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Abstract. We show that subsumption problems in EL and related de-
scription logics can be expressed as uniform word problems in classes
of semilattices with monotone operators. We use possibilities of efficient
local reasoning in such classes of algebras to obtain uniform PTIME de-
cision procedures for CBox subsumption in EL and extensions thereof.
These locality considerations allow us to present a new family of logics
which extend EL and EL+ with n-ary roles and/or numerical domains.

1 Introduction

Description logics are logics for knowledge representation used in databases and
ontologies. They provide a logical basis for modeling and reasoning about ob-
jects, classes (or concepts), and relationships (or links, or roles) between them.
Recently, less expressive but tractable description logics such as EL [1] have at-
tracted much interest. Although they have relatively restricted expressivity, this
expressivity is sufficient for formalizing the type of knowledge used in widely
used ontologies such as the medical ontology SNOMED [13,14]. Several papers
were dedicated to studying the properties of EL and its extensions (e.g. EL+

[2]), especially to understanding the limits of tractability in extensions of EL.
In this paper we show that subsumption problems in EL and EL+ can be

expressed as uniform word problems in classes of semilattices with monotone
operators. We use this, together with possibilities of efficient local reasoning in
such classes of algebras to obtain, in a uniform way, PTIME decision procedures
for EL, EL+, and extensions thereof. These locality considerations allow us to
present a new family of (many-sorted) logics which extend EL with n-ary roles.
CBox subsumption is proved to be decidable in PTIME in the one-sorted case
and in a two sorted case, in which numerical domains are allowed and numeric
concepts (and relationships between then in aCBox) are interpreted in the ORD-
Horn fragment of Allen’s interval algebra.

Structure of the paper. In Sect. 2 we introduce the description logics EL and
EL+ and show that CBox subsumption can be expressed as a uniform word
problem in the class of semilattices with monotone operators satisfying certain
composition axioms. In Sect. 3 we present general definitions and results on
(stably) local equational theories. In Sect. 4 we show that the algebraic models
of EL and EL+ have a stably local presentation, thus providing an alternative
proof of the fact that CBox subsumption in EL+ is decidable in PTIME, and



Table 1. EL Constructors and their semantics

Constructor name Syntax Semantics

conjunction C1 u C2 CI

1 ∩ CI

2

existential restriction ∃r.C {x | ∃y((x, y) ∈ rI and y ∈ CI)}

show that locality results can be used for defining extensions of EL and EL+

with a subsumption problem decidable in PTIME.

2 The description logics EL and EL
+

The central notions in description logics are concepts and roles. In any descrip-
tion logic a set NC of concept names and a set NR of roles is assumed to be given.
Complex concepts are defined starting with the concept names in NC , with the
help of a set of concept constructors. The available constructors determine the
expressive power of a description logic. If we allow only intersection and existen-
tial restriction as concept constructors, we obtain the description logic EL [1], a
logic used in terminological reasoning in medicine [13,14].

The semantics of description logics is defined in terms of interpretations
I = (DI , ·I), where DI is a non-empty set, and the function ·I maps each
concept name C ∈ NC to a set CI ⊆ DI and each role name r ∈ NR to a
binary relation rI ⊆ DI ×DI . Table 1 shows the constructor names used in EL
and their semantics. The extension of ·I to concept descriptions is inductively
defined using the semantics of the constructors.

Terminology; constraint box. A terminology (or TBox, for short) is a finite
set consisting of primitive concept definitions of the form C ≡ D, where C is a
concept name and D a concept description; and general concept inclusions (GCI)
of the form C v D, where C and D are concept descriptions. (Since definitions
can be expressed as double inclusions, in what follows we only refer to GCIs.)

In [2], the extension EL+ of EL with role inclusion axioms is studied. Coun-
terparts ELd and (EL+)d of EL resp. EL+, having as constructors only union
and universal restrictions and dual role inclusion axioms, can be defined. The
relationships between concepts and roles are described using constraint boxes.

A constraint box (CBox) consists of a terminology T consisting of a set of GCI,
and a set RI of role inclusions of the form r1 ◦ · · · ◦ rn v s.

Interpretation. An interpretation I is a model of the CBox C = T ∪ RI if it
satisfies all general concept inclusions in T and all role inclusions in RI , i.e.:

– CI⊆DI for all GCI CvD ∈ T .
– rI1 ◦ . . . ◦rIn ⊆ sI for all r1◦ . . . ◦rn ⊆ s ∈ RI .

