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Abstract. Answering conjunctive queries (CQs) has been recognized asa key
task for the usage of Description Logics (DLs) in a number of applications. The
problem has been studied by many authors, who developed a number of different
techniques for it. We present a novel method for CQ answeringbased on knots,
which are schematic trees of depth≤ 1. It yields an algorithm for CQ answering
that works in exponential time forALCH and for large classes of CQs inSH.
This improves over previous algorithms which require double exponential time
and is worst-case optimal, as already satisfiability testing in ALC is EXPTIME-
complete. Our result reconfirms Lutz’s result that inverse roles cause an exponen-
tial jump in complexity, being the problem 2EXPTIME-complete forALCI. The
algorithm isCONP, and hence also worst-case optimal, under data complexity.

1 Introduction
In the last years, Description Logics (DLs) have increasingly received attention as for-
malisms to represent richer domain models in various contexts, including the Semantic
Web, data and information integration, peer-to-peer data management, and ontology-
based data access. The wider use of DLs also raises the need for reasoning services
beyond traditional satisfiability, subsumption, and instance checking. In particular, an-
swering conjunctive queries (CQs) over knowledge bases hasbeen recognized as a key
task in this respect and studied in many papers, including [12, 6, 4, 5, 9, 2, 1, 3, 7, 11, 14].

Answering CQs in expressive DLs containingALC, likeSHIQ,SRIQ andDLR,
is at least EXPTIME-hard, since it subsumes the satisfiability problem ofALC knowl-
edge bases which is well-known to be EXPTIME-complete. An important result on the
computational complexity of CQ answering in expressive DLswas shown by Lutz,
who proved that it is 2EXPTIME-hard for all DLs containingALCI [9]; thus for the
aforementioned DLs, corresponding 2EXPTIME upper bounds from [2, 3, 6, 4] are tight.
Furthermore, Lutz identified inverse roles as the source of this exponential jump in com-
plexity, and reported in [9] that the problem is in EXPTIME for ALC. Using techniques
similar to [4], he gave an EXPTIME algorithm for answering CQs inALCHQ; see [10].

Various approaches for answering CQs in expressive DLs havebeen used; they
range from adapted tableaux procedures [8, 12, 11] over incorporating the query into
the knowledge base [2, 17, 4, 5] and resolution-based techniques [6] to automata-based
algorithms [3]. In this paper, we consider a novel method. Itis based on the technique
of knots, which are schematic trees of depth≤1 that occur in the forest-shaped models
of a knowledge base. They have been introduced in the contextof non-monotonic logic
programming for the classFDNC of programs, which have forest-shaped models [16].

The main result presented in this paper is an algorithm for answering CQs overSH
knowledge bases. It extends a similar algorithm forALCH presented in [13] and works
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in exponential time forALCH, as well as for large classes of queries inSH, show-
ing that the problem is not more expensive than satisfiability testing. The algorithm
is worst-case optimal and improves over previous ones that require double exponen-
tial time. Furthermore, it reconfirms Lutz’s finding [9] thatinverse roles make CQ an-
swering beyondALC significantly harder. Our query answering algorithm, whichwas
developed independently from [10], has the following features:

• For a fixed terminological component and query, it can be non-deterministically run
in polynomial time. ItsCONP data complexity is worst-case optimal, as answering CQs
is known to beCONP-complete for a wide range of DLs includingALC; see e.g., [12].
• It provides a modularknowledge compilationof the TBox and the query, such that
further queries can reuse the TBox compilation. In particular, queries of bounded size
can be incorporated in time polynomial in the size of the compilation. This is specially
useful for evaluating many queries over the same knowledge base.
• The compiled knowledge can be expressed as a (unstratified) datalog program, which
is evaluated over an input set of facts (ABox) and computes the answers also for non-
ground queries. This may make the algorithm more amenable for efficient implementa-
tion in practice than some of the previous automata- or tableaux-based approaches.

While we focus onSH, the method extends to richer DLs. Indeed, once we obtain
theknot representationof a terminology, the algorithm works on the knots and does not
depend much on the constructs of the logic. Hence, in other logics supporting a knot
representation, CQs may also be not more expensive than consistency. The technique
opens an interesting perspective that might be exploited for other purposes as well.

2 Preliminaries
We assume countably infinite setsC, R andI of concept names, roles, andindividuals
respectively. Further,C contains⊤ and⊥. Concepts (inSH) are inductively defined as
follows: (a) every concept nameA ∈ C is a concept, and (b) ifC, D are concepts and
R ∈ R is a role, thenC ⊓ D, C ⊔ D, ¬C, ∀R.C, ∃R.C are concepts.

