity, E ∈ ET , then, e∈EB,t → ∃t′ 6= t.e 6∈EB,t′

– For each snapshot relationship, R∈RS , then, r∈RB,t → ∀t′∈T .r∈RB,t′

– For each temporary relationship, R∈RT , then, r∈RB,t → ∃t′ 6= t.r 6∈RB,t′

– For each entity, E ∈ E , if att(E) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈E,Ai〉 ∈ s,
then, (e ∈ EB,t ∧ 〈e, ai〉 ∈ AB,ti )→ ∀t′ ∈ T .〈e, ai〉 ∈ AB,t

′

i

– For each entity, E ∈ E , if att(E) = 〈A1 : D1, . . . , Ah : Dh〉, and 〈E,Ai〉 ∈ t,
then, (e ∈ EB,t ∧ 〈e, ai〉 ∈ AB,ti )→ ∃t′ 6= t.〈e, ai〉 6∈ AB,t

′

i

Reasoning tasks over conceptual schemas include verifying whether an entity,
a relationship, and/or a schema are consistent, and checking whether an entity



(relationship) subsumes another entity (relationship, respectively). The model-
theoretic semantics associated with a conceptual schema, Σ, allows us to define
formally the following reasoning tasks:

Schema consistency: Σ is consistent if there exists a legal database state B
for Σ such that EB,t 6= ∅, for some entity E ∈ E , and for some t ∈ T .

Entity consistency: An entity E ∈ E is consistent w.r.t. a schema Σ if there
exists a legal database state B for Σ such that EB,t 6= ∅, for some t ∈ T .

Relationship consistency: A relationship R ∈ R is consistent w.r.t. a schema
Σ if there exists a legal database state B for Σ such that RB,t 6= ∅, for some
t ∈ T .

Entity subsumption: An entity E1 ∈ E subsumes an entity E2 ∈ E w.r.t. a
schema Σ if EB,t2 ⊆ EB,t1 , for every legal database state B for Σ and for
every t ∈ T .

The reasoning tasks of Schema/Entity/Relationship consistency and Entity sub-
sumption are reducible to each other (see [2]).

4 Encoding in S5ALCQI

We now show how the temporal description logic S5ALCQI can capture temporal
conceptual schemas expressed in ER−V T . This characterization allows us to sup-
port reasoning on temporal conceptual models by using the reasoning services
of S5ALCQI . The correspondence is based on a mapping function Φ—extending
the one introduced in [9] for non-temporal EER models—from ER−V T schemas
to S5ALCQI knowledge bases.

Informally, the encoding works as follows. Both entity and relationship sym-
bols in the ER−V T diagram are mapped into S5ALCQI concept names (i.e., re-
lationships are reified). Domain symbols are mapped into additional concept
names, pairwise disjoint. Both attributes of entities and roles of relationships
are mapped to role names in S5ALCQI . isa links between entities or between
relationships are mapped using GCI’s. Generalized hierarchies with disjointness
and covering constraints can be captured using Boolean connectives. Cardinal-
ity constraints are mapped using number restrictions in S5ALCQI . Timestamping
constraints are mapped using the S5 modality. Thus, the worlds of the S5ALCQI
interpretation are used as time points.

Definition 2 (Mapping ER−V T into S5ALCQI). Let Σ be an ER−V T schema.
The S5ALCQI knowledge base Φ(Σ) = (NC,NR, Γ ) is defined as follows. The set
NC of concept names is such that: for each symbol X ∈ D∪E ∪R, then, Φ(X) ∈
NC. The set NR = Nloc ∪ Nglo of atomic roles is such that: for each attribute
A ∈ A, then, Φ(A) ∈ Nloc; for each role symbol U ∈ U , then, Φ(U) ∈ Nglo. Φ is
functional over L. The set Γ contains the following S5ALCQI GCIs.

– > v (≤ 1 Φ(A) >), for each A ∈ A (attributes are single-valued)
– For each relationship R∈R such that rel(R) = 〈U1 :E1, . . . , Uk :Ek〉,
Φ(R) v ∃Φ(U1).Φ(E1) u . . . u ∃Φ(Uk).Φ(Ek)—reification axiom
> v (≤ 1 Φ(Ui) >), with i = 1, . . . , k and Φ(Ui) global roles



– Φ(E) v 2Φ(E), for each snapshot entity E ∈ ES
– Φ(R) v 2Φ(R), for each snapshot relationship R ∈ RS
– Φ(E) v ∃2Φ(Ai).>, for each snapshot attribute Ai with 〈E,Ai〉 ∈ s
– Φ(E) v 3¬Φ(E), for each temporary entity E ∈ ET
– Φ(R) v 3¬Φ(R), for each temporary relationship R ∈ RT
– Φ(E) v ∀2Φ(Ai).⊥, for each temporary attribute Ai with 〈E,Ai〉 ∈ t

For the mapping for the remaining atemporal constructors see [3].