Definition 1. Let C be a CBox, and C1, C2 two concept descriptions. Then
C1vCC2 if and only if CI

1 ⊆CI
2 for every model I of C.



In [2] it was shown that subsumption w.r.t. CBoxes in EL+ can be reduced in
linear time to subsumption w.r.t. normalized CBoxes. In normalized CBoxes all
GCIs have one of the forms: C v D, C1 u C2 v D, C v ∃r.D, ∃r.C v D, where
C, C1, C2, D are concept names, and all role inclusions are of the form r ⊆ s

or r1 ◦ r2 ⊆ r. Therefore, in what follows, we assume w.l.o.g. that CBoxes only
contain role inclusions of the form r ⊆ s and r1 ◦ r2 ⊆ r.

An algebraic semantics for EL+. A translation of concept descriptions into
terms in a signature associated with the set of constructors can be defined as
follows. For every role name R, we introduce a unary function symbol f∃R.
The translation is inductively defined by: C = C for every concept name C;
C1 u C2 = C1 ∧ C2, and ∃r.C = f∃r(C).

There exists a one-to-one correspondence between interpretations of the de-
scription logics EL, EL+, I = (D, ·I) and (reducts of) Boolean algebras of sets of
the form (P(D),∩, ∅, D, {f∃r}r∈NR

), together with valuations v : NC → P(D),
where f∃r is defined, for every U ⊆ D, by f∃r(U) = {x | ∃y((x, y) ∈ rI and y ∈
U)}. Let v : NC → P(D) with v(A) = AI for all A ∈ NC , and let v be the
(unique) homomorphic extension of v to terms. Let C be a concept description

and C be its associated term. Then CI = v(C) (denoted by C
I
).

It is known that the TBox subsumption problem for the description logic ALC
can be expressed as uniform word problem for Boolean algebras with suitable
operators. In [9] we studied the link between TBox subsumption in the descrip-
tion logic EL and uniform word problems in corresponding classes of semilattices
with monotone functions. We now show that these results extend in a natural
way to the description logic EL+. Consider the following classes of algebras:

– BAO∃
NR

the class of all Boolean algebras with operators {f∃r}r∈NR
of the

form (B,∨,∧,¬, 0, 1, {f∃r}r∈NR
), where f∃r is a join hemimorphism, i.e.

f∃r(x ∨ y) = f∃r(x) ∨ f∃r(y), f∃r(0) = 0;
– DLO∃

NR
the class of bounded distributive lattices with operators {f∃r}r∈NR

,
(L,∨,∧, 0, 1, {f∃r}r∈NR

), such that f∃r is a join hemimorphism;
– SLO∃

NR
the class of all ∧-semilattices with operators {f∃r}r∈NR

,
(S,∧, 0, 1, {f∃R}R∈NR

), such that f∃R is monotone.

Assume given a set RI of axioms of the form r ⊆ s and r1 ◦ r2 ⊆ r, with
r1, r2, r ∈ NR. We denote by SLO∃

NR
(RI) the subclass of SLO∃

NR
consisting of

those algebras which satisfy the set of axioms:

RIa = {(f∃r2
◦ f∃r1

)(x) ≤ f∃r(x) | r1◦r2⊆r ∈ RI} ∪ {f∃r(x) ≤ f∃s(x) | r⊆s ∈ RI}.

Lemma 1 Let I = (D, ·I) be a model of an EL+ CBox, C = GCI ∪ RI. Then
(P(D),∩, {f∃r}r∈NR

) ∈ SLO∃
NR

(RI).

Proof : Clearly, (P(D),∩, {f∃r}r∈NR
) ∈ SLO∃

NR
. Let r1, r2, r∈NR and U∈P(D).

f∃r1
(U) = {x | ∃y ∈ U s.t. (x, y) ∈ rI1 } ⊆ f∃r(U) if r1 ⊆ r ∈ RI

f∃r2
(f∃r1

(U)) = {x | ∃y((x, y) ∈ rI2 and ∃z ∈ U, (y, z) ∈ rI1 )}

= {x | ∃z ∈ U s.t. (x, z) ∈ (r1 ◦ r2)
I} ⊆ f∃r(U) if r1 ◦ r2 ⊆ r ∈ RI.



Lemma 2 Every S ∈ SLO∃
NR

(RI) embeds into a lattice in DLO∃
NR

satisfying the

axioms in RI. Every lattice in DLO∃
NR

satisfying the axioms in RIa embeds into

a lattice in BAO∃
NR

satisfying the axioms in RIa.