Let C, D be concepts,R, S be roles,a, b be individuals, andA be a concept name.
An expressionC⊑D is ageneral concept inclusion axiom (GCI), an expressionR⊑S

is a role inclusion axiom (RI), an expressionTrans(R) is a transitivity axiom, while
expressionsa:A and 〈a, b〉:R are assertions. An SH knowledge base(KB) is a tu-
ple K=〈T ,A〉, where theTBox T is a finite set of GCIs, RIs and transitivity ax-
ioms and theABoxA is a finite set of assertions. W.l.o.g. we assumeA 6= ∅, and that
all concepts and roles occurring inA occur inT . Let C(K), R(K) andI(K) respec-
tively denote the sets of concept names, roles and individuals occurring inK. Let
R

+(K)={R∈R|Trans(R)∈T }, and⊑∗
T be the reflexive transitive closure ofS⊑R∈T .

We assume the reader is familiar with the standard semanticsof SH (see, e.g., [17]).
In the following, we useI to denote an interpretation for a KB,∆I for the domain of
I, andCI andRI for the interpretation of a conceptC and roleR respectively.

Conjunctive Query Answering. Let V be a countably infinite set of variables. Acon-
junctive query(CQ, orquery) over a KBK is a finite set of atoms of the formA(x)
or R(x, y), whereA∈C(K), R∈R(K) andx, y∈V.1 A queryq is associated with a

1 Note that no individuals occur inq. This is no limitation, as for any constanta we can use a
new concept nameCa, replacea in q by a new variabley, and addCa(y) to q anda : Ca toA.
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unique (possibly empty) tuplex of answervariables occurring in the atoms ofq. By
V(q) we denote the variables occurring in the atoms ofq.

A match forq in an interpretationI for K is a mappingθ from V(q) to ∆I s.t. (i)
θ(x)∈AI for eachA(x)∈ q, and (ii) 〈θ(x), θ(y)〉 ∈RI for eachR(x, y)∈ q. A tuple
c individuals fromI(K) (of the same arity asx) is an answer ofq overI, if c = θ(x)
for some matchθ for q in I; ans(q, I) denotes all answers ofq overI. Theanswerof
q overK is the setans(q,K) of all tuplesc s.t.c∈ ans(q, I) for every modelI of K.

Eliminating Transitive Roles. EachSH KB K can be rewritten in linear time into
anALCH KB K′ s.t. each model ofK is a model ofK′, and each model ofK′ can be
extended to a model ofK. This can be done by deleting the transitivity axioms ofK and
adding news GCIs [18]. A CQ overK can then be answered using the models ofK′.

Definition 1. LetK be anALCH KB,q be a CQ with answer variablesx, andT⊆R(K)
be a set of roles. Then aT -match forq in an interpretationI for K is a mapping
σ from V(q) to ∆I s.t. (i) if A(x)∈ q, thenσ(x)∈AI ; and (ii) if R(x, y)∈ q, then
〈σ(x), σ(y)〉 ∈RI⊕

, whereI⊕ is the minimal extension ofI s.t. RI⊕

is transitively

closed for everyR∈ T , andS1
I⊕

⊆S2
I⊕

for everyS1⊑S2 in K. ByansT (q, I) we de-
note the set of all tuplesc of individuals s.t.c=σ(x) for someT -matchσ for q in I.
Further,ansT (q,K) denotes all tuplesc s.t.c∈ ansT (q, I) for each modelI ofK.

Theorem 1. For anySH KB K and CQq, we can obtain in linear time anALCH KB
K′ such thatans(q,K) = ansT (q,K′), whereT = R

+(K).

The theorem above follows from [18]. In the rest, we concentrate onALCH, and show
how to computeansT (q,K) for a givenALCH KB K, a CQq and a setT ⊆ R(K).

3 Normal Knowledge Bases
We focus onnormalKBs and on a restricted class models: the minimal Herbrand mod-
els of the skolemized first-order theory obtained by applying the standard translation.

Definition 2. AnALCH KB K=〈T ,A〉 is normalif all the GCIs inT are of the form
(E) A0 ⊑ ∃R.B0 , (U) A0⊑∀R.B0 , or (D) A0⊓. . .⊓An⊑B0⊔. . .⊔Bm ,
where eachAi, Bj ∈ C, n, m > 0, and⊤ does not occur inK.

For a normal KBK, its Herbrand universeUK is the set of alltermsinductively de-
fined as follows: (i) eachc∈ I(K) is a term, and (ii) ift is a term andα is a GCI of type
(E) occurring inK, thenfα(t) is a term. LetBK be the set of allatomsof the formC(s)
andR(s, t) with C ∈C(K), R∈R(K), ands, t∈UK. AnHerbrand interpretationofK
is any setI⊆BK; it represents the interpretationI with ∆I=UK, CI={d | C(d)∈I},
RI={〈c, d〉 | R(c, d)∈I} andcI=c for eachC ∈C(K), R∈R(K) andc∈ I(K).

