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Abstract. Hybrid EL-TBoxes combine general concept inclusions (GCIs),
which are interpreted with descriptive semantics, with cyclic concept def-
initions, which are interpreted with greatest fixpoint (gfp) semantics. We
introduce a proof-theoretic approach that yields a polynomial-time deci-
sion procedure for subsumption in EL w.r.t. hybrid TBoxes, and present
preliminary experimental results regarding the performance of the rea-
soner Hyb that implements this decision procedure.

1 Introduction

The EL-family of description logics (DLs) is a family of inexpressive DLs whose
main distinguishing feature is that they provide their users with existential re-
strictions rather than value restrictions as the main concept constructor involving
roles. The core language of this family is EL, which has the top concept (>),
conjunction (u), and existential restrictions (∃r.C) as concept constructors. This
family has recently drawn considerable attention since, one the one hand, the
subsumption problem stays tractable (i.e., decidable in polynomial time) in situ-
ations where the corresponding DL with value restrictions becomes intractable.
In particular, subsumption in EL is tractable both w.r.t. cyclic TBoxes inter-
preted with gfp or descriptive semantics [3] and w.r.t. general TBoxes (i.e., finite
sets of GCIs) interpreted with descriptive semantics [8, 4]. On the other hand,
although of limited expressive power, EL is nevertheless used in applications,
e.g., to define biomedical ontologies. For example, both the large medical ontol-
ogy Snomed ct [15] and the Gene Ontology [1] can be expressed in EL, and the
same is true for large parts of the medical ontology Galen [14]. To support such
applications, several EL reasoners have been developed. Implementations of the
polynomial-time decision procedures for subsumption w.r.t. cyclic EL-TBoxes
introduced in [3] were described in [16]. An optimised version of the algorithm
dealing with the case of general TBoxes [8, 4] was implemented in the CEL system
[6, 7], which is able to classify very large ontologies such as Snomed.

In some cases, it would be advantageous to have both GCIs interpreted
with descriptive semantics and cyclic concept definitions interpreted with gfp-
semantics available in one TBox. One motivation for such hybrid TBoxes comes
from the area of non-standard inferences in DLs. For example, if one wants
to support the so-called bottom-up construction of DL knowledge bases, then
one needs to compute least common subsumers (lcs) and most specific concepts



(msc) [5]. In [2], it was shown that the lcs and the msc in EL always exist and
can be computed in polynomial time if cyclic definitions that are interpreted
with gfp-semantics are available. In contrast, if cyclic definitions or GCIs are
interpreted with descriptive semantics, neither the lcs nor the msc need to exist.

Hybrid EL TBoxes have first been introduced in [10]. Basically, such a TBox
consists of two parts T and F , where T is a cyclic TBox whose primitive concepts
occur in the GCIs of the general TBox F . However, defined concepts of T must
not occur in F . It was shown in [10] that subsumption w.r.t. such hybrid TBoxes
can still be decided in polynomial time. The algorithm uses reasoning w.r.t. the
general TBox F to extend the cyclic TBox T to a cyclic TBox T̂ such that
subsumption can then be decided considering only T̂ . An implementation of
this approach is described in [12]. It uses the reasoner for cyclic EL-TBoxes with
gfp semantics described in [16] to classify the extended TBox T̂ . The reasoning
w.r.t. the general TBox, which is required to compute the extension T̂ , employs
a preliminary implementation of the algorithm in [8], which is also described in
[16].1 In [9] it was shown that, w.r.t. hybrid EL-TBoxes, the lcs and msc always
exits and can be computed in polynomial time.

An approach for deciding subsumption in EL that significantly differs from
the ones described in [3, 8, 4] was introduced in [11]. It is based on sound and
complete Gentzen-style proof calculi for subsumption w.r.t. cyclic TBoxes inter-
preted with gfp semantics and for subsumption w.r.t. general TBoxes interpreted
with descriptive semantics. These calculi yield polynomial-time decision proce-
dures since they satisfy an appropriate sub-description property.

In this paper, we show that we can obtain a polynomial-time decision pro-
cedure for subsumption w.r.t. hybrid EL-TBoxes by combining the two calculi
introduced in [11]. We also report on first experimental results regarding the per-
formance of our implementation of this decision procedure in the system Hyb.2

Notice that both general EL-TBoxes interpreted by descriptive semantics and
cyclic EL-TBoxes interpreted with gfp semantics are special cases of the hybrid
EL-TBoxes. Thus, our decision procedure can also classify these kinds of TBoxes.