Theorem 3 Let T be an EL TBox consisting of the general concept inclusions

GCI. Then C1vT C2 iff BAO∃
NR

|=
(

∧

CvD∈T C≤D
)

→ C1≤C2.

Proof : Follows from the fact that every algebra in BAO∃
NR

homomorphically
embeds into a Boolean algebra of sets. 2

Theorem 4 If the only concept constructors are intersection and existential re-
striction, then for all concept descriptions C1, C2 and every EL+ CBox C=GCI∪RI,

C1vCC2 iff SLO∃
NR

(RI)|=
(

∧

CvD∈GCI C≤D
)

→ C1≤C2.

Proof : This is a direct consequence of Theorem 3 and Lemma 2. 2

We will show that the word problem for the class of algebras SLO∃
NR

(RI) is de-

cidable in PTIME. For this we prove that SLO∃
NR

(RI) has a “local” presentation.
The locality definitions, and the methods for recognizing local presentations are
given in Sect. 3. The application to SLO∃

NR
and SLO∃

NR
(RI) are given in Sect. 4.

3 Local equational theories

A set K of Horn clauses is stably local [5] if for every set G of ground clauses, if
K∧G |=⊥ then G can be refuted using the set K[G] of all instances of K obtained
by instantiating the variables with (ground) subterms of G, i.e. if

K ∧ G |=⊥ if and only if K[G] ∧ G |=⊥ .

The more general notion of Ψ -stably local theory (in which the instances to be
considered are described by a closure operation Ψ) is introduced in [6]. Locality
can be recognized by proving embeddability of partial into total models [10,12,6].

Partial and total models. A partial model is a model in which some function
symbols may be partial. In this paper the models we consider are partially or-
dered algebraic structures, i.e. the only predicates are ≤ and =. If A is a partial
structure and β : X → A is a valuation we say that (A, β) |= t1 = t2 iff at least
one of the following conditions holds:

(a) β(t1), β(t2) are defined and β(t1) = β(t2), or
(b) β(t1) and β(t2) are undefined, or
(c) β(t1) is defined, t2=f(s1, . . . , sn) and β(si) is undefined for some i, or
(d) if β(t1) is defined, t2 = f(s1, . . . , sn) and β(si) is defined for all i then β(t2)

has to be defined and β(t1) = β(t2).

(A, β) |= t1 ≤ t2 is defined similarly, replacing “=” with “≤” in (a)–(d).



(A, β) satisfies a clause C (notation: (A, β) |= C) if it satisfies at least one
literal in C. A is an (Evans) partial model of a set of clauses K if (A, β) |= C for
every valuation β and every clause C in K.

Locality. Let K be a set of clauses. Let ΨK be a function associating with any
set T of ground terms a set ΨK(T ) of ground terms such that

(i) all ground subterms in K and T are in ΨK(T );
(ii) for all sets of ground terms T, T ′ if T ⊆ T ′ then ΨK(T ) ⊆ ΨK(T ′);
(iii) for all sets of ground terms T , ΨK(ΨK(T )) ⊆ ΨK(T );
(iv) Ψ is compatible with any map h between constants, i.e. for any map h : C →

C, ΨK(h(T )) = h(ΨK(T )), where h is the unique extension of h to terms.

Let K[ΨK(G)] be the set of instances of K where the variables are instantiated with
terms in ΨK(st(K, G)), where st(K, G) is the set of all ground terms occurring in
K or G. We say that K is Ψ -stably local if it satisfies:

(SLocΨ ) for every finite set G of ground clauses, K∪G|= ⊥ iff K[ΨK(G)]∪G

has no partial model in which all terms in ΨK(G) are defined.

In the particular case that ΨK(G) = st(K, G) we refer to stable locality of the
extension. The corresponding condition is denoted SLoc.
If a set K of Horn clauses satisfies (SLocΨ ) then satisfiability of any set G of
Horn clauses w.r.t. K is decidable in polynomial time in the size of ΨK(G). This
follows from the fact that K[ΨK(G)] ∪ G is a set of ground Horn clauses of size
polynomial in the size of ΨK(G), and satisfiability of sets of ground Horn clauses
(e.g. in a relational encoding, taking into account only suitable instances of the
congruence axioms - which are again Horn and have a size quadratic in |ΨK(G)|)
can be checked in linear time ([4], see also [5]).

Locality and embeddability. Theories satisfying (SLocΨ ) can be recognized
by showing that Evans partial models of T1 embed into total models.

