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Abstract. Answering conjunctive queries (CQs) has been recognizea ey
task for the usage of Description Logics (DLs) in a numberpglizations. The
problem has been studied by many authors, who developed banwohdifferent
techniques for it. We present a novel method for CQ answdrasgd on knots,
which are schematic trees of depthl. It yields an algorithm for CQ answering
that works in exponential time fodLCH and for large classes of CQs &iH.
This improves over previous algorithms which require deubtponential time
and is worst-case optimal, as already satisfiability tgstin4LC is EXPTIME-
complete. Our result reconfirms Lutz’s result that inverdes cause an exponen-
tial jump in complexity, being the problem XETIME-complete forALCZ. The
algorithm iscoNP, and hence also worst-case optimal, under data complexit

1 Introduction

In the last years, Description Logics (DLs) have incredgingceived attention as for-
malisms to represent richer domain models in various cositecluding the Semantic
Web, data and information integration, peer-to-peer deaaagement, and ontology-
based data access. The wider use of DLs also raises the neezhéoning services
beyond traditional satisfiability, subsumption, and ins&checking. In particular, an-
swering conjunctive queries (CQs) over knowledge basebéas recognized as a key
task in this respect and studied in many papers, includiagd 4, 5,9,2,1,3,7,11, 14].
Answering CQs in expressive DLs containidgC, like SHZQ, SRZQ andDLR,
is at least BEPTIME-hard, since it subsumes the satisfiability problerddfC knowl-
edge bases which is well-known to b&®T IME-complete. An important result on the
computational complexity of CQ answering in expressive Mas shown by Lutz,
who proved that it is 2EPTIME-hard for all DLs containingd£CZ [9]; thus for the
aforementioned DLs, corresponding2& IME upper bounds from [2, 3, 6, 4] are tight.
Furthermore, Lutz identified inverse roles as the sourdeis&ixponential jump in com-
plexity, and reported in [9] that the problem is ixETIME for ALC. Using techniques
similar to [4], he gave an B TIME algorithm for answering CQs A LCH Q; see [10].
Various approaches for answering CQs in expressive DLs haea used; they
range from adapted tableaux procedures [8,12,11] overpocating the query into
the knowledge base [2, 17, 4, 5] and resolution-based tqukgi[6] to automata-based
algorithms [3]. In this paper, we consider a novel method bHased on the technique
of knots which are schematic trees of deptii that occur in the forest-shaped models
of a knowledge base. They have been introduced in the canitexin-monotonic logic
programming for the clasBDNC of programs, which have forest-shaped models [16].
The main result presented in this paper is an algorithm fewaning CQs ove§H
knowledge bases. It extends a similar algorithmAdiCH presented in [13] and works
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in exponential time fotALCH, as well as for large classes of queriesSiH, show-
ing that the problem is not more expensive than satisfiglt#isting. The algorithm
is worst-case optimal and improves over previous ones #wtire double exponen-
tial time. Furthermore, it reconfirms Lutz’s finding [9] thatrerse roles make CQ an-
swering beyondd LC significantly harder. Our query answering algorithm, whigds
developed independently from [10], has the following feasu

e For a fixed terminological component and query, it can be deterministically run
in polynomial time. ItscONP data complexity is worst-case optimal, as answering CQs
is known to becoNP-complete for a wide range of DLs includivgCC; see e.g., [12].

e It provides a modulaknowledge compilationf the TBox and the query, such that
further queries can reuse the TBox compilation. In paréicujueries of bounded size
can be incorporated in time polynomial in the size of the citetipn. This is specially
useful for evaluating many queries over the same knowledge.b

e The compiled knowledge can be expressed as a (unstratifigalpd program, which
is evaluated over an input set of facts (ABox) and computestiswers also for non-
ground queries. This may make the algorithm more amenabé&fffoient implementa-
tion in practice than some of the previous automata- or tabdased approaches.

While we focus orSH, the method extends to richer DLs. Indeed, once we obtain
theknot representationf a terminology, the algorithm works on the knots and doés no
depend much on the constructs of the logic. Hence, in otlggedcsupporting a knot
representation, CQs may also be not more expensive thamstanmy. The technique
opens an interesting perspective that might be exploitedtfeer purposes as well.