Such anI is anS-Herbrand modelof K, if it is a model ofK, and for eachα=A ⊑
∃R.B in K, A(t)∈I impliesR(t, fα(t))∈I andB(fα(t))∈I. Moreover,I is aminimal
S-Herbrandmodel ofK, if no J⊂I is an S-Herbrand model ofK. We denote byM(K)
the set of all minimal S-Herbrand models ofK.

Using well-known structural transformations, everyK can be rewritten into a normal
K′ while preserving the query answers. Further, one can show via the first-order logic
thatM(K) suffices to answer a CQ overK. In the following, by ‘interpretation’ (resp.,
‘minimal model’) we mean Herbrand interpretation (resp., minimal S-Herbrand model).

Theorem 2. Given anALCH KB K, a CQq and a setT ⊆ R(K), we can obtain in
linear time a normal KBK′ such thatansT (q,K) =

⋂
I∈M(K′) ansT (q, I).
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4 Knots
In what follows, letK= 〈T ,A〉 be an arbitrary normalALCH KB. We provide a
method for finitely representing the possibly infinite minimal models ofK; it exploits
theforest-shaped model propertywhich allows us to view each minimal model ofK as
a graph and a set of trees rooted at nodes of the graph. A set of atoms isforest-shapedif
its binary atoms are of the formR(a, b) or R(t, f(t)) for a termt and individualsa, b.

Proposition 1. EveryI∈M(K) is forest-shaped.
Due to the above, minimal models ofK can be composed out of trees of depth≤ 1
that we callknots. We writet∈̂I if a set of atomsI contains an atom with the termt as
argument, and denote byU(I) the set of all termst∈̂I.

Definition 3. (Knots) Aknot with root (term)t is a set of atomsK such that each atom
in K is of the formA(t), R(t, f(t)), or A(f(t)) whereA, R, and f are arbitrary;
succ(K) denotes the set of terms of the formf(t)∈̂K.
A knot with root termt can be viewed as a labeled tree of depth at most 1, whose nodes
and edges are labeled with concept names and roles respectively. In the following we
only consider knots whose concept names are fromC(K) and whose roles fromR(K)
(note that no restriction is imposed ont). For a termt, letBt denote the set of all atoms
that can be built fromC(K) andR(K) usingt and terms of the formf(t) as arguments.
Note that for a forest-shaped interpretationI for K andt∈̂I, the setI ∩Bt is a knot,
and that∅ is a knot with an arbitrary root. We introducemin-consistentknots, which are
self-contained model building blocks for minimal models ofK.

Definition 4. Given a knotK with root t, we sayK is consistent(w.r.t.K), if:
(a) ⊥(u) 6∈ K for eachu ∈ {t}∪succ(K).
(b) if A ⊑ ∀R.B ∈T , A(t) ∈ K andR(t, f(t)) ∈ K, thenB(f(t)) ∈ K;
(c) if α = A⊑∃R.B, α∈T andA(t) ∈ K, thenR(t, fα(t)) ∈ K andB(fα(t)) ∈ K;
(d) if A0⊓ . . .⊓An⊑B0⊔ . . .⊔Bm ∈ T , s ∈ succ(K) and{A0(s), . . . , An(s)} ⊆ K,

thenBi(s)∈K for someBi;
(e) if R ⊑ S ∈ T andR(t, f(t))∈K, thenS(t, f(t))∈K.
K is min-consistentif each K ′⊂K obtained fromK by removing atoms where an
s∈succ(K) occurs is inconsistent.

Intuitively, given a termt and a set of concepts it satisfies, a min-consistent knot with
root t encodes a possible combination of immediate successors fort in a model ofK.
The tree-parts of the forest shaped models ofK will be represented by min-consistent
knots. Now we introduce some notions for dealing with the graph part.

Definition 5. The KBKg is obtained fromK by deleting all axioms of type (E) as in
Definition 2. A set of atomsG is amin-graphofK if G ∈ M(Kg).

The minimal models ofK can be characterized in terms of min-graphs and min-consistent
knots. For a set of atomsI, let Ig contain all atomsA(a), R(a, b) in I with a, b ∈ I(K).

Theorem 3. If I is an interpretation forK, thenI∈M(K) iff I is forest-shaped,Ig is
a min-graph ofK, and for each termt∈̂I, the knotI ∩ Bt is min-consistent w.r.t.K.

