
Supporting the Design of Ontologies for Data
Access

A Preliminary Investigation

Lina Lubyte and Sergio Tessaris

Faculty of Computer Science – Free University of Bozen-Bolzano

Abstract. The benefits of using an ontology over relational data sources
to mediate the access to these data are widely accepted and well un-
derstood. However, building such ontologies is a time consuming and
error-prone process. Recently this problem has been tackled by propos-
ing a technique for automatically wrapping the relational data sources by
means of an ontology. In this paper we address the problem of support-
ing the ontology engineer in the task of enriching of such ontologies. In
fact, changes to the ontology can be unsupported by the underlying data
sources; which means that it is likely that queries against the enriched
ontology return empty answers. To avoid this problem the ontology must
be carefully handcrafted, and we propose a first step towards the auto-
matic support of this task. We provide an algorithm, based on query
reformulation, for verifying emptiness of a term in the enriched ontology
with respect to the data sources. Moreover, we show how this algorithm
can be applied to guide the user in designing meaningful wrappers.

1 Introduction

The use of a conceptual model or an ontology to access relational data sources
has been shown to be necessary to overcome many important database prob-
lems. These include federated databases [1], data warehousing [2], information
integration through mediated schemata [3], and the Semantic Web [4] (for a
survey see [5]). Ontologies provide a conceptual view of the application domain,
therefore they can be employed for navigational (and reasoning) purposes when
accessing the data. This provides an additional motivation for supporting the
extraction and maintenance of ontologies from database schema [6]. However, in
order to fully leverage these technologies for accessing the data, it is necessary
to preserve the mapping between data sources and ontologies.

In our previous work we defined a framework for the automatic extraction
of ontologies from relational databases (see [7]). The semantic mapping between
the database schema and the ontology is captured by associating a view over
the source data to each element of the ontology. Thus, the vocabulary over the
ontology can be seen as a set of (materialised) views over the vocabulary of
the data source (i.e., similar to the technique known as GAV approach in the
information integration literature [3]). The advantages of such a scenario are

clear since it enables to access and query the underlying data using a richer
ontology vocabulary.

As described in our previous paper, queries over the extracted ontology can
be simply evaluated by expanding the corresponding views (by virtue of the
extraction algorithm each term has an associated view). Roughly speaking, the
reason for this is that the extraction algorithm uses the constraints from the
relational source; therefore we are guaranteed that the database is the minimal
model for the generated ontology as well (see [8] for details). However, as soon
as the extracted ontology is modified, the simple expansion of the views is no
longer enough and the newly added constraints and terms must be taken into
account. Using an appropriate ontology language, this can be done by means of
query rewriting techniques (see [9]).

In most of the cases extracted ontologies are rather “flat”, and constitute a
bare bootstrap ontology rather than a rich vocabulary enabling enhanced data
access. For this reason, the task of enriching the extracted ontology is crucial in
order to build a truly effective ontology-based information access system. In this
paper we concentrate on this latter task, showing that it is a complex and error
prone process; in particular, when the purpose is to be able to access the data
by means of the resulting ontology.

The process of modifying a given ontology involves at least the introduction
of new axioms and/or new terms.1 While, from a purely ontological viewpoint, an
ontology can be arbitrarily modified; we need to bear in mind that the ultimate
purpose of the system is to access or wrap the information available from the
data sources. This means that we should be able to use the newly introduced
terms in order to retrieve data from the sources.

It is easy to provide examples where perfectly sensible changes lead to terms
which are completely useless; in the sense that queries over these terms will
always be empty. This not necessarily because they are unsatisfiable in the usual
model theoretic meaning, but because there is no underlying data supporting
them (see Section 3.1 for examples). Usually, in order to ensure that queries
over ontologies wrapping data sources provide sensible answers, these ontologies
are carefully handcrafted by taking into account the semantics of the introduced
axioms.

To the best of our knowledge, little or no research has been devoted to the
support of the ontology engineer in such a complex and error prone task. Our
research is directed to techniques and tools to support this modelling process. In
this paper we present some preliminary results in this direction, presenting an
algorithm for verifying the emptiness of terms in a given ontology w.r.t. a given
set of terms representing the “information sources”.

1 We assume that axioms deriving from the data sources shouldn’t be dropped, since
they reflect the actual semantics of the data.