2 Hybrid EL-TBoxes

Starting with a set Ncon of concept names and a set Nrole of role names, EL-
concept descriptions are built using the concept constructors top concept (>),
conjunction (u), and existential restrictions (∃r.C). The semantics of EL is de-
fined in the usual way, using the notion of an interpretation I = (DI , ·I), which
consists of a nonempty domain DI and an interpretation function ·I that assigns
binary relations on DI to role names and subsets of DI to concept descriptions,
as shown in the semantics column of Table 2.

A concept definition is an expression of the form A ≡ C where A is a concept
name and C is a concept description, and a general concept inclusion (GCI)

1 This implementation is not as efficient as the one later developed for the CEL system.
2 see http://lat.inf.tu-dresden.de/systems/Hyb/.



Name Syntax Semantics

concept name A AI ⊆ DI

role name r rI ⊆ DI ×DI

top-concept > >I = DI

conjunction C uD (C uD)I = CI ∩DI

exist. restriction ∃r.C (∃r.C)I = {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}
concept definition A ≡ C AI = CI

subsumption C v D CI ⊆ DI

Table 1. Syntax and semantics of EL

is an expression of the form C v D, where C,D are concept descriptions. An
interpretation I is a model of a concept definition or GCI if it satisfies the
respective condition given in the semantics column of Table 2. This semantics
for GCIs and concept definitions is usually called descriptive semantics. A TBox
is a finite set T of concept definitions that does not contain multiple definitions,
i.e., {A ≡ C,A ≡ D} ⊆ T implies C = D. Note that we do not require TBoxes to
be acyclic, i.e., there may be cyclic dependencies among the concept definitions.
A general TBox is a finite set of GCIs. The interpretation I is a model of
the TBox T (the general TBox F) iff it is a model of all concept definitions
(GCIs) in T (in F). The name general TBox is justified by the fact that concept
definitions A ≡ C can of course be expressed by GCIs A v C,C v A. However,
in our hybrid TBoxes we will interpret concept definitions by greatest fixpoint
semantics rather than by descriptive semantics.

We assume in the following that the set of concept names Ncon is partitioned
into the set of primitive concepts Nprim and the set of defined concepts Ndef .
In a hybrid TBox, concept names occurring on the left-hand side of a concept
definition are required to come from the set Ndef , whereas GCIs may not contain
concept names from Ndef .

Definition 1 (Hybrid EL-TBoxes). A hybrid EL-TBox is a pair (F , T ),
where F is a general EL-TBox containing only concept names from Nprim , and
T is an EL-TBox such that A ≡ C ∈ T implies A ∈ Ndef .

An example of a hybrid EL-Tbox, taken form [10], is given in Fig. 1. It defines
the concepts ‘disease of the connective tissue,’ ‘bacterial infection,’ and ‘bacterial
pericarditis’ using the cyclic definitions in T . The general TBox F states some
properties that the primitive concepts and roles occurring in T must satisfy, such
as the fact that a disease located on connective tissue also acts on the connective
tissue.

In general, the idea underlying the definition of hybrid TBoxes is the follow-
ing: F can be used to constrain the interpretation of the primitive concepts and
roles, whereas T tells us how to interpret the defined concepts occurring in it,
once the interpretation of the primitive concepts and roles is fixed.



T : ConnTissDisease ≡ Disease u ∃acts on.ConnTissue
BactInfection ≡ Infection u ∃causes.BactPericarditis

BactPericarditis ≡ Inflammation u ∃has loc.Pericardium
u ∃caused by.BactInfection

F : Disease u ∃has loc.ConnTissue v ∃acts on.ConnTissue
Inflammation v Disease
Pericardium v ConnTissue

Fig. 1. A small hybrid EL-TBox.

A primitive interpretation J is defined like an interpretation, with the only
difference that it does not provide an interpretation for defined concepts. A
primitive interpretation can thus interpret concept descriptions built over Nprim

and Nrole , but it cannot interpret concept descriptions containing elements of
Ndef . Given a primitive interpretation J , we say that the (full) interpretation
I is based on J if it has the same domain as J and its interpretation function
coincides with J on Nprim and Nrole .