Due to the above theorem, one can view each minimal model ofK as being constructed
out of a min-graph and a set of min-consistent knots. The set of knots may be infinite,
but only finitely many of them are non-isomorphic modulo the root term.
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Following the observation above, we represent all minimal models using a finite set
of knots. Letx be an individual not occurring in anyALCH KB. We say a knotK with
root t is abstract, if t = x. A knot K ′ with rootu is aninstanceof an abstract knotK,
if K ′ can be obtained fromK by replacing each occurrence ofx with u. Given a set
of knotsL, we define the conditions that ensure that we can construct tree-shaped parts
of minimal models using the knots inL. Intuitively, for each knotK in L and for each
s ∈ succ(K), there must be some knot that can be instantiated ats. This ensures that
trees where all the nodes have the necessary successors can be built. Given two sets of
atomsI andJ , we writeIt ≈ Ju if {A | A(t) ∈ I} = {A | A(u)∈ J}.

Definition 6. Let L be a set of abstract knots. GivenK∈L and s∈ succ(K), we say
K ′∈L is ans-successor ofK if Ks≈K ′

x
; the set ofs-successors ofK in L is denoted

L[K, s]. If everyK∈L is min-consistent w.r.t.K and L[K, s]6=∅ for eachK∈L and
eachs ∈ succ(K), thenL isK-founded.

We show how minimal models ofK can be constructed from aK-founded set of knots
L, and describe a setL that generates all the models inM(K).

Definition 7. We say thatI is generatedby aK-founded knot setL if I is a⊆-minimal
interpretation containing some min-graphG ofK and, for every termt∈̂I, I ∩Bt is an
instance of someK ∈ L. The set of interpretations generated byL is denotedFK(L).

The setFK(L) represents all the forest-shaped interpretations that canbe built from a
min-graph by instantiating the knots inL. Importantly, such interpretations are actually
minimal models; due to Theorem 3, ifL is K-founded andI∈FK(L), thenI∈M(K).

Definition 8. The smallest set of abstract knots that contains everyK-founded set of
knots is denotedKK.

The crucial property ofKK is that it captures the tree-structures of the minimal models
of K, and together with the min-graphs, it captures all the minimal models ofK.

Theorem 4. KK isK-founded, andFK(KK) = M(K).

5 Query Answering with Knots

In what follows, we assume anALCH KB K= 〈T ,A〉, aK-founded set of knotsL,
a T ⊆R(K), and a CQq. For the sake of this paper, we assume that ifR occurs inq

andR′ ⊑∗
T R for someR′ ∈T , thenR∈ T ; such anR is calledT -safe.2 We present a

method for computingansT (q, I) for eachI ∈FK(L). By Theorem 4, settingL =KK

allows us to computeansT (q,K) and, by Theorems 1 and 2, to answer CQs overSH.
To develop our query answering algorithm, we first define the entailment ofsub-

queries at a knotK, which informally means that there is a match for some parts of the
query in eachtree that is generated fromL and starts withK, and provide a decision
procedure for it. The method is based on a fixpoint computation that derives in each it-
eration new pairs of knots and subqueries for which the entailment relation holds, based
on previously computed pairs. To decide whether a given a knot K entails a subquery,
the subqueries that the possible successors knots ofK entail are considered. Hence, the
algorithm “back-propagates” the information via the possible successor relation.

2 Note that this imposes no restrictions for query answering inALCH orS .
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In a second stage, we consider the min-graphs ofK and verify whether for each
min-graphG, the query can be mapped in each forest-shaped minimal modelof K that
is built from G and the knots inKK. To this end, we verify if, for any possible way
of constructing a model out ofG, a mapping for the full query can be composed from
some partial mapping ofq into G and some mappings that exist in the trees rooted at the
individuals. The existence of the latter mappings will be witnessed by the precomputed
set of pairs of knots and subqueries for which the entailmentrelation holds.

Since the minimal models ofK are forest-shaped, for any query matchπ and any
tree shaped partI of a model, the image of the subquery ofq that is mapped insideI
underπ is a subtree ofI. This implies, e.g., that if two atomsR(x, y), R′(x′, y) of q

are mapped inside a tree, thenx andx′ must be mapped on the same path. Moreover,
if R andR′ are not inT (i.e., they are not transitive), thenx andx′ must be mapped to
the same node. In general, eachx induces a set of variablesVT

x which are mapped into
the subtree rooted at the map ofx if the latter is inside a tree. This set containsx, the
successors ofx, and each variable that must be mapped to the same node as one of them
because they have a common non-transitive successor. For other variablesy in V(q), x

may not determine whethery is mapped above or below it. This is the case, e.g., ify is
neither a predecessor nor a successor ofx and they have a common transitive successor.
However, if we fix a setX of such nodes, they will induce a unique set of variablesV

T
X

that are mapped below them in any a query match mappingX into a tree.