2 Formal Framework

Let us first introduce the formal framework for representing the ontology and for
defining queries over this ontology that are used in the algorithm. The ontology
language adopted enables the representation of standard conceptual modelling
constructs which are commonly used in Entity-Relationship (ER) or UML class
diagrams (see [10]).

2.1 The DLR-DB System

We call a DLR-DB system S a triple 〈R,P,K〉, where R is a relational schema,
P is a component structure over R, and K is a set of assertions involving names
in R. In this section we describe these concepts.

We make use of the standard notion of relational model by using named
attributes, each with an associated datatype, instead of tuples. Specifically, a
relational schema R is a set of relations, each one with a fixed set of attributes
(assumed to be pairwise distinct) with associated datatypes. [s1 : D1, . . . , sn :
Dn] denotes a relation having attributes s1, . . . , sn with associated data types
D1, . . . , Dn. We interpret relations over a fixed countable domain ∆ of datatype
elements, which we consider partitioned into the datatypes Di. A database in-
stance (or simply a database) D over a relational schema R is an (interpretation)
function that maps each relation R in R into a set RD of total functions from
the set of attributes of R to ∆. More detailed definitions can be found in [7].

We now introduce the concept of named components. The intuition behind a
named component is the role name of a relationship in an ER diagram or UML
class diagram. The component structure P associates to each relation a mapping
from named components to sequences of attributes.

Definition 1. Let R be a relation in R, with attributes [s1 : D1, . . . , sn : Dn].
PR is a non-empty (partial) function from a totally ordered set of named com-
ponents to the set of nonempty sequences of attributes of R. The domain of
PR, denoted CR, is called the set of components of R. For a named component
c ∈ CR, the sequence PR(c) = [si1 , . . . , sim

], where each ij ∈ {1, . . . , n}, is called
the c-component of R.

We require that the sequences of attributes for two different named com-
ponents are not overlapping, and that each attribute appears at most once in
each sequence. I.e., given PR(ci) = [si1 , . . . , sik

] and PR(cj) = [sj1 , . . . , sjm
], if

si`
= sjr then ci = cj and ` = r.
The signature of a component PR(c), denoted τ(PR(c)), is the sequence of

types of the attributes of the component. Specifically, if the attributes of R are
[s1 : D1, . . . , sn : Dn], the signature of the component PR(c) = [si1 , . . . , sim] is
the sequence [Di1 , . . . , Dim

].
Two components PR(c1) and PR(c2) are compatible if the two signatures

τ(PR(c1)) and τ(PR(c2)) are equal.

The DLR-DB ontology language, used to express the constraints in K, is
based on the idea of modelling the domain by means of axioms involving the

R[c] v R′[c′] πcR
D ⊆ πc′R′D Inclusion

R[c] disj R′[c′] πcR
D ∩ πc′R′D = ∅ Disjointness

funct(R[c]) for all φ1, φ2 ∈ RD with φ1 6= φ2, we have

φ1(s) 6= φ2(s) for some s in c
Functionality

Fig. 1. Syntax and semantics of DLR-DB axioms.

projection of the relation over the named component. An atomic formula is a
projection of a relation R over one of its components. The projection of R over
the c-component is denoted by R[c]. When the relation has a single component,
then this can be omitted and the atomic formula R corresponds to its projection
over the single component.

Two atomic formulae R[c] and R′[c′] are compatible iff the two correspond-
ing components PR(c) and PR′(c′) are compatible. Given the atomic formulae
R[c], R′[c′], an axiom is an assertion of the form specified in Figure 1, where all
the atomic formulae involved in the same axiom must be compatible. In the same
figure, there is the semantics of a DLR-DB system 〈R,P,K〉, which is provided
in terms of relational models for R, where K plays the role of constraining the
set of “admissible” models. A database D is said to be a model for K if it satisfies
all its axioms, and for each relation R in R with components c1, . . . , ck, for any
φ1, φ2 ∈ RD with φ1 6= φ2, there is some s in ci s.t. φ1(s) 6= φ2(s). The above
conditions are well defined because we assumed the compatibility of the atomic
formulae involved in the constraints. Note that, in the definition above, we re-
quire the satisfiability of all the axioms, and in addition we consider the sequence
of attributes of all the components of a relation as a key for the relation itself.
This reflects the fact that in conceptual models the additional attributes not
belonging to any component are not considered relevant to identify an element
of an entity or a relationship.