Given two interpretations I1 and I2 based on the same primitive interpreta-
tion J , we define

I1 �J I2 iff AI1 ⊆ AI2 for all A ∈ Ndef .

It is easy to see that the relation�J is a partial order on the set of interpretations
based on J . In [3] the following was shown: given an EL-TBox T and a primitive
interpretation J , there exists a unique model I of T such that

– I is based on J ;
– I ′ �J I for all models I ′ of T that are based on J .

We call such a model I a gfp-model of T .

Definition 2 (Semantics of hybrid EL-TBoxes). The interpretation I is a
hybrid model of the hybrid EL-TBox (F , T ), iff I is a gfp-model of T and the
primitive interpretation J it is based on is a model of F .

It is well-known that gfp-semantics coincides with descriptive semantics for
acyclic TBoxes. Thus, if T is actually acyclic, then I is a hybrid model of (F , T )
according to the semantics introduced in Definition 2 iff it is a model of T ∪ F
w.r.t. descriptive semantics, i.e., iff I is a model of every GCI in F and of every
concept definition in T .

3 Subsumption w.r.t. Hybrid EL-TBoxes

Based on the semantics for hybrid TBoxes introduced above, we can now define
the main inference problem that we want to solve in this paper.



C vn C (Refl) C vn > (Top) C v0 D (Start)

C vn E

C uD vn E (AndL1)

D vn E

C uD vn E (AndL2)

C vn D C vn E

C vn D u E (AndR)

C vn D

∃r.C vn ∃r.D (Ex)

C vn D

A vn D (DefL)

D vn C

D vn+1 A (DefR)

C vn E F vn D

C vn D (GCI)

for A ≡ C ∈ T for A ≡ C ∈ T for E v F ∈ F

Fig. 2. The rule system HC

Definition 3 (Subsumption w.r.t. hybrid EL-TBoxes). Let (F , T ) be a
hybrid EL-TBox, and A,B defined concepts occurring on the left-hand side of a
definition in T . Then A is subsumed by B w.r.t. (F , T ) (written A vgfp,F,T B)
iff AI ⊆ BI holds for all hybrid models I of (F , T ).

Defining (and computing) subsumption only for concept names A,B defined in
T rather than for arbitrary concept descriptions C,D is not a real restriction
since one can always add definitions with the right-hand sides C,D to T .

Assume that the hybrid EL-TBox (F , T ) is given, and that we want to
decide whether, for given defined concepts A,B, the subsumption relationship
A vgfp,F,T B holds or not. Following the ideas in [11], we introduce a sound and
complete Gentzen-style calculus for subsumption. The reason why this calculus
yields a decision procedure is basically that it has the sub-description property,
i.e., application of rules can be restricted to sub-descriptions of concept descrip-
tions occurring in F or T .

A sequent for (F , T ) is of the form C vn D, where C,D are sub-descriptions
of concept descriptions occurring in F or T , and n ≥ 0. The rules of the Hybrid
EL-TBox Calculus HC depicted in Fig. 2 can be used to derive new sequents
from sequents that have already been derived. For example, the sequents in the
first row of the figure can always be derived without any prerequisites, using
the rules Refl, Top, and Start, respectively. Using the rule AndR, the sequent
C vn D u E can be derived in case both C vn D and C vn E have already
been derived. Note that the rule Start applies only for n = 0. Also note that, in
the rule DefR, the index is incremented when going from the prerequisite to the
consequent.

Fig. 3 shows a derivation in HC w.r.t. the hybrid EL-TBox from Fig. 1, where
obvious abbreviations of concept and role names have been made. This derivation
tree demonstrates that the sequent BactPericarditis vn+1 ConnTissDisease can



Infl vn Infl D vn D

Infl vn D

Infl u ∃hl.P vn D

Infl vn Infl D vn D

Infl vn D

Infl u ∃hl.P vn D

P vn P CT vn CT

P vn CT

∃hl.P vn ∃hl.CT

Infl u ∃hl.P vn ∃hl.CT

Infl u ∃hl.P vn D u ∃hl.CT ∃ao.CT vn ∃ao.CT

Infl u ∃hl.P vn ∃ao.CT

Infl u ∃hl.P vn D u ∃ao.CT

Infl u ∃hl.P u ∃cb.BI vn D u ∃ao.CT

BP vn D u ∃ao.CT

BP vn+1 CTD

Fig. 3. An example of a derivation in HC.

be derived for every n ≥ 0. Note that we can also derive BactPericarditis v0

ConnTissDisease using the rule Start.
The calculus HC defines binary relations vn for n ∈ {0, 1, . . .} ∪ {∞} on the

set of sub-descriptions of concept descriptions occurring in F or T :

Definition 4. Let C,D be sub-descriptions of the concept descriptions occurring
in F or T . Then C vn D holds iff the sequent C vn D can be derived using the
rules of HC. In addition, C v∞ D holds iff C vn D holds for all n ≥ 0.