Definition 9. Assume a variablex ∈ V(q) and a setX ⊆V(q). LetR0(x)= {x} and
Rn+1(x)= {y∈V(q) |R(x′, y)∈ q andx′ ∈Rn(x)}, for everyn≥ 0. We also define
next(x)=R1(x) and prev(x) = {y ∈V(q) | x∈next(y)}. ByV

T
x we denote the smallest

subset ofV(q) s.t. (i) Rn(x)∈V
T
x for everyn ∈ ω, and (ii ) R(y, z)∈ q, R(y′, z)∈ q,

{R, R′}∩T = ∅ andy ∈V
T
x implyy′ ∈V

T
x . ByV

T
X we denote

⋃
x∈X V

T
x .

Definition 10. A canonical rooting set ofq is a ⊆-maximal setV of sets of variables
X ⊆ V(q) such thatVT

X 6= V
T
Y for everyX, Y ∈V .

In what follows, we assume a fixed arbitrary canonical rooting setVT
q of q. We are

ready to formally define the subqueries and their entailmentin trees.

Definition 11. For a knotK ∈ L, I is a tree generated byL (starting withK), if I is a
⊆-minimal set of atoms such thatK⊆I and, for each termt∈̂I, I∩Bt is an instance of
someK ′∈L. We denote byT (L, K) the set of all such trees.

For a set of atomsI, letIT be its minimal extension s.t. (i) if {R(a, b), R(b, c)}⊆ IT

andR∈T , thenR(a, c) ∈ IT ; and (ii ) if R(a, b)∈ IT andR⊑S ∈T , thenS(a, b)∈ IT .

Definition 12. A disjunctive subquery ofq is a setρq ⊆VT
q . ByRq we denote the set of

all disjunctive subqueries ofq. For a treeI generated byL, a rooted match forX ∈ ρq

in I is a functionπ fromVX to U(I) s.t. for eachx, y ∈X :
(RM1) ifA(x)∈ q thenA(π(x))∈ I;
(RM2) ifR(x, y)∈ q thenR(π(x), π(y))∈ IT ;
(RM3) ify ∈VX , R(x, y)∈ q andx 6∈VX , thenπ(y)=x, or R∈ T andR(x, π(y))∈ IT .
We writeI |= ρq if for someX ∈ ρq there exists a rooted match inI. Further,I |=d X

holds if for someX ∈ ρq there is a rooted matchπ in I s.t. for eachy∈VX , the depth
of the termπ(y) is ≤ d. We writeK |=L ρq (resp.,K |=d

L ρq) if for eachI ∈ T (L, K)
we haveI |= ρq (resp.,I |=d ρq). We omit the subscripts if clear from the context.
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Note that the trees inT (L, K) have rootx. Intuitively, a rooted match forX in a treeI
is a homomorphic embedding of the subquery ofq induced byVX into I. Further, each
y ∈VX that has some predecessor variable not inVX must be mapped tox or reachable
from it via a path suitably labeled with a transitive role (RM3). A rooted match forX
can be part of a full query match in a model containing an instance ofI, provided that
all the predecessors ofy have a match in it which is above the (sub)tree instantiatingI.

We construct a setΓ (L, q) of all pairs(K, ρ) such thatK |=L ρ. We first compute
the pairs(K, ρ) with K |=0

L ρ, and then continue via fixpoint iteration to obtain the pairs
(K, ρ) with K |=d

L ρ for an arbitraryd∈ω. Such pairs capture the|=L relation:

Proposition 2. If K |=L ρ, then there existsd ∈ ω such thatK|=d
Lρ.

A key part of the algorithm is to characterize the minimal sets l ⊆ VL
q such that there

is a tree starting atK that models exactly the sets inl. To this aim, we employminimal
hitting sets. Informally, we can see these sets as the most general way of ‘grouping’ the
trees by the exact elements ofVL

q for which they provide a match of bounded depth.

Definition 13. Assume a knotK ∈ L and a setS ⊆L× Rq. A setl⊆VT
q is aminimal

hitting set ofS w.r.t. K if it is a ⊆-minimal set s.t.l ∩ ρ 6= ∅ for every(K, ρ)∈S.

Proposition 3. AssumeK ∈ L, d ∈ ω and letS be the set of all pairs(K, ρ), ρ∈Rq,
such thatK |=d

L ρ. If l is a minimal hitting set ofS w.r.t. K, then there is some
I ∈T (L, K) such that, for everyX ∈VT

q , I |=d {X} iff X ∈ l.