The use of an ontology language can be seen as an alternative to the use
of standard modelling paradigms of ER or UML class diagrams. Within this
perspective, relations with a single component can be seen as entities (or classes),
while multiple components represent the roles of a relationship (see Section 3.1
for an example). The advantage of an ontology language over these formalisms
lies on the fact that it has clear and unambiguous semantics which enable the
use of automatic reasoning to support the designer. Note that by considering
only components containing single attributes, this ontology language corresponds
exactly to DLR-Lite (see [11]).

2.2 Conceptual Query Language

To describe the algorithm we make use of so called conceptual queries over a
DLR-DB system S = 〈R,P,K〉. We call them “conceptual” because variables
range over components (set of tuples) instead of single arguments of the relations

in R. The reason for this is that the “ontological” structure is based on the
components; so we don’t need a finer query language enabling the retrieval of
any attribute to analyse the emptiness of a term.

A conceptual query, is an expression of the form

qc(x)← ∃y.conj(x,y),

where

– x is a tuple of variables, so-called distinguished variables, each associated
with a named component of a relation in R,

– y is a tuple of existentially quantified variables called non-distinguished vari-
ables, each associated with a named component of a relation in R,

– conj(x,y) is a conjunction of atoms of the form R(x1, . . . , xk, y1, . . . , yl),
where R is a relation in R with k + l named components.

A conceptual query qc over a DLR-DB system S can be expanded to a standard
conjunctive query q over the relational schema R by substituting each variable
in qc with a tuple of variables corresponding to the sequence of attributes un-
derlying the component, and by introducing a fresh variable for every attribute
not belonging to any component. Such an expansion is well defined, since we
assumed components to be non-overlapping. Therefore, a tuple is in the answer
to qc iff it is in the certain answer to the corresponding expanded query q. To an-
swer the expanded queries we can use the technique described in [12]. However,
given the fact that components are non-overlapping, we can treat variables in
conceptual queries as “singletons” instead of tuples. In this way we can employ
the algorithm described in [11], as explained in Section 3.2.

3 Ontology Enrichment

In this section, for the sake of illustration of the matter, we start with a scenario
for ontology enrichment. We then provide an algorithm for verifying emptiness
of terms in a given ontology w.r.t. a set of database terms. Lastly, we show how
this algorithm can be applied for supporting ontology enrichment task in ICom.
Since our ontology language allows to specify the constructs used in conceptual
modelling, in the rest of this paper we use interchangeably ER and DLR-DB
terminology.

3.1 Scenario

Suppose an ontology is to be used for providing a semantically driven access to
relational data sources in some data intensive application. Instead of wrapping
relational data sources by means of such an ontology manually, it is desirable to
acquire the core ontology by bootstrapping its design from the available database
schema, at the same time inducing set of views over the actual data (i.e., GAV
mappings), so linking the ontology to the database. This means that the de-
rived ontology can be directly used to access the data sources, so that queries

Funding_Program

id

acronym
url

id
start_date
end_date

Funded_By

budgetOrgunit
So

ur
ce

sc

he
m

a
Ex

tra
ct

ed
 o

nt
ol

og
y

En
ric

he
d

on
to

lo
gy

ORGUNIT

...... ...
URLACRONYMID

FUNDING_PROGRAM
BUDGET

......... ...
END_DATESTART_DATEID

ORG_EXPERT_SKILL
PRICE

......... ...
ROLEEXP_SKILL_IDORGUNITID

Expertise_SkillsOrg_Expert_
Skill

University

orgunitid

exp_skill_id

role

org expert

org funding

EXPERTISE_SKILLS

...
ID

id
price

Funding_Source

Fig. 2. Ontology enrichment scenario

formulated over this ontology are answered by simply extending the generated
views. The algorithm for this task has been developed and presented in [7]. The
ontology obtained with such a procedure – which can also be seen as data re-
structuring – is obviously shallow, reflecting the relational nature of data at the
sources. It is therefore an important task to enrich it by adding more details to
its parts that have not yet been sufficiently described. The query reformulation
technique on which we base our emptiness check algorithm (see section 3.2) takes
into account only inclusion axioms; we thus consider only those constructs for
ontology enrichment that are modelled by means of such axioms. Specifically,
one can add (i) specialisation or (ii) generalisation of an entity or relationship
by introducing an axiom R[c] v R′[c′], where R and R′ are relations both having
either one or more components, (iii) relationship between entities by introducing
an axiom R[c] v R′, (iv) mandatory participation constraint for an entity in a
relationship by adding an axiom R′ v R[c]. An obvious but crucial aspect here
is that enrichments result in the setting where added terms are no longer associ-
ated with those over the actual data. As a consequence, queries formulated over
the enriched ontology are likely to return empty answers. It is thus beneficial to
support this modelling process.