2 Preliminaries

We assume countably infinite s&fs R andI of concept namesoles andindividuals
respectively. FurtheC containsT and_L. Concepts (irSH) are inductively defined as
follows: (a) every concept namé € C is a concept, and (b) i, D are concepts and
R e Risarole, thelCn D, CUD,-C,VR.C,3R.C are concepts.

Let C, D be conceptsR, S be rolesga, b be individuals, andd be a concept name.
An expressiorCC D is ageneral concept inclusion axiom (GCHn expressiolRCS
is arole inclusion axiom (Rl)an expressioffrang R) is atransitivity axiom while
expressions::A and (a, b):R are assertions An SH knowledge baséKB) is a tu-
ple K=(T,.A), where theTBox 7 is a finite set of GCls, Rls and transitivity ax-
ioms and theABox A is a finite set of assertions. W.l.0.g. we assut¢ (), and that
all concepts and roles occurring j occur in7. Let C(K), R(K) andI(K) respec-
tively denote the sets of concept names, roles and indilsdoecurring infC. Let
R (K)={R e R|Trang R) € T }, andC’- be the reflexive transitive closure S R 7 .

We assume the reader is familiar with the standard semafi¥ (see, e.qg., [17]).
In the following, we useZ to denote an interpretation for a KB\? for the domain of
7, andC? and R for the interpretation of a concegptand roleR respectively.

Conjunctive Query Answering. Let V be a countably infinite set of variables.cAn-

junctive query(CQ, orquery) over a KBK is a finite set of atoms of the form(x)
or R(z,y), whereA € C(K), R€ R(K) andx,y € V. A queryq is associated with a

! Note that no individuals occur iq. This is no limitation, as for any constamtwe can use a
new concept namé€,, replaces in ¢ by a new variable;, and add”, (y) to g anda : C,, to A.



unique (possibly empty) tuple of answervariables occurring in the atoms ¢f By
V(gq) we denote the variables occurring in the atoms.of

A match forg in an interpretationZ for K is a mapping from V(q) to A% s.t. (i)
0(x) € AT for eachA(z) € ¢, and (i) (9(x), 0(y)) € R* for eachR(z,y) € . A tuple
c individuals fromI(K) (of the same arity ag) is an answer of; overZ, if c=6(x)
for some match for ¢ in Z; ans(¢q,Z) denotes all answers gfoverZ. Theanswerof
g overK is the setins(q, K) of all tuplesc s.t.c € ans(q, Z) for every model of K.

Eliminating Transitive Roles. EachSH KB K can be rewritten in linear time into
an ALCH KB K’ s.t. each model of is a model ofl’, and each model of’ can be
extended to a model &f. This can be done by deleting the transitivity axiom#&iadnd
adding news GCls [18]. A CQ ové€ can then be answered using the model&of

Definition 1. LetK be anALCH KB, ¢ be a CQ with answer variables, andT' CR (K)
be a set of roles. Then @-match forg in an interpretatiorZ for K is a mapping
o from V(q) to AT s.t. (i) if A(z) € ¢, theno(x) € AZ; and (ii) if R(x,y) € ¢, then
(o(z),0(y)) € RT®, whereZ® is the minimal extension df s.t. RZ* is transitively
closed forevenR e T, andSlzeB - SQI® for everyS1C.S; in K. Byansr(gq,Z) we de-
note the set of all tuples of individuals s.t.c=o(x) for someT-matcho for ¢ in Z.
Further,ansr (g, K) denotes all tupleg s.t.c € ansy (¢, Z) for each modeT of K.
Theorem 1. For anySH KB K and CQgq, we can obtain in linear time al LCH KB
K’ such thatans(q, K) = ansr(q,K’), whereT = R+ (K).

The theorem above follows from [18]. In the rest, we con@etonALCH, and show
how to computeansr (g, K) for a givenALCH KB K, a CQq and a sefl” C R(K).

3 Normal Knowledge Bases

We focus omormalKBs and on a restricted class models: the minimal Herbrand-mo
els of the skolemized first-order theory obtained by appjyire standard translation.
Definition 2. An ALCH KB K=(7, A) is normalif all the GCls inT are of the form
(E) AO C dR.By, (U) A()EVRBO , Or (D) A0|_|. . .ﬂAnEBou. ..UB,, ,
where eactd;, B; € C, n,m > 0, and T does not occur ir.