We now sketch the procedure for computing|=L. For eachd ∈ ω, let Sd denote the set
of all pairs(K, ρ) s.t.K |=d

L ρ. As easily seen, the setS0 can be computed by checking
which sets inVL

q can be satisfied by direct mappings into the roots of the knotsin L.
For the inductive case, suppose for somed ∈ ω we have computed the setSd.

Assume someρ and an arbitrary knotK ∈ L. To verify whetherK |=d+1
L ρ, we

considerK-hits which capture the possible ways of choosing for eachs ∈ succ(K) a
knotK ′ ∈L[K, s] and a minimal hitting setl of Sd w.r.t. K ′. Intuitively, we conclude
K |=d+1

L ρ if for eachK-hit there is anX ∈ ρ such that part ofVX can be mapped into
K, while the rest of the variables are contained in the chosen minimal hitting sets; this
partitioning ofVX will be captured by the notion ofK-mapping.

Definition 14. A successor choicefor K ∈L is a function mapping eachs∈ succ(K)
to aK ′ ∈L[K, s]. A K-hit of S ⊆L×Rq is a pair (sc, hs) of a successor choice sc for
K and a function hs mapping eachs∈ succ(K) to a minimal hitting set ofS w.r.t. sc(s).

Now we introduceK-mappings which are composed of two setsr ando of variables,
and a functionb(·) that maps variables to leaves ofK. The variables inr have a match at
theroot of K, while the variables inb have a matchbelowthe root ofK. The variables
in o are predecessors of variables inb and don’t have a mapping in the trees rooted at
K: anx in o simply indicates that there is a transitive path leading to its successor in
b. Intuitively, in order for aK-mapping to represent a rooted match in a tree starting
with K, eachx in the domain ofb must have a match in the subtree with rootb(x). In
particular, the latter holds whenever each suchx is in the hitting seths(b(x)) of someK-
hit; if this is the case, we say that theK-hit complieswith theK-mapping. The domain
of a functiong from A to B is denoteddom(g), andg−1(b)= {a ∈ A | g(a) = b}.
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Definition 15. For a knot K ∈L, a K-mapping forq is a tuplem=〈r, o, b〉, where
r⊆V(q), o⊆V(q) and b is a partial function fromV(q) to succ(K) s.t. r, o and
dom(b) are pairwise disjoint and:
(M1) x∈ r andA(x) ∈ q implyA(x)∈K;
(M2) x∈ r ∪ dom(o) andR(x, y)∈ q implyy∈ dom(b) andR(x, b(y))∈K;
(M3) x∈ dom(o) andR(x, y)∈ q implyR∈T ; and
(M4) for eachs∈ succ(K), prev(b−1(s))⊆ r∪ o∪ b−1(s) and next(b−1(s))⊆ b−1(s).
We define roots(m)= r∪{x ∈ dom(b) | prev(x)= ∅}. A K-hit (sc, hs) complies with
m if for all s∈ succ(K) with b−1(s) 6= ∅, there is someX∈hs(s) s.t.b−1(s)=VX .

We are ready to define a relationS ⊢L,q (K, ρ) for obtaining new pairs(K, ρ) with
K |= ρ, which follow from a given setS of pairs(K ′, ρ′) with K ′ |= ρ′.

Definition 16. AssumeK ∈L, ρ∈Rq and a setS ⊆L×Rq. The pair(K, ρ) follows
from S, in symbolsS ⊢L,q (K, ρ), if for everyK-hit k of S there is aK-mappingm
such that k complies withm andVroots(m) =VX for someX ∈ ρ.

Definition 17. The setΓ (L, q) ⊆L×, Rq is defined asΓ (L, q)=
⋃

d∈ω Γ (L, q)d, where

Γ (L, q)
0={(K, ρ) | ∅ ⊢L,q (K, ρ)} andΓ (L, q)

d+1={(K, ρ) |Γ (L, q)
d ⊢L,q (K, ρ)}.

Note thatΓ (L, q)
0 ⊆Γ (L, q)

1 ⊆ · · · ⊆Γ (L, q)
d for eachd∈ω. SinceL×Rq is finite,

Γ (L, q) is finite and unique. Furthermore, for everyd∈ω, K |=d
Lρ iff (K, ρ)∈Γ (L, q)

d.
Hence,Γ (L, q) captures the|=L relation. The (inductive) proof of this correspondence
can be found in the extended version of this paper.

Theorem 5. For (K, ρ)∈L×Rq, K|=Lρ iff (K, ρ)∈Γ (L, q).