An appealing example of an ontology that mediate the access to data is
the one automatically extracted from CERIF (Common European Research In-
formation Format) database2, EU’s recommendation as a tool to harmonise
databases on research projects. To illustrate the above arguments, consider
a snippet of CERIF database schema in Figure 2 having relations orgunit,
org expert skill, expertise skills and funding program that contain in-
formation about organisational units, expertise skills that those organisations
offer, and funding programmes. Employing the information available in this
schema, i.e., keys, foreign keys, etc (see [7] for details), an initial ontology is au-
tomatically derived together with mappings: a view associated to every element
of an extracted ontology (denoted with dashed arrows in Figure 2). Specifically,
there are Orgunit, Expertise Skills, Funding Program relations with single compo-
nents, each of them associated with id attribute, and Org Expert Skill relation
with two components, org and expert, associated with attributes orgunitid and

2 http://cordis.europa.eu/cerif/src/toolkit.htm

exp skill id, accordingly. The extracted ontology is thus the following set of in-
clusion axioms (functionality axioms are irrelevant for the rest of exposition and
so are omitted):

Org Expert Skill[org] v Orgunit
Org Expert Skill[expert] v Expertise Skills

Suppose now an ontology engineer decides that funding programmes provide
funds to organisational units and hence adds a relationship Funded By between
the corresponding entities. Moreover, he/she wants to enrich the domain by
adding University entity as a specialisation of organisational units and Funding Source
entity that generalises funding programmes. This triggers new axioms:

Funded By[org] v Orgunit
Funded By[funding] v Funding Program
University v Orgunit
Funding Program v Funding Source

Given the resulting ontology, consider the queries below, having in their bodies
only atoms that correspond to the newly added terms:

q1(x)← University(x),
q2(x)← Funding Source(x),
q3(x, y)← Funded By(x, y),
q4(x)← Funded By(x, y).

It is easy to see that q1 returns an empty answer: given an object in Orgunit,
there are models in which it is contained in University but there are models
in which this is not the case. Therefore, this object is not in the certain an-
swer to q1. Following the same reasoning, Funding Source includes all objects
that appear in Funding Program entity in all possible models, and thus q2 is
not empty. q3 will be empty again: there is no way to induce the pairing of
objects in Orgunit and Funding Program. The last query will also return empty
answer for the reasons discussed above. However, suppose an ontology engineer
adds mandatory participation constraint for Orgunit in relationship Funded By:
Orgunit v Funded By[org]. This means that now Funded By necessarily contains
all objects of Orgunit. Consequently, q4 would now return all organisational units.

3.2 Checking Emptiness

The emptiness test takes a conceptual query with a single atom in its body and
decides whether it yields an empty answer w.r.t. a given set of terms representing
the information sources. In other words, it returns true if the corresponding
expanded query has empty answer. The technique is based on the notion of
applicability of an inclusion axiom to an atom of a query, which is the key of
query reformulation algorithm in [11]. Intuitively, inclusion axioms are used as
rewriting rules taking into account the knowledge in K that are relevant for
determining whether a given term can be reformulated to the one coming from
information sources.

As mentioned in Section 2.2, we can directly employ the applicability notion
of DLR-Lite [11]. Note that an atomic formula R[c] can be written as an atom

R(, . . . , , x, , . . . ,), where x is a bound variable (i.e., corresponds to a distin-
guished variable) associated to the c-component of R and denotes an unbound
(i.e., non-distinguished) variable.

Definition 2 (adapted from [11]). An inclusion axiom I is applicable to an
atom R(, . . . , , x, , . . . ,) if the right-hand side of I is R[c].