The correctness of the mapping can be shown by establishing a precise corre-
spondence between legal database states of ER−V T schemas and models of the
corresponding S5ALCQI TBox.

Proposition 1 (Correctness of the encoding). Let Σ be an ER−V T schema.
Then, Σ admits a legal database state if and only if the corresponding S5ALCQI
knowledge base Φ(Σ) has a model.

Proof.(Sketch)
′′ ⇒′′ Let B = (T , ∆B ∪∆BD, ·B,t) be a legal temporal database state for Σ. To
define an interpretation (T , I) of Φ(Σ) we introduce a new set, ∆R, disjoint
from ∆B ∪ ∆BD and a bijective mapping, φR :

⋃
R∈R,t∈T

RB,t 7→ ∆R. Then, for

each t ∈ T the interpretation I(t) = (∆, ·I,t) is such that:

1. ∆ = ∆B ∪∆BD ∪∆R;
2. For for each symbol X ∈ E ∪ A ∪ D, then Φ(X)I,t = XB,t;
3. For each relationship R ∈ R, then Φ(R)I,t = φR(RB,t);
4. For each Ui ∈ U , if rel(R) = 〈U1 : E1, . . . , Ui : Ei, . . . , Uk : Ek〉 for some
R ∈ R, then: Φ(Ui)I,t = {(r, ei) ∈ ∆R ×∆B | r = φR(e1, . . . , ei, . . . , ek) and
∃t′ ∈ T : (e1, . . . , ei, . . . , ek) ∈ RB,t′}.

It is now sufficient to show that (T , I) satisfies all the GCI’s of Definition 2.
′′ ⇐′′ In [5] (theorem 7) we proved that if an S5ALCQI KB has a model

than it has a tree shaped model. We now prove that for each tree model of
Φ(Σ), (T , I), with I(t) = (∆, ·I,t), there is a legal temporal database state
B = (T , ∆B ∪∆BD, ·B,t) for Σ.
We first define the set of active domains in Σ, ∆BD, starting from Φ(Di)I,t.
Let B∆ be a one-to-one partial mapping, then, ∆BDi

≡ B∆(Φ(Di)I,t), for some
t ∈ T , and ∆BD =

⋃
Di∈D∆

B
Di

. We can now define the temporal database state
B = (T , ∆B ∪∆BD, ·B,t) for each t ∈ T :

1. ∆B = ∆ \∆BD
2. For each E ∈ E : EB,t = Φ(E)I,t;
3. For each n-ary relationship R ∈ R, if rel(R) = 〈U1 :E1, . . . , Uk :Ek〉, then:
RB,t = {〈U1 : e1, . . . , Uk : ek〉 | ∃r ∈ Φ(R)I,t : (r, e1) ∈ Φ(U1)I,t ∧ . . . ∧
(r, ek) ∈ Φ(Uk)I,t};

4. For each Di ∈ D: DB,ti = ∆BDi
;



5. For each A ∈ A: 〈d1, d2〉 ∈ AI,t iff 〈d1,B∆(d2)〉 ∈ AB,t.

Note that, since (T , I) is a tree model, and for each U ∈ U its mapping is
a global and functional role, then there is bijective mapping between tuples
〈U1 : e1, . . . , Uk : ek〉 ∈ RB,t and objects r ∈ Φ(R)I,t : (r, e1) ∈ Φ(U1)I,t ∧ . . . ∧
(r, ek) ∈ Φ(Uk)I,t. We can now prove that B is a legal temporal database state
by showing that B satisfies all the integrity constraints of Definition 1. o

Since checking KB satisfiability is 2-ExpTime-complete [5], the complexity result
follows from the above Proposition immediately.

Proposition 2. Checking satisfiability of ER−V T schemas is in 2-ExpTime.

5 Reasoning with ER−V T is 2-ExpTime-hard

This section shows that reasoning in ER−V T is hard for 2-ExpTime. Since [5] has
shown that already S5glo

ALC , a logic denoting the modal product S5×ALC where
roles are always global, is 2-ExpTime-hard in the following we show a reduction
from S5glo

ALC GCI’s into ER−V T schemas.
First we show that we can restrict GCI’s to primitive inclusions of the form

A v C where A is an atomic concept and C is a concept that conforms to the
following grammar,

C → A | ¬A | A1 tA2 | ∀R.A | ∃R.A | 2A | 3A,

allowing on the right-hand side of subsumption constraints only concept expres-
sions built with at most one constructor, with the exception of conjunction that
is disallowed altogether.

Lemma 1. Concept satisfiability w.r.t. an S5glo
ALC KB can be linearly reduced to

atomic concept satisfiability w.r.t. a primitive S5glo
ALC KB.