Theorem 5 Let K be a set of clauses. If ΨK satisfies conditions (i)–(iv) above,
and every Evans partial model of K – in which the set of defined terms is closed
under ΨK – weakly embeds into a total model of K, then K satisfies SLocΨ .

4 Locality of EL
+, EL and their extensions

We now show that the classes of algebraic models of EL+ and of EL have pre-
sentations which satisfy certain locality properties. This gives an alternative,
algebraic explanation of the fact that TBOX subsumption in these logics is de-
cidable in PTIME and allows for several generalizations.

4.1 Locality and EL
+

We prove that the class SLOΣ(RI) of semilattices with monotone operators in a
set Σ satisfying a family RIa of axioms of the form ∀x (f1 ◦ · · · ◦ fn)(x) ≤ f(x)



has a local presentation, and therefore the uniform word problem w.r.t. this
class can be decided in PTIME. (We here restrict, w.l.o.g., to axioms as above
with n ∈ {1, 2}.) It is known that the theory of lattices allows a local Horn
axiomatization (cf. e.g. [8,3]). Let SL be such an axiomatization for the theory
of lattices. We denote by Mon(Σ) the set {Mon(f) | f ∈ Σ}, where

Mon(f) ∀x, y(x ≤ y → f(x) ≤ f(y)).

Theorem 6 The set of Horn clauses SL∪Mon(Σ) ∪RIa has the property that
every Evans partial model A with the properties:

(i) for every f ∈ Σ, fA is a partial function with finite definiton domain;
(ii) for each axiom in RIa of the form (f1 ◦ f2)(x) ≤ f(x), and every a ∈ A, if

f(a) is defined then f2(a) is defined in A;
(iii) A |= SL ∪ Mon(Σ) ∪ RIa;

weakly embeds into a total model of SL ∪ Mon(Σ) ∪ RIa.

Proof : Let A be an Evans partial model of SL ∪ Mon(Σ) ∪ RIa with properties
(i)–(iii). Since A is a poset, it embeds into a complete (semi)lattice S such that
the meets that exist in A are preserved. For every f ∈ Σ we define f : S → S by

f(a) =
∧

{f(c) | a ≤ c, c ∈ A, fA(c) is defined}.

Then f is monotone [12]. It can be shown that the axioms in RIa are satisfied.

Corollary 7 The following are equivalent:

(1) SL ∪ Mon(Σ) ∪ RIa |= ∀x
∧n

i=1 si(x) ≤ s′i(x) → s(x) ≤ s′(x);
(2) SL ∪ Mon(Σ) ∪ RIa∧G|= ⊥, where G =

∧n

i=1 si(c)≤s′i(c)∧s(c)6≤s′(c);
(3) (SL ∪ Mon(Σ) ∪ RIa)[ΨRI(G)] ∧ G |=⊥ where ΨRI(G) =

⋃

i≥0 Ψ i
RI , with

Ψ0
RI=st(G), and Ψ i+1

RI ={f2(d) | f(d) ∈ Ψ i
RI , (f1◦f2)(x)≤f(x) ∈ RIa}.

Here st(G) is the set of all (ground) subterms occurring in G. Note that ΨRI(G)
can have at most |st(G)| · |NR| elements. Thus, its size is polynomial in the size
of G. On the other hand, the number of clauses in (SL∪Mon(Σ)∪RIa)[ΨRI(G)]

is polynomial in |ΨRI(G)|, and satisfiability of any set of ground clauses can be
tested in polynomial time. This shows that the uniform word problem for the
class SLOΣ(RI) (and thus also for SLO∃

NR(RI)) is decidable in polynomial time.

4.2 Locality and EL

In [9] we proved that the algebraic counterpart of the description logic EL,
namely the class of semilattices with monotone operators – axiomatized by SL∪
Mon(Σ) – has a stronger locality property: for every set G of ground clauses

SL ∪ Mon(Σ) ∧ G |=⊥ if and only if (SL ∪ Mon(Σ))[G] ∧ G |=⊥

where K[G] is the set of instances of K containing only ground terms occurring
in G. In fact, we showed that the extension of the theory SL of semilattices with
monotone functions is local in the sense defined in [10] (cf. e.g. [12]).



Theorem 8 For any set G of ground clauses the following are equivalent:

(1) SL ∪ Mon(Σ) ∧ G |=⊥.
(2) SL ∪ Mon(Σ)[G] ∧ G has no partial model A such that its {∧}-reduct is a

(total) semilattice and the functions in Σ are partially defined, their domain
of definition is finite and all terms in G are defined in A.