Now that we can decide subquery entailment at the knots ofL, we move to query
answering overK. By Theorems 1 and 4, it suffices to consider the forest-shaped models
constructed from the min-graphs ofK and the trees generated fromKK. The machinery
we have presented deals with the parts of query matches that occur inside the trees,
now we extend it to deal with the min-graph part. In what follows we assume thatq has
answer variablesx, while c is a tuple of individuals of the same arity asx.

Definition 18. An extended min-graphH of K is a⊆-minimal set of atoms containing
a min-graph ofK and s.t. for each individuala, H ∩ Ba is an instance of a knot inK.

Consider a min-graphG. Intuitively, each extended min-graph containingG can be
viewed as a “super” knot whose root isG, while its leaves are the leaves of the knots
that extendG. Given this similarity, the full queryq can be answered by adjusting the
notions ofK-hits andK-mappings to deal with extended graphs.

Definition 19. LetH be an extended min-graph. Asuccessor choicefor H is a function
that maps each termf(c)∈̂H to someK ∈ L such thatHf(c) ≈ Kx. Then anH-hit
is a pair (sc, hs), where sc is a successor choice forH , and hs is a function that maps
eachf(c)∈̂H to a minimal hitting set ofΓ (KK, q) w.r.t. the knot sc(f(c)).

We now provide a method to decide the existence of a query match in all models starting
with each extended graphH . Similarly as for the knots, we consider allH-hits and
check if they comply with the different partial mappings into the extended graphH .
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Definition 20. Let q↓V be the restriction of the queryq to the atoms containing vari-
ables inV . AnH-hit (sc, hs) complies witha constant tuplec if there exist disjoint sets
V, V ′ ⊆ V(q) and a functionπ fromV ∪ V ′ to U(H) s.t.π−1(V ′)∩ I= ∅ and:

– for eachx ∈ V , A(x) ∈ q impliesA(π(x))∈H ;
– for eachx, y ∈ V ∪ V ′, R(x, y)∈ q impliesR(π(x), π(y))∈HT ;
– for eachf(c) with π−1(f(c)) 6= ∅ there is anX ∈hs(f(c)) s.t.VX=Vπ−1(f(c));
– for eachy∈V(q)\(V ∪V ′), there is anf(c)∈̂H and anX ∈hs(f(c)) s.t.y ∈VX ;
– for each answer variablexi, π(xi) = ci.

Let CK be the set of all tuples(H, sc, hs) s.t. H is an extended min-graph ofK and
(sc, hs) is anH-hit. For each such tupleλ=(H, sc, hs) in CK, we defineansT (q, λ) as
the set of all tuplesc that comply with theH-hit (sc, hs).

Theorem 6. For every CQq overK, it holds thatansT (K, q) =
⋂

λ∈CK
ansT (q, λ).

The proof is similar to the inductive step of the one of Theorem 5 (see extended paper).
We remark that for a givenλ=(H, sc, hs) in CK, the setansT (q, λ) can be com-

puted by evaluating a union of CQs over a set of atomsHλ obtained by augmenting
H with atoms that capture the variable choice(sc, hs). Furthermore, theHλ for all the
λ∈CK can be generated in models of a datalog program (with unstratified negation).
Hence, derivingansT (K, q) is reducible to computing cautious consequence in datalog.

6 Computational Complexity

Next we analyze the complexity of our algorithm. Note that, givenq andT , all canonical
rooting sets have equal cardinality, and recall thatVT

q denotes one (fixed arbitrary) such
set. Recall also that only queries all whose roles areT -safe are considered.

Theorem 7. Given a normalALCH KB K, a CQq, a setT ⊆ R(K) and a tuple of
individualsc, deciding whetherc ∈ ansT (q,K) is feasible in time double exponential
in |K|+|q|. Furthermore, for all instances for which|VT

q | is polynomial in|q|+ |T |, the
problem can be decided in single exponential time.

Proof. (Sketch) Letcs:=|K| + |q|. The result follows from the following observations:

• The number of distinct abstract knots over the signature ofK is (single) exponential
in cs, andKK can be constructed in exponential time by the procedure sketched in [13].
• For a givenS ⊆KK×Rq and(K, ρ)∈KK×Rq, verifying S ⊢KK,q (K, ρ) is fea-
sible in time exponential incs. Due to the monotonicity of⊢KK,q and the fact that
|KK×Rq| is double exponentially bounded incs, the setΓ (L, q) can be computed in
time double exponential incs. If |VT

q | is polynomial in|q|+ |T |, the set|KK×Rq| is
bounded by an exponential andΓ (L, q) can be computed in time exponential incs.
• For a given tupleλ = (H, sc, hs) in CK, the setans(q, λ) can be computed in time
exponential incs. Indeed, for any tuplec of constants, the compliance ofc with theH-
hit (sc, hs) can be decided in exponential time incs, and there are only exponentially
many tuples of constants fromK matching the arity of the answer variables ofq.
• The set|CK| is double exponential incs, andc∈ ans(K, q) can be verified in time
double exponential incs. If |VT

q | is polynomial in|q|+ |T |, the set|CK| is bounded by
an exponential, and hencec∈ ans(K, q) can be decided in time exponential incs. ⊓⊔
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By Theorems 1 and 2, CQ answering overSH KBs is reducible to CQ answering over
normalALCH KBs. As consistency testing inALCH is EXPTIME-hard [15], we have:

Corollary 1. Given anSH KB K, a CQ q and a tuple of individualsc, deciding
whetherc∈ ans(q,K) is EXPTIME-complete in combined complexity, provided that
|VT

q | is polynomial in|q|+|R+(K)|. In particular, this holds ifK has no transitivity
axioms, as|VT

q | ≤ |V(q)|. Thus CQ answering overALCH KBs isEXPTIME-complete
in combined complexity.

Note that computingans(K, q) is also exponential in the size of the input.
We provide a syntactic restriction to obtain classes of CQs for which the setsVT

q

are of polynomial size in|q| + |T | and hence allow for query answering in EXPTIME.

Definition 21. Let R+(x) =
⋃

i≥1 Ri(x). Then a variablex ∈ V(q) is an ABox vari-
able, if there is somey ∈ V(q) such thatx, y ∈ R+(y), i.e.,x reaches some cycle.

A set of variablesX ⊆V(q) is calledconnected, if the query graph induced byq
(with nodesX and an edge(x, y) iff some atomR(x, y)∈ q exists) is connected. The
order-freeness degree ofX , denotedofdq(X), is the size of the largest subsetX ′⊆X

s.t. for eachx 6= y∈X , it holds thaty 6∈R+(x) andx 6∈R+(y). Theorder-freeness de-
gree ofq, denotedofd(q), is the maximumofdq(X) over all connectedX ⊆V(q).

Proposition 4. For every conjunctive queryq such thatofd(q) is bounded by a con-
stant,|VT

q | is polynomial in|q|+ |T | for anyT .

The above implies that answering CQs with bounded order-freeness degree overSH
KBs is EXPTIME-complete. Unfortunately, the order-freeness degree is often unbounded,
even for simple queries (e.g., for some tree shaped queries). To address this we intro-
duceframe queries, which capture more precisely the structural complexity ofCQs.

Definition 22. For a CQq and a setT ⊆R, theframe queryqT is obtained fromq by
(1) removing all atoms where only ABox variables occur;
(2) applying each of the following rules exhaustively to thequery resulting from (1):
(2.a) if there are two atomsR(x, y) andR′(x′, y) s.t.R, R′ 6∈ T , replacex with x′;
(2.b) remove all atomsR(x, y) s.t. next(y)=∅ and|prev(y)|=1.

Proposition 5. For each conjunctive queryq and each setT ⊆R of roles such that
ofd(qT ) is bounded by a constant, the size ofVT

q is polynomial in|q| + |T |.

As a result, for anSH KB K with T =R
+(K) and any CQq such thatofd(qT ) is

bounded by a constant, CQ answering is feasible in exponential time. Note thatofd(qT )
is bounded by a constant if constantly many variables occur in atoms with roles fromT .

Finally, we remark that the algorithm can be easily adjustedto run in CONP in the
size ofA, i.e., in data complexity; see [13] and the extended versionof this paper.

7 Conclusion
We presented a novel algorithm for conjunctive query answering over DL knowledge
bases, which is based on the concept of knots that have been originally conceived in
the context of logic programming. It employs a technique that is different from pre-
vious query answering techniques, yet not completely unrelated; for space reasons, a
respective comparison is relegated to an extended paper.
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We confine here to the resolution-based method by Hustadt et al. [6], which is per-
haps most closely related to ours. Similar as in our approach, their method first “com-
piles” the knowledge base and the query into a special form, and then exploits the pos-
sibility to answer the query by means of a datalog program. However, this is done on
different grounds: the knot technique is model-theoretic in nature, while Hustadt et al.’s
method is proof-theoretic, cleverly exploiting resolution and superposition machinery.

The method we presented is extendible to richer DLs beyondSH; e.g., number re-
strictions can be accommodated by suitably adapting the knot representation of knowl-
edge bases. Future work will consider such extensions, as well as more expressive
queries. We believe that the knot technique can be useful in this and in other contexts.
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