For a normal KB/C, its Herbrand univers&y is the set of altermsinductively de-
fined as follows: (i) eache I(K) is a term, and (ii) if¢ is a term andv is a GCI of type
(E) occurring inkC, thenf,(t) is aterm. LetBx be the set of alhitomsof the formC'(s)
andR(s,t) with C e C(K), R € R(K), ands, t € Ux.. AnHerbrand interpretatioof X
is any setl CB; it represents the interpretatioh with AZ=Uy., C*={d | C(d)el},
RI={{c,d) | R(c,d)el} andc’=c foreachC € C(K), R€ R(K) andcec I(K).

Such anl is anS-Herbrand modeif K, if it is a model offC, and for eachh=A C
JR.Bin K, A(t)el impliesR(t, fo(t))el and B(f,(t))€I. Moreover,] is aminimal
S-Herbrandnodel offC, if no JCI is an S-Herbrand model &. We denote by\(K)
the set of all minimal S-Herbrand modelsof
Using well-known structural transformations, evétycan be rewritten into a normal
K’ while preserving the query answers. Further, one can shauhei first-order logic
that M (KC) suffices to answer a CQ ovkr. In the following, by ‘interpretation’ (resp.,
‘minimal model’) we mean Herbrand interpretation (respnimal S-Herbrand model).
Theorem 2. Given anALCH KB K, a CQgq and a setl’ C R(K), we can obtain in
linear time a normal KBC' such thatnsy (¢, K) = (¢ a(xcry ansr (g, 1).

3



4 Knots

In what follows, letK =(T,.A) be an arbitrary normaldLCH KB. We provide a
method for finitely representing the possibly infinite miminmodels offC; it exploits
theforest-shaped model propenshich allows us to view each minimal model kfas
a graph and a set of trees rooted at nodes of the graph. A setos ésforest-shapedf
its binary atoms are of the fori(a, b) or R(t, f(t)) for atermt and individualsz, b.

Proposition 1. Every/e M(K) is forest-shaped.

Due to the above, minimal models &f can be composed out of trees of depthl
that we callknots We writet&1 if a set of atomd contains an atom with the tertras
argument, and denote B¥(/) the set of all termsc .

Definition 3. (Knots) Aknot with root (termy is a set of atom#’ such that each atom
in K is of the formA(t), R(¢, f(t)), or A(f(t)) where A, R, and f are arbitrary;
succ(K) denotes the set of terms of the foffift)EK.

A knot with root termt can be viewed as a labeled tree of depth at most 1, whose nodes
and edges are labeled with concept names and roles regbgdtivthe following we
only consider knots whose concept names are f€&k’) and whose roles froR (k)
(note that no restriction is imposed on For a terny, let B; denote the set of all atoms
that can be built fron€ () andR(K) usingt and terms of the fornfi(¢) as arguments.
Note that for a forest-shaped interpretatibfor X andt&1, the setl N B, is a knot,
and that) is a knot with an arbitrary root. We introdun@n-consisteniknots, which are
self-contained model building blocks for minimal modelsof

Definition 4. Given a knotK with roott, we sayK is consisten{w.r.t. ), if:
(@) L(u) ¢ K for eachu € {t}Usucc(K).
(b) FACVR.BeT, A(t) € KandR(t, f(t)) € K, thenB(f(t)) € K;

() ifa = AC3R.B,acT andA(t) € K,thenR(t, f,(t)) € KandB(fa(t)) e K;
(d) if AgM...MA,EByU...UB,, € T,s € succ(K)and{Ag(s),..., A,(s)} C K,
thenB;(s)e K for someB;;

(e) fRC S € T andR(t, f(t))eK, thenS(t, f(t))eK
K is min-consistenif each K’'C K obtained fromK by removing atoms where an
sesucc(K') occurs is inconsistent.

Intuitively, given a termt and a set of concepts it satisfies, a min-consistent knot with
roott encodes a possible combination of immediate successotsria model ofiC.

The tree-parts of the forest shaped model&afill be represented by min-consistent
knots. Now we introduce some notions for dealing with thepbrpart.

Definition 5. The KBKY is obtained from/C by deleting all axioms of type (E) as in
Definition 2. A set of atom& is amin-graphof K if G € M(K9).