For g = R(, . . . , , x, , . . . ,), gr(g, I) which indicates the atom obtained
from an atom g by applying to it an inclusion axiom I = R′[c′] v R[c] is defined
as gr(g, I) = R′(z1, . . . , zi−1, x, zi+1, . . . , zl), where zj, 1 ≤ j ≤ l, are fresh
variables and l is the arity of R′.

Let us denote by Sig(R) the set of relation names in R, and by Sig(V) the
subset of Sig(R) representing information sources, referred to as database terms3.
We are now ready to define the algorithm IsEmpty.

Algorithm IsEmpty(q,K,Sig(R),Sig(V))
Input: a query q, DLR-DB set of axioms K, set of all relation names

Sig(R) and a set of database terms Sig(V)
Output: true if q yields an empty answer, false otherwise
P := {q};
repeat
P ′ := P ;
for each q ∈ P ′ do

for each I in K do
if I is applicable to g of q

then if name of gr(g, I) is in Sig(V)
then return false
else if name of gr(g, I) is not among atom names

of all queries in P
then P := P ∪ q[g/gr(g, I)]

until P ′ = P ;
return true

q[g/g′] above denotes the query obtained from q by replacing the atom g with a
new atom g′.

For a query q, the applicability of each inclusion axiom I in K to an atom g
of q is checked. If an application of such I results in a reformulated atom whose
name is among database terms, this term can be expanded to the view over the
underlying data. If this is not the case, a new query with the reformulated atom
is produced and added to P , verifying beforehand that the reformulated atom
name does not already appear among reformulated atom names of queries in P 4.

The correctness of the algorithm follows from the fact that whenever it re-
turns true, i.e. the given query is empty, all the reformulated queries in P have
atoms that correspond to the newly added terms. Therefore, the answer to these
3 I.e. relation names derived from the data sources and linked to them by means of

views.
4 This can happen when K has cycles.

queries will always be empty once they are evaluated over the actual data. More-
over, the algorithm always terminates, since the number of different atoms that
can be generated is polynomial in the size of the input.

For a nice exposition of the algorithm, let us slightly change the enriched
ontology in Figure 2: consider Funded By relationship between University and
Funding Program, where University has mandatory participation. That is, we
have, among those of extracted ontology, the axioms

(1) Funded By[university] v University
(2) University v Funded By[university]
(3) Funded By[funding] v Funding Program
(4) University v Orgunit,

and suppose we want to verify emptiness of term Funded By projected on its
university component, i.e P = {q(x) ← Funded By(x, y)}. At the first execu-
tion of the main loop, inclusion axiom (2) is applicable to Funded By(x, y). The
reformulated atom University(x) is not among database terms and is distinct
from the head atom of q ∈ P , thus the new query is inserted in P , and now
P = {q(x) ← Funded By(x, y), q′(x) ← University(x)}. At the second execution
of the main loop, inclusion axiom (1) is applicable to an atom University(x). Since
the name of the reformulated atom Funded By(x, y) is not among database terms
but already appears among the names of atoms of the queries in P , the resulting
P is equal to the one of the previous execution, and thus the algorithm returns
true.

3.3 Ontology Enrichment Support in ICom

We show in this section how ontology enrichment can be supported with ICom,
a tool which allows the user to design multiple UML class diagrams with inter-
and intra-model constraints [13]. The tool employs complete logical reasoning to
verify the specification of the model, display any inconsistency, devise stricter
constraints and infer implicit facts. We extend this reasoning with the emptiness
check for a newly added term in the ontology and manifest to the user whenever
query over this term is empty.

Let us use the same example from Section 3.1; Figure 3 displays its mod-
elling with ICom. The ontology representing the information sources and the
newly added axioms are represented within separate UML class diagrams (re-
ferred to as models in ICom). In particular, specialisation and generalisation
of entities are represented by simply adding an is-a relation between classes in
the corresponding models; a new relationship between classes is accounted for
by first “migrating” the entities involved in this relationship into the model for
enrichments (done via equivalence relation), and then adding the association
between the migrated classes. Note that since in our example FundingSource
contains exactly the objects of FundingProgram, we can directly associate the
former class to FundedBy. The emptiness check employed by the tool results in
highlighting those terms for which there is no underlying data supporting them
(see Section 3.1 for a detailed discussion).