The calculus HC is sound and complete for subsumption w.r.t. hybrid EL-
TBoxes in the following sense.

Theorem 1 (Soundness and Completeness of HC). Let (F , T ) be a hy-
brid EL-TBox, and A,B defined concepts occurring on the left-hand side of a
definition in T . Then A vgfp,F,T B iff A v∞ B holds.

A detailed proof of this theorem is given in [13]. Though the rules of HC are
taken from the sound and complete subsumption calculi introduced in [11] for
subsumption w.r.t. cyclic EL-TBoxes interpreted with gfp-semantics and for sub-
sumption w.r.t. general EL-TBoxes interpreted with descriptive semantics, re-
spectively, the proof that their combination is sound and complete for the case
of hybrid EL-TBoxes requires non-trivial modifications of the proofs given in
[11]. Nevertheless, we think that these proofs are simpler and easier to compre-
hend than the ones given in [10, 12] for the correctness of the reduction-based
subsumption algorithm for hybrid EL-TBoxes introduced there.

In our example, we have BactPericarditisv∞ ConnTissDisease, and thus sound-
ness of HC implies that the subsumption relationship BactPericarditis vgfp,F,T
ConnTissDisease holds.

It is not hard to show that v0 is the universal relation on sub-descriptions
of the concept descriptions occurring in F or T , and that vn+1 ⊆ vn holds for
all n ≥ 0 (see [13] for a proof). Thus, to compute v∞ we can start with the
universal relation v0, and then compute v1,v2, . . ., until for some m we have
vm = vm+1, and thus vm = v∞. Since the set of sub-descriptions is finite,
the computation of each relation vn can be done in finite time, and we can be



sure that there always exists an m such that vm = vm+1. This shows that the
calculus HC indeed yields a subsumption algorithm.

4 The Algorithm and its Implementation

In this section, we describe how to develop a practical algorithm based on the
decision procedure for subsumption w.r.t. hybrid EL-TBoxes introduced in the
previous section. As mentioned above, the algorithm starts with the universal
relation v0, and then iteratively compute the relations vn for increasing n until
a fixpoint is reached, i.e., an m such that vm = vm+1. There are two possibil-
ities for computing vn given vn−1: the bottom-up approach and the top-down
approach, where bottom-up and top-down is meant w.r.t. the proof trees of the
calculus HC (like the one depicted in Fig. 3).

The bottom-up search starts with a target sequent C vn D as the root and
then non-deterministically applies one of the HC rules backwards, i.e., it ex-
tends the proof tree with the prerequisites needed to apply the rule in a way
that derives the target sequent. Clearly, the initial sequent C vn D is provable
iff all the spawned prerequisites are provable. Thus, one continues in the same
way with the prerequisites as target sequents. If eventually all the prerequisites
are instances of the rules (Refl), (Top), or (Start), or have been proved in the
previous iteration (i.e., when computing vn−1), then the proof tree is complete,
implying that the initial sequent can be derived. Due to the presence of GCIs,
termination of this search procedure is, however, not guaranteed. In order to re-
gain termination we need a blocking mechanism to ensure that the same sequent
is not tried to be proved twice along the same path. One can also optimise the
search procedure by caching already proved sequents and by reusing them in
other branches of the proof tree whenever appropriate. Though the termination
problem could in principle be solved by blocking, this approach was nevertheless
not chosen for our implementation of the Hyb reasoner. On the one hand, the
bottom-up search is non-deterministic, with backtracking necessary to try out
different HC rules at various levels of the proof tree. On the other hand, the fact
that the bottom-up approach is goal oriented is not really useful here since we
need to compute the whole relation vn anyway. In fact, otherwise we would not
be able to detect that a fixpoint has been reached.