The minimal models ok can be characterized in terms of min-graphs and min-camtist
knots. For a set of atonis let 9 contain all atomsi(a), R(a, b) in I with a,b € I(K).

Theorem 3. If I is an interpretation forlC, thenIe M (K) iff I is forest-shaped]? is
a min-graph ofiC, and for each termi& 1, the knotl N B; is min-consistent w.r.&C.

Due to the above theorem, one can view each minimal modélaxf being constructed
out of a min-graph and a set of min-consistent knots. Thefdata@ts may be infinite,
but only finitely many of them are non-isomorphic modulo thetrterm.



Following the observation above, we represent all minimadieis using a finite set
of knots. Letx be an individual not occurring in angLCH KB. We say a knof< with
roott is abstract if ¢ = x. A knot K’ with rootw is aninstanceof an abstract knak,
if K’ can be obtained fronk™ by replacing each occurrence fwith «. Given a set
of knots L, we define the conditions that ensure that we can consteeststnaped parts
of minimal models using the knots ih. Intuitively, for each knotK in L and for each
s € succ(K), there must be some knot that can be instantiated &his ensures that
trees where all the nodes have the necessary successors baitt bGiven two sets of
atomsl and.J, we writel; = J,, if {A| A(t) e I} ={A| A(u) € J}.

Definition 6. Let L be a set of abstract knots. Givéfic L and s € succ(K), we say
K'’eL is ans-successor o if K;~K; the set ofs-successors ok in L is denoted
LK, s]. If every KeL is min-consistent w.r.tC and L[K, s]#() for eachKeL and
eachs € succ(K), thenL is K-founded

We show how minimal models df can be constructed from/&-founded set of knots
L, and describe a sétthat generates all the modelsM (K).

Definition 7. We say thaf is generatetby aK-founded knot sek if I is a C-minimal
interpretation containing some min-graghof K and, for every termé&rl, I N B, is an
instance of som& € L. The set of interpretations generated bys denotedFy.(L).

The setFx (L) represents all the forest-shaped interpretations thabedmilt from a
min-graph by instantiating the knots In Importantly, such interpretations are actually
minimal models; due to Theorem 3,lifis K-founded and € Fic(L), thenTe M (K).

Definition 8. The smallest set of abstract knots that contains e¥@fpunded set of
knots is denotet .

The crucial property oK is that it captures the tree-structures of the minimal medel
of K, and together with the min-graphs, it captures all the matimodels ofkC.

Theorem 4. K is K-founded, andFx (Kx) = M(K).

5 Query Answering with Knots

In what follows, we assume aALCH KB K= (7, A), a K-founded set of knotg,,
aT CR(K), and a CQy. For the sake of this paper, we assume thdt ibccurs ing
andR' C% R for someR’ € T, thenR € T'; such anR is calledT-safe® We present a
method for computingnsr (g, I) for eachl € Fic(L). By Theorem 4, setting = K
allows us to computensr (¢, K) and, by Theorems 1 and 2, to answer CQs &kt

To develop our query answering algorithm, we first define thimienent ofsub-
queries at a knok’, which informally means that there is a match for some pditiseo
query in eachree that is generated fromh and starts withi(, and provide a decision
procedure for it. The method is based on a fixpoint computdtiat derives in each it-
eration new pairs of knots and subqueries for which the leméait relation holds, based
on previously computed pairs. To decide whether a given & khentails a subquery,
the subqueries that the possible successors kndtsasftail are considered. Hence, the
algorithm “back-propagates” the information via the pbkssuccessor relation.

2 Note that this imposes no restrictions for query answemng £CH or S.



In a second stage, we consider the min-graph& @ind verify whether for each
min-graphG, the query can be mapped in each forest-shaped minimal rob#{ethat
is built from G and the knots ifKx. To this end, we verify if, for any possible way
of constructing a model out @¥, a mapping for the full query can be composed from
some partial mapping aefinto G and some mappings that exist in the trees rooted at the
individuals. The existence of the latter mappings will bénessed by the precomputed
set of pairs of knots and subqueries for which the entailmsdation holds.