Proof.(Sketch) The proof extends to the S5glo
ALC case a well known result proved

in [8]. Let Γ be an S5glo
ALC KB and AΓ be an atomic concept such that:

Γ1 = {AΓ v
l

C1vC2∈Γ

(¬C1 t C2) u
l

P∈NR

(∀P.AΓ u ∀P−.AΓ ), AΓ v 2AΓ }

Then, a concept C is satisfiable w.r.t. Γ iff the atomic concept AC is satisfiable
w.r.t. Γ1 ∪ {AC v AΓ u C}.
The proof is concluded by converting the right-hand sides of constraints in Γ1 ∪
{AC v AΓ u C} to NNF and then exhaustively applying the following rules:

1. A v C1 u C2 into A v C1 and A v C2;
2. A v C1 t C2 into A v A1 tA2 and A1 v C1 and A2 v C2;
3. A v ∃R.C into A v ∃R.A1 and A1 v C;
4. A v ∀R.C into A v ∀R.A1 and A1 v C;
5. A v 2C into A v 2A1 and A1 v C;
6. A v 3C into A v 3A1 and A1 v C.

o



.

.

O S

BA

d

B

B1 B2A

Fig. 2. Encoding of axioms: (a) A v ¬B; (b) A v B1 tB2.

.

.

A1 S

BA2 TA

B

A

A1 S

Fig. 3. Encoding of axioms: (a) A v 3B; (b) A v 2B.

.

.

CR

CRA

CR
A

A

A

B

O S

R1 S

R2 S

RA1

R
A1

RA2

1,1

1,1

1, 1 1, 1

1, 1cov

disj

(a)

CR

CRAB
AB

O S

R1 S

R2 S

RAB1RAB2

1,1

1,1

1, 1 1, n1, 1

(b)

Fig. 4. Encoding of axioms: (a) A v ∀R.B; (b) A v ∃R.B.



Now we can reduce satisfiability of atomic concepts w.r.t. a primitive S5glo
ALC

theory KB to entity consistency in an ER−V T diagram Σ(KB). The mapping is
based on a temporal extension of a reduction designed for capturing ALC axioms
in EER [7].

For each atomic concept in KB we introduce an entity inΣ(KB). To simulate
the universal concept, >, we introduce a snapshot class, O, that generalizes all
the entities in Σ(KB). Since the hardness proof in [5] uses solely global roles
we map GCI’s of the form A v ∃R.B and A v ∀R.B assuming that R ∈ Nglo.
Furthermore, roles are mapped with the help of reification [2]. The primitive
inclusions in KB that were obtained with the help of Lemma 1 are mapped into
ER−V T diagrams as follows:

1. A v B by A isaB;
2. A v ¬B by diagram in Figure 2(a);
3. A v B1 tB2 by diagram in Figure 2(b);
4. A v 3B by diagram in Figure 3(a);
5. A v 2B by diagram in Figure 3(b);
6. A v ∀R.B by diagram in Figure 4(a);
7. A v ∃R.B by diagram in Figure 4(b).

Proposition 3. An atomic concepts A is satisfiable w.r.t. a primitive KB in
S5glo
ALC iff the entity A is consistent w.r.t. the ER−V T schema Σ(KB).

Proof. (⇐) Let B = (T , ∆B, ·B,t) be a legal database for Σ(KB) such that
EB,t 6= ∅ for some t ∈ T . We construct a model M = (T , I) of KB, where
I(t) = (∆, ·I,t), by taking ∆ = ∆B, AI,t = AB,t, for all concept names A in K,
and RI,t = (R−1 ◦R2)B,t, for all role names R in KB, where ◦ denotes the binary
relation composition. Clearly, EI,t 6= ∅. Let us show that M is indeed a model
of KB. The cases of axioms of the form A v B, A v ¬B and A v B1 t B2 are
treated as in [7]. Let us consider the remaining cases.

Case A v ∀R.B—with R ∈ Nglo. Let o ∈ AI,t and o′ ∈ ∆ with (o, o′) ∈ RI,t.
Since RI,t = (R−1 ◦ R2)B,t and R1, R2 are snapshot relationships, then, R is
indeed interpreted as a global role. We show now that o ∈ (∀R.B)I,t. Since
RI,t = (R−1 ◦R2)B,t, there is o′′ ∈ ∆B with (o, o′′) ∈ (R−1 )B,t and (o′′, o′) ∈ RB,t2 .
Then o′′ ∈ CB,tR and, by the covering constraint, o′′ ∈ CB,tRA

∪CB,tRA
. We claim that

o′′ ∈ CB,tRA
. Indeed, suppose otherwise; then o′′ ∈ CB,tRA

, and so there is a unique

a ∈ ∆B such that (o′′, a) ∈ RB,t
A1

and a ∈ AB,t; it follows from RB,t
A1
⊆ RB,t1 and

the cardinality constraint on CR that a = o, contrary to o ∈ AB,t = AI,t and
the disjointness of A and A. Since o′′ ∈ CB,tRA

, there is a unique b ∈ ∆B with
(o′′, b) ∈ RB,tA2 and b ∈ BB,t. From RB,tA2 ⊆ R

B,t
2 and the cardinality constraint on

CR, we conclude that b = o′. Thus, o′ ∈ BB,t = BI,t and o ∈ (∀R.B)I,t.