In the remainder of this section, we focus on the top-down approach, which
is the one realized in the Hyb reasoner.

The algorithm implemented in Hyb

The top-down approach does not start with a single target sequent, i.e., the root
of a proof tree. Instead, it starts with all potential leaf sequents, i.e., all instances
of (Refl) and (Top). Instances of (Start) are considered only in the computation
of v0. The algorithm maintains two tables of derivable subsumptions:

ds : Subs(F,T ) × Subs(F,T ) → {0, 1} and ds− : Subs(F,T ) × Subs(F,T ) → {0, 1},



where Subs(F,T ) denotes the set of sub-descriptions of the concept descriptions
occurring in F or T . Intuitively, when computing vn, then ds assigns 1 to (C,D)
if we have already computed that C vn D holds, whereas ds− has full informa-
tion about vn−1, i.e., ds−(C,D) = 1 iff C vn−1 D holds.

For the case n = 0, the rule (Start) tells us that we must initialise ds[C,D]
to 1 for all sub-descriptions C,D ∈ Subs(F,T ). We divide the rules of HC into
two groups, namely, (DefR) and the others. In each iteration, the algorithm first
exhaustively applies all the rules other than (DefR). When this is done, and an
instance of (DefR) is applicable, then it advances to the next generation (i.e.,
from n to n + 1) by performing the following steps:

1. set ds−[C,D] := ds[C,D] for all sub-descriptions C,D;
2. set ds[C,D] to 1 if C = D or D = >, and 0 otherwise; and
3. set ds[D,A] to 1 if ds−[D,C] = 1 and A ≡ C ∈ T .

Obviously, Step 2 corresponds to the application of the rule (Refl) and (Top),
while Step 3 realizes the rule (DefR). After this initialisation, all other rules are
again exhaustively applied to compute vn+1.

To guide the rule application within one iteration, we use a candidate queue
that stores potentially applicable rule instances. These queues are initialised
according to Steps 2 and 3 introduced above. A rule application changes some
value ds[C,D] from 0 to 1, which may in turn trigger another rule application.
This is taken care of by appropriately augmenting the candidate queue.

The algorithm stops when no more rule applies in the current iteration, and
the two tables of derivable subsumptions coincide, i.e., ds[C,D] = ds−[C,D]
for all C,D ∈ Subs(F,T ). This means that the fixpoint has been reached, and
the table ds can be used to correctly answer subsumption queries for all sub-
descriptions occurring in the hybrid TBox (F , T ).

The algorithm terminates in time polynomial in the size of the input since

1. iterations can only remove derivable subsumptions due to the fact that
vn+1 ⊆ vn, and there are at most a quadratic number of entries in the
tables ds;

2. there are polynomially many applicable rule instances in each iteration, and
3. each rule instance is applied at most once, and its application takes only

polynomial time.

Optimisations

Despite running in polynomial-time, an unoptimised implementation of the al-
gorithm would not behave well in practice. Here we describes some of the op-
timisation techniques that we have employed in the implementation of the Hyb
reasoner.

Monotonicity. As mentioned before, the mapping n 7→ vn is monotone, i.e.,
if C vn D does not hold, then neither can C vn+1 D. Thus, if we have
ds−[C,D] = 0, then it is clear that we can never get ds[C,D] = 1. This fact



can be used to avoid attempting certain rule applications for which it is clear
that they can never be successful.

Invariant derivations. For n ≥ 1 we can distinguish derivable sequents C vn

D that require the rule (DefR) from those that do not. In fact, the latter set
of sequents is the same for all n ≥ 1. Thus, it is enough to compute them
once, when computing v1. Afterwards, they are simply transferred to the
current relation vn without the need to recompute them.

Single iteration. If the hybrid TBox contains only GCIs and no concept defi-
nitions, i.e., T is empty, then a single iteration of the algorithm is sufficient,
i.e., it is enough to compute v1. Thus, we can avoid the initialisation of ds
for the case n = 0, which corresponds to disabling the rule (Start). Also, it
is enough to create and maintain just one table ds for the case n = 1. This
way, the space requirement of the algorithm is reduced by half.

The algorithm together with the optimisation techniques sketched above has
been implemented in our Hyb reasoner, using Common LISP. More details can
be found on the system’s Web page http://lat.inf.tu-dresden.de/systems/
hyb/.