Since the minimal models df are forest-shaped, for any query matcland any
tree shaped pait of a model, the image of the subqueryqthat is mapped insidé
underr is a subtree of. This implies, e.g., that if two atomB(x,y), R'(2',y) of ¢
are mapped inside a tree, therandz’ must be mapped on the same path. Moreover,
if RandR’ are notinT (i.e., they are not transitive), thenandz’ must be mapped to
the same node. In general, eacmduces a set of variablag’ which are mapped into
the subtree rooted at the mapaoff the latter is inside a tree. This set containghe
successors af, and each variable that must be mapped to the same node aftbemo
because they have a common non-transitive successor.Henariableg in V(q), x
may not determine whethgris mapped above or below it. This is the case, e.g.jsf
neither a predecessor nor a successararid they have a common transitive successor.
However, if we fix a sef( of such nodes, they will induce a unique set of variaMés
that are mapped below them in any a query match mappimgfo a tree.

Definition 9. Assume a variable € V(¢q) and a setX C V(q). LetRo(z) = {=} and
Ru+1(z)={y€eV(q) | R(z',y) € gandz’ € R, (x)}, for everyn >0. We also define
nex{x)=R;(z) and pre\x) = {y € V(q) | z € nex{(y)}. By VL we denote the smallest
subset 0fV (q) s.t. () R,.(z) € VL for everyn € w, and (i) R(y,z) €q, R(v/,2) €q,
{R,RynT=0andy VL implyy € VL.ByV% we denotéJ . VL.

Definition 10. A canonical rooting set af is a C-maximal sefl” of sets of variables
X C V(q) such thatvl +# VI foreveryX,Y e V.

In what follows, we assume a fixed arbitrary canonical rcg)fmtvg of g. We are
ready to formally define the subqueries and their entailriretnees.

Definition 11. For a knotK € L, I is a tree generated by (starting withK), if / is a
C-minimal set of atoms such th&tC I and, for each termé&I, INB, is an instance of
someK’eL. We denote b§ (L, K) the set of all such trees.

For a set of atomg, let /7 be its minimal extension s.t) {f { R(a,b), R(b,c)} CIT
andR e T,thenR(a,c) € IT;and (i) if R(a,b) € IT andRCS € 7, thenS(a,b) € I

Definition 12. Adisjunctive subquery af is a setp, C VqT. ByR, we denote the set of
all disjunctive subqueries @f For a treel generated by, arooted match forX € p,

in I is a functionr fromVx toU/(I) s.t. for eache, y € X:

(RM1) if A(x) € ¢ thenA(n(z)) € I;

(RM2) if R(z,y) € g thenR(n(x), n(y)) € IT;

(RM3) ify eVx, R(z,y) € gandz ¢ Vx, thenr(y) =x,0or R T andR(x, 7(y))e IT.
We write] = p, if for someX € p, there exists a rooted match ih Further, I =4 X
holds if for someX € p, there is a rooted match in I s.t. for eachy € Vx, the depth
of the termn (y) is < d. We writeK =, p, (resp.,K =4 p,) if for eachl € T (L, K)
we havel = p, (resp.,] =% p,). We omit the subscripts if clear from the context.



Note that the trees iff (L, K') have rootx. Intuitively, a rooted match foX in a treel

is a homomorphic embedding of the subquery afduced by x into I. Further, each

y € Vx that has some predecessor variable ndtinmust be mapped te or reachable

from it via a path suitably labeled with a transitive role (RMA rooted match forX

can be part of a full query match in a model containing an imesteof/, provided that

all the predecessors gfhave a match in it which is above the (sub)tree instantiating
We construct a sel'(L, ¢) of all pairs(K, p) such thatK' =, p. We first compute

the pairg K, p) with K =9 p, and then continue via fixpoint iteration to obtain the pairs

(K, p) with K =4 p for an arbitraryd € w. Such pairs capture the, relation:

Proposition 2. If K =1, p, then there existd € w such thatk =9 p.

A key part of the algorithm is to characterize the minimassget Vg such that there
is a tree starting ak” that models exactly the setsiinTo this aim, we employinimal
hitting sets Informally, we can see these sets as the most general waymfping’ the
trees by the exact elements\bj‘ for which they provide a match of bounded depth.

Definition 13. Assume akndk € L and asetS C L x R,. Asetl C V] is aminimal
hitting set ofS w.r.t. K if itis a C-minimal set s.ti N p # () for every(K, p) € S.