Fig. 3. Ontology enrichment support in ICom

4 Conclusions and Future Work

The problem of supporting ontology engineers in the task of enriching ontologies
that act as wrappers over the data sources has been overlooked in Knowledge
Representation and Ontology Engineering communities.

In this paper, we have started with a scenario based on our previous work,
where we had an ontology bootstrapped from the available data sources, and
concentrated on the task of guiding ontology engineer in enriching it, where the
purpose was to be able to access the data sources by means of the resulting
ontology. We have presented an algorithm for verifying the emptiness of terms
in a given ontology w.r.t. a given set of terms representing the actual data. We
have also shown how, employing this algorithm, ontology enrichment process can
be supported by ICom ontology design tool.

This work is related to [14], where M. Marx shows that the packed fragment
of FOL admits view-based rewritings. This means that given a FOL fragment
and a database associated to some of its predicates, an arbitrary FOL query
involving only implicitly defined predicates can be executed directly as an SQL
query over the database extended with the precomputed materialised views that
encode the explicit definitions. The restriction to the views is however in some
cases too strong, as for instance Funding Source in Figure 2 is not definable in
terms of views but can be reformulated to a database term.

In the future, we aim at taking a broader view of the problem. So far we
have been very restrictive on the ontology language. We will thus investigate
how to support the introduction of new terms in ontologies that are defined
in more expressive languages. E.g., one possibility could be to adopt language
and rewriting technique of [15] so capturing, among others, is-a relationship be-
tween roles. Furthermore, the assumption on components to be non-overlapping
should be reconsidered. In particular, it is imposed due to undecidability re-

sult for computing the certain answers to conjunctive queries when arbitrary
inclusion dependencies are used (see [16] for details). However, since we are only
interested in verifying emptiness of a given term, and not computing the certain
answers to it, this assumption could be also omitted. We will also concentrate on
methodological issues in supporting the modeller. In particular, keeping “refer-
ence” queries, that represent information needs, as a way of guiding the modeller
in development of the ontology. Another matter is using an explanation to pin-
point what is missing in a definition of a newly introduced term. We expect that
our results will constitute the basis for a well-founded methodology for ontology
enrichment which can be supported by ontology design tools.

References

1. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous and autonomous databases. ACM Computing Surveys 22(3) (1990)
183–236

2. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data inte-
gration in data warehousing. 10(3) (2001) 237–271

3. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS02.
(2002) 233–346

4. Heflin, J., Hendler, J.: A portrait of the semantic web in action. IEEE Intelligent
Systems 16(2) (2001) 54–59

5. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann,
H., Hubner, S.: Ontology-based integration of information - a survey of existing
approaches. In: Proc. of IJCAI-01 Workshop: Ontologies and Information Sharing.
(2001) 108–117

6. Lembo, D., Lutz, C., Suntisrivaraporn, B.: Tasks for ontology design and mainte-
nance. Deliverable D05, TONES EU-IST STREP FP6-7603 (2006)

7. Lubyte, L., Tessaris, S.: Extracting ontologies from relational databases. In: Proc.
of the 20th Int. Workshop on Description Logics (DL’07). (2007)

8. Lubyte, L., Tessaris, S.: Extracting ontologies from relational databases. Techni-
cal report, KRDB group – Free University of Bozen-Bolzano (2007) Available at
http://www.inf.unibz.it/krdb/pub/TR/KRDB07-4.pdf.

9. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Dl-lite:
Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on
Artificial Intelligence (AAAI 2005). (2005) 602–607

10. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on uml class diagrams.
Artificial Intelligence 168(1) (2005) 70–118

11. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Data com-
plexity of query answering in description logics. In: Proc. of KR 2006. (2006)
260–270

12. Lembo, D., Lenzerini, M., Rosati, R.: Methods and techniques for query answering.
Technical Report D5.1, Infomix Consortium (2004)

13. Fillottrani, P.R., Franconi, E., Tessaris, S.: The new icom ontology editor. In:
Proc. of the 19th Int. Workshop on Description Logics (DL’06). (2006)

14. Marx, M.: Queries determined by views: Pack your views. In: PODS. (2007)
15. Cali, A.: Querying imcomplete data with logic porgrams: Er strikes back. In: ER.

(2007) 245–260
16. Lembo, D., Lenzerini, M., Rosati, R.: Methods and techniques for query rewriting.

Technical Report D5.2, Infomix Consortium (2004)