5 Experimental Results

This section describes our experiments on several life science ontologies. To eval-
uate the Hyb reasoner, we have compared its performance with that of the rea-
soner for cyclic EL-TBox with gfp-semantics from [16], the reasoner for hybrid
EL-TBox from [12], and CEL [7]. All the experiments were performed on a PC
with a 1.7 GHz Pentium-4 CPU and 512 MB of physical memory, running Linux
version 2.6.14. All participating reasoners were written in Common LISP, and
we used Allegro CL version 8.1 as the runtime environment.

Our benchmarks comprise the toy ontology from Figure 1, the Gene Ontol-
ogy (Go), the National Cancer Institute’s thesaurus (Nci), and several subsets
of the Galen Medical Knowledge Base (Galen).3 Since none of the reasoners,
apart from CEL, supports role axioms, we have removed role axioms from all the
ontologies. These benchmark ontologies are referred to as Otoy, OGo, ONci, and
OGalen in the following. Some information on the size of these ontologies is given
in the upper part of Table 2. There, OGalen with a subscript refers to its various
subsets used in the experiments. Note that Otoy is the only hybrid TBox, while
OGo and ONci are in principle acyclic TBoxes,4 and OGalen is a general TBox.
The classification times given in the lower part of the table are in second, where
‘unatt.’ means that the reasoner did not terminate on the input after five hours.
3 More information regarding these ontologies is available at http://lat.inf.

tu-dresden.de/~meng/toyont.html.
4 All GCIs in OGo and ONci are of the form A v C with A a concept name, and can

be absorbed into the concept definitions A ≡ P u C with P a fresh concept name.



OGo ONci OGalen OGalen
1 OGalen

2 OGalen
3 Otoy

]Definitions 0 0 699 24 689 699 3

]GCIs 16 803 46 807 3 252 2 713 339 0 3

]Concept names 16 806 27 652 2 049 1 798 642 420 6

]Role names 1 50 159 109 133 128 4

Hyb 3 482 16 252 10 457 290 745 158 0.01

Reasoner from [16] 592 unatt. n/a n/a n/a 12 310 n/a

Reasoner from [12] unatt. unatt. unatt. unatt. unatt. unatt. 0.02

CEL 2.24 11.98 10 1.35 0.94 0.77 n/a

Table 2. Benchmarks and classification times (in seconds).

We write ‘n/a’ to express that the reasoner does not support this type of TBox.
In particular, the gfp-reasoner from[16] cannot handle GCIs, while CEL does not
support the gfp-semantics used for hybrid TBoxes.

We can observe that Hyb can classify all the benchmark ontologies, and that
it outperforms both the gfp-reasoner from [16] (except for the case of OGo)
and the one for hybrid TBoxes from [12]. It should be noted, however, that
the gfp-reasoner from [16] was a prototypical implementation without many
optimisations. The reasoners for hybrid TBoxes from [12] uses this gfp-reasoner
from [16] and it also employes a quite preliminary reasoner for general EL-
TBoxes, also described in [16].

The significantly better performance of CEL did not come as a surprise. On
the one hand, Hyb can deal with a more expressive TBox formalism. On the
other hand, we have spent quite some work on optimising CEL, whereas the
current implementation of Hyb is still rather preliminary. Given this, we find the
fact that Hyb can (in contrast to the reasoners from [16] and [12]) classify all the
benchmark ontologies very promising.

6 Conclusion

In this paper, we have described a Gentzen-style calculus for subsumption w.r.t.
hybrid EL-TBoxes, which is an extension to the case of hybrid TBoxes of the
calculi for general TBoxes and for cyclic TBoxes with gfp-semantics that have
been introduced in [11]. Based on this calculus, we have developed a polynomial-
time decision procedure for subsumption w.r.t. hybrid EL-TBoxes, and have
sketched its implementation in the Hyb reasoner. Our experiments on life-science
ontologies have shown that an acceptable performance of reasoning w.r.t. hybrid
semantics can be achieved in practice. Since the main motivation for considering
hybrid TBoxes was that, w.r.t. them, the lcs and msc always exist, the natural
next step is to develop a proof-theoretic approach to computing the lcs and
the msc. For the lcs, such an approach is already described in [13]. We are
currently working on the case of the msc. Other future work in this direction is



to further optimise the algorithm described in this paper, and to extend it to
more expressive DLs from the EL family.
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