Proposition 3. AssumeX’ € L, d € w and letS be the set of all pair$X, p), p €R,,
such thatK =4 p. If [ is a minimal hitting set ofS w.r.t. K, then there is some
I€T(L,K)suchthat, foreverX e VI, I =4 {X}iff X €.

We now sketch the procedure for computjag . For eachi € w, let S denote the set
of all pairs(K, p) s.t. K =% p. As easily seen, the séf' can be computed by checking
which sets ian can be satisfied by direct mappings into the roots of the kinats

For the inductive case, suppose for soie w we have computed the sét’.
Assume some and an arbitrary knoi' € L. To verify whetherk |:dL+1 p, We
considerK-hits which capture the possible ways of choosing for eachsucc(K) a
knot K’ € L[K, s|] and a minimal hitting setof S¢ w.r.t. K’. Intuitively, we conclude
K |:‘£+1 p if for each K -hit there is anX € p such that part 0¥ x can be mapped into
K, while the rest of the variables are contained in the chosammal hitting sets; this
partitioning ofVx will be captured by the notion df-mapping

Definition 14. A successor choider K € L is a function mapping eache succ(K)
toaK' e L[K,s]. AK-hitof S C L xR, is a pair (s¢ hs) of a successor choice sc for
K and a function hs mapping easke succ(K') to a minimal hitting set of w.r.t. sds).

Now we introducek -mappings which are composed of two setndo of variables,
and a functiorb(-) that maps variables to leavesigt The variables im have a match at
theroot of K, while the variables i have a matcibelowthe root of K. The variables

in 0 are predecessors of variableshiand don’t have a mapping in the trees rooted at
K: anz in o simply indicates that there is a transitive path leadingdsuccessor in

b. Intuitively, in order for aK'-mapping to represent a rooted match in a tree starting
with K, eachz in the domain ob must have a match in the subtree with ré@t). In
particular, the latter holds whenever each suchin the hitting sehs(b(z)) of someK -

hit; if this is the case, we say that thé-hit complieswith the K-mapping. The domain

of a functiong from A to B is denotediom(g), andg=1(b) ={a € A | g(a) = b}.



Definition 15. For a knot K € L, a K-mapping forq is a tuplem={(r,0,b), where
rCV(q), 0CV(q) andb is a partial function fromV(q) to succ(K) s.t.r, o and
dom(d) are pairwise disjoint and:

(M1) zerandA(x) € gimply A(x) € K;

(M2) z erUdom(o) andR(z,y) € ¢ implyy € dom(b) and R(x,b(y)) € K;

(M3) z €dom(o) andR(z,y) € ¢ imply Re T'; and

(M4) for eachs € succ(K), prevb—1(s)) Cruoub~i(s) and nexth—1(s)) C b (s).
We define roofsn) = r U {z € dom(b) | preMz) =0}. A K-hit (s¢ hs) complies with
m if for all s € succ(K) with b=1(s) # 0, there is some&X ehg(s) s.t.b=1(s)=Vx.

We are ready to define a relaticht-;, , (K, p) for obtaining new pairg K, p) with
K [ p, which follow from a given sef of pairs(K’, p’) with K’ = p'.

Definition 16. AssumekX € L, p e R, and a setS C LxR,. The pair (X, p) follows
from S, in symbolsS F, , (K, p), if for every K-hit k of S there is aK-mappingm
such that k complies withh andV/gor,m) = Vx for someX € p.

Definition 17. The set'(L,q) C L x,R, isdefinedad’(L, q)=U, .., I'(L, q)%, where
I(L,q)"={(K.p) [0 Fr.q (K. p)} and I (L, )" ={(K, p) | T(L.0)" Frg (K, p)}.

Note thatl"(L,q)° C I'(L,q)' C --- CI'(L, q)" for eachd € w. SinceL x R, is finite,
I'(L, g) is finite and unique. Furthermore, for evely w, K =4 piff (K, p) € I'(L, Q)%
Hence,I'(L, q) captures thé=/, relation. The (inductive) proof of this correspondence
can be found in the extended version of this paper.

Theorem 5. For (K, p)€ LxRy, Kl=rpiff (K, p)eI'(L,q).