Case A v ∃R.B—with R ∈ Nglo. Let o ∈ AI,t. Since o ∈ AI,t = AB,t,
there is o′ ∈ ∆B with (o, o′) ∈ (R−AB1)B,t and o′ ∈ CB,tRAB

. As RB,tAB1 ⊆ RB,t1 ,
we have (o, o′) ∈ (R−1 )B,t, and, as o′ ∈ CB,tRAB

, there is o′′ ∈ ∆B such that



(o′, o′′) ∈ RB,tAB2 ⊆ R
B,t
2 and o′′ ∈ BB,t = BI,t. Thus, as RI,t = (R−1 ◦R2)B,t, we

obtain (o, o′′) ∈ RI,t and o′′ ∈ BI,t, i.e., o ∈ (∃R.B)I,t.
Case A v 3B. Let o ∈ AI,t = AB,t. Then, for all t ∈ T , o ∈ AB,t1 . Due to

the covering constraint either o ∈ BB,t—thus the thesis is proved—or o ∈ AB,t2 .
In this second case, since A2 is a temporary entity there is a time t′ such that
o 6∈ AB,t

′

2 and thus o ∈ BB,t′ = BI,t
′
.

Case A v 2B. Let o ∈ AI,t = AB,t. Then, o ∈ AB,t1 and since A1 is a
snapshot entity, then, o ∈ AB,t1 for all t ∈ T . Then, o ∈ BB,t = BI,t for all t ∈ T .

(⇒) Let M = (T , I), where I(t) = (∆, ·I,t), be an S5glo
ALC model of KB

such that EI,t 6= ∅ for some t ∈ T . We construct a legal database state B =
(T , ∆B, ·B,t) for Σ(KB) such that EB,t 6= ∅. Let ∆B = ∆ ∪ Γ , where Γ is the
disjoint union of the ∆R = {(o, o′) ∈ ∆ × ∆ | (o, o′) ∈ RI,t, t ∈ T }, for all
R ∈ Nglo. We set AB,t = AI,t and A

B,t
= (¬A)I,t, for all concept names A,

OB,t = ∆ for every t ∈ T , for the entity O, and CB,tR = ∆R for every t ∈ T ,
for all S5glo

ALC role names R. Next, for every primitive S5glo
ALC GCI of the form

A v ∀R.B, we set

– CB,tRA
= {(o, o′) ∈ ∆R | o ∈ AI,t}, CB,tRA

= {(o, o′) ∈ ∆R | o ∈ (¬A)I,t},
– RB,t1 = {((o, o′), o) ∈ ∆R ×∆ | (o, o′) ∈ RI,t},
– RB2 = {((o, o′), o′) ∈ ∆R ×∆ | (o, o′) ∈ RI,t},
– RB,tA1 = {((o, o′), o) ∈ RB,t1 | o ∈ AI,t}, RB,t

A1
= {((o, o′), o) ∈ RB1 | o ∈

(¬A)I,t},
– RB,tA2 = {((o, o′), o′) ∈ RB2 | o ∈ AI,t},

and, for every primitive S5glo
ALC axiom of the form A v ∃R.B, we set

– CB,tRAB
= {(o, o′) ∈ ∆R | o ∈ AI,t and o′ ∈ BI,t},

– RB,t1 = {((o, o′), o) ∈ ∆R ×∆ | (o, o′) ∈ RI,t},
– RB,t2 = {((o, o′), o′) ∈ ∆R ×∆ | (o, o′) ∈ RI,t},
– RB,tAB1 = {((o, o′), o) ∈ RB,t1 | (o, o′) ∈ CB,tRAB

}.
– RB,tAB2 = {((o, o′), o′) ∈ RB,t2 | (o, o′) ∈ CB,tRAB

}.

It is now easy to show that B is a legal database state for Σ(KB) and EB,t 6= ∅.
o

A tight complexity bound for reasoning in ER−V T is a direct consequence of the
above Proposition and of Proposition 2.

Theorem 1. Reasoning in ER−V T is 2-ExpTime-complete.

6 Conclusion

The paper shows that even very simple temporal extensions of the EER model,
such as timestamping, lead to a considerable increase in computational com-
plexity for the underlying reasoning tasks. Future research is needed to design
fragments of the EER model for which temporal extensions are computationally
more amenable while they still retain sufficient expressiveness.
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