Now that we can decide subquery entailment at the knots,ofre move to query
answering ovek. By Theorems 1 and 4, it suffices to consider the forest-shapelels
constructed from the min-graphsiifand the trees generated frd&.. The machinery
we have presented deals with the parts of query matches ¢bat mside the trees,
now we extend it to deal with the min-graph part. In what fatbowve assume thathas
answer variables, while ¢ is a tuple of individuals of the same arity as

Definition 18. An extended min-grapH of K is a C-minimal set of atoms containing
a min-graph ofC and s.t. for each individual, H N B, is an instance of a knot ii.

Consider a min-graplky. Intuitively, each extended min-graph containiGgcan be
viewed as a “super” knot whose rootds while its leaves are the leaves of the knots
that extend>. Given this similarity, the full query can be answered by adjusting the
notions of K'-hits andK -mappings to deal with extended graphs.

Definition 19. Let H be an extended min-graph séiccessor choider H is a function
that maps each ternfi(c)€H to someK € L such thatH () ~ K. Then anH-hit
is a pair (s¢ hs), where sc is a successor choice fér and hs is a function that maps
eachf(c)€H to a minimal hitting set of (K, ¢) w.r.t. the knot s¢f(c)).

We now provide a method to decide the existence of a querymiratdl models starting
with each extended grapH. Similarly as for the knots, we consider dll-hits and
check if they comply with the different partial mappingsaihe extended grapH.



Definition 20. Letg,y be the restriction of the queryto the atoms containing vari-
ables inV. An H-hit (s¢ hs) complies witha constant tuple if there exist disjoint sets
V, V' C V(q) and a functionr fromV U V' toUd(H) s.t.7—1(V')NI= () and:

— foreachr € V, A(x) € g impliesA(n(x)) € H;

— foreachz,y € VUV, R(z,y) € gimpliesR(r(z), m(y)) € H;

— foreachf(c) with w=1(f(c)) # 0 there is anX e hs(f(c)) .. VX=V -1 (f(0);

— foreachy € V(¢)\(VUV’), there is anf(c)€H and anX € hs(f(c)) s.t.y € Vx;

— for each answer variable;, 7(z;) = ¢;.

Let Cx be the set of all tuple§H, sc hs) s.t. H is an extended min-graph & and
(s¢ hs) is an H-hit. For each such tuple = (H, s¢ hs) in Cx, we definansr (g, A) as
the set of all tupleg that comply with theé7-hit (sc hs).

Theorem 6. For every CQq overK., it holds thatanst (K, ) = [ cc,. ansT(q; ).

The proof is similar to the inductive step of the one of Theoke(see extended paper).
We remark that for a given = (H, sc hs) in Ci, the setansr(g, \) can be com-

puted by evaluating a union of CQs over a set of atdisobtained by augmenting

H with atoms that capture the variable choiee hs). Furthermore, thé7, for all the

A € Cx can be generated in models of a datalog program (with uifetdahegation).

Hence, derivinginsy (K, q) is reducible to computing cautious consequence in datalog.

6 Computational Complexity

Nextwe analyze the complexity of our algorithm. Note thategq andT', all canonical
rooting sets have equal cardinality, and recall Wi}itdenotes one (fixed arbitrary) such
set. Recall also that only queries all whose roleslasafe are considered.

Theorem 7. Given a normaldLCH KB K, a CQgq, a setl’ C R(K) and a tuple of
individualse, deciding whethee € ansr(q, K) is feasible in time double exponential
in | K[+q|. Furthermore, for all instances for whidv? | is polynomial in|g| + T, the
problem can be decided in single exponential time.

Proof. (Sketch) Letes:=|K| + |¢g|. The result follows from the following observations:

e The number of distinct abstract knots over the signatur€ @ (single) exponential
in cs, andK can be constructed in exponential time by the procedurels&dtin [13].
e For a givenS CKg x R, and (K, p) € K x R, verifying S kg, , (K, p) is fea-
sible in time exponential ims. Due to the monotonicity ofk, , and the fact that
Kk x R,| is double exponentially bounded i, the setl’(L, ¢) can be computed in
time double exponential ins. If [V is polynomial in|q| + |T'|, the setKx x R,| is
bounded by an exponential af{L, ¢) can be computed in time exponentiakin

e For a given tuple\ = (H, sc hs) in C, the setans(¢q, A) can be computed in time
exponential ircs. Indeed, for any tuple of constants, the compliance efvith the H-
hit (sc hs) can be decided in exponential timeds, and there are only exponentially
many tuples of constants frokd matching the arity of the answer variables;of

e The set|Ck| is double exponential ias, andc € ans(KC, ¢) can be verified in time
double exponential ins. If [VI'| is polynomial in|q| + |T'|, the se{Cy | is bounded by
an exponential, and henees ans(K, ¢) can be decided in time exponentialin O



By Theorems 1 and 2, CQ answering ot KBs is reducible to CQ answering over
normal ALCH KBs. As consistency testing iIMLCH is EXPTIME-hard [15], we have:

Corollary 1. Given anSH KB K, a CQ ¢ and a tuple of individuals:, deciding
whetherc € ans(q, K) is EXPTIME-complete in combined complexity, provided that
|VI| is polynomial in|g|-+|R*(K)|. In particular, this holds ifkC has no transitivity
axioms, asV| <|V(q)|. Thus CQ answering ovetLCH KBs isExPTIME-complete

in combined complexity.

Note that computingns(XC, ¢) is also exponential in the size of the input.
We provide a syntactic restriction to obtain classes of Giysmhich the set§/qT
are of polynomial size ify| + |T'| and hence allow for query answering ixET IME.

Definition 21. LetR; (z) = |J,;~, Ri(z). Then a variabler € V(q) is an ABox vari-
ablg if there is some € V(q) such thatz, y € R, (y), i.e.,z reaches some cycle.

A set of variablesX C V(q) is calledconnectedif the query graph induced by
(with nodesX and an edgéz, y) iff some atomR(z, y) € g exists) is connected. The
order-freeness degree &f, denotecbfd,(X), is the size of the largest subsgt C X
s.t. for eachr £y € X, it holds thaty ¢ R, () andz ¢ R4 (y). Theorder-freeness de-
gree ofg, denotedfd(q), is the maximumofd, (X') over all connected C V(q).

Proposition 4. For every conjunctive query such thatofd(q) is bounded by a con-
stant,|V!| is polynomial in|g| + |T'| for anyT".

The above implies that answering CQs with bounded ordemfrss degree ovelH
KBs is ExPTIME-complete. Unfortunately, the order-freeness degred¢ésafnbounded,
even for simple queries (e.g., for some tree shaped quefiegddress this we intro-
duceframe querieswhich capture more precisely the structural complexitZars.

Definition 22. For a CQq and a sefl’ C R, theframe query;” is obtained fromy by
(1) removing all atoms where only ABox variables occur;

(2) applying each of the following rules exhaustively todhery resulting from (1):
(2.a) if there are two atomR&(z,y) and R’ (2',y) s.t. R, R’ ¢ T, replacex with 2/;
(2.b) remove all atom®(z, y) s.t. nexty)=0 and |preV(y)|=1.

Proposition 5. For each conjunctive query and each sef’ C R of roles such that
ofd(¢") is bounded by a constant, the sizeVgf is polynomial in|g| + |T|.

As a result, for anSH KB K with T=R*(K) and any CQq such thatofd(¢”) is
bounded by a constant, CQ answering is feasible in expaidintie. Note thabfd(q”)
is bounded by a constant if constantly many variables occatams with roles frorfi'.
Finally, we remark that the algorithm can be easily adjustedin in CONP in the
size of A4, i.e., in data complexity; see [13] and the extended versidhis paper.

7 Conclusion

We presented a novel algorithm for conjunctive query answesver DL knowledge
bases, which is based on the concept of knots that have bignatly conceived in
the context of logic programming. It employs a techniqué thalifferent from pre-
vious query answering techniques, yet not completely atedl for space reasons, a
respective comparison is relegated to an extended paper.
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We confine here to the resolution-based method by Hustadlt[6],avhich is per-
haps most closely related to ours. Similar as in our apprdaelr method first “com-
piles” the knowledge base and the query into a special fonahtlaen exploits the pos-
sibility to answer the query by means of a datalog programwvésder, this is done on
different grounds: the knot technique is model-theoretitature, while Hustadt et al.'s
method is proof-theoretic, cleverly exploiting resolutiand superposition machinery.

The method we presented is extendible to richer DLs beyttde.g., number re-
strictions can be accommodated by suitably adapting theriepoesentation of knowl-
edge bases. Future work will consider such extensions, #isaganore expressive
queries. We believe that the knot technique can be usefhisrand in other contexts.
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