Let Mon(Σ)[G]0 ∧G0 ∧Def be obtained from Mon(Σ)[G]∧G by purification, i.e.
by replacing, in a bottom-up manner, all subterms f(g) with f ∈ Σ, with newly
introduced constants cf(g) and adding the definitions f(g) = ct to the set Def.
The following are equivalent (and equivalent to (1) and (2)):

(3) Mon(Σ)[G]0∧G0∧Def has no partial model (A,∧, {fA}f∈Σ) such that (A,∧)
is a semilattice and for all f∈Σ, fA is partially defined, its domain of defi-
nition is finite and all terms in Def are defined in A;

(4) Mon(Σ)[G]0 ∧ G0 is unsatisfiable in SL.
(Note that in the presence of Mon(Σ) the instances Con[G]0 of the congruence
axioms for the functions in Σ are not necessary.)

Con[G]0 = {g=g′ → cf(g)=cf(g′) | f(g)=cf(g), f(g′)=cf(g′) ∈ Def}.

This equivalence allows us to hierarchically reduce, in polynomial time, proof
tasks in SL ∪ Mon(Σ) to proof tasks in SL (cf. e.g. [12]) which can then be
solved in polynomial time.

The results described above can easily be generalized to semilattices with n-
ary monotone functions satisfying composition axioms. This allows us to define
natural generalizations of EL and EL+. We start by presenting a generalization
of EL in which n-ary roles are allowed. We then sketch possible extensions in
which role inclusions are also taken into account.

4.3 Extensions of EL

We consider extensions of EL with n-ary roles. The semantics is defined in terms
of interpretations I = (DI , ·I), where DI is a non-empty set, concepts are inter-
preted as usual, and each n-ary role R ∈ NR is interpreted as an n-ary relation
RI ⊆ (DI)n. The constructors are conjunction (interpreted as intersection) and
existential restriction (is interpretation extends naturally that for n = 2):

(∃R.(C1, . . . Cn))I = {x | ∃y1, . . . , yn (x, y1, . . . , yn) ∈ RI and yi ∈ CI
i }.

A further extension is obtained by allowing for certain concrete sorts in the
interpretation of concepts. These have the same support in all interpretations.
We may additionally assume that there exist specific concrete concepts which
have a fixed semantics in all interpretations, or that all concrete concepts have
interpretations with additional properties.

Example 1. Consider a description logic having a usual (concept) sort and a ’con-
crete’ sort num with fixed domain N. We may be interested in general concrete



concepts of sort num (interpreted as subsets of R) or in special concepts of sort
num such as ↑n, ↓n, or [n, m] for m, n ∈ R. For any interpretation I, ↑nI = {x ∈
R | x ≥ n}, ↓nI = {x ∈ R | x ≤ n}, and [n, m]I = {x ∈ R | n ≤ x ≤ m}. We will
denote the arities of roles using a many-sorted framework. Let (D, R, ·I) be an
interpretation with two sorts concept and num. A role with arity (s1, . . . , sn) is
interpreted as a subset of Ds1

× · · · × Dsn
, where Dconcept = D and Dnum = R.

1. Let price be a binary role or arity (concept, num), which associates with every
element of sort concept its possible prices. The concept

∃price.↑n = {x | ∃k ≥ n : price(x, k)}

represents the class of all individuals with some price greater than n.

2. Let has-weight-price be a role of arity (concept, num, num). The concept

∃ has-weight-price.(↑y, ↓p) = {x | ∃y′≥y, ∃p′≤p and has-weight-price(x, y′, p′)}

denotes the family of individuals for which a weight above y and a price
below p exist.

The example below can be generalized by allowing a set of concrete sorts. We
can prove that semilattices with monotone n-ary operators define the algebraic
semantics of this extension of EL. The proof is analogous to that of Theorem 4.

Let SLO∃
NR,S denote the class of all structures (S,P(A1), . . . ,P(An), {f∃r | r ∈

NR}), where S is a semilattice, A1, . . . , An are concrete domains, and {f∃r |
r ∈ NR} are n-ary monotone operators. In addition we may allow constants of
concrete sort, interpreted as sets in P(Ai). The classes DLO∃

NR,S and BAO∃
NR,S of

all distributive lattices resp. Boolean algebras with concrete supports and n-ary
join hemimorphisms {f∃r | r ∈ NR} are defined similarly.

Theorem 9 Assume that the only concept constructors are intersection and ex-
istential restriction. For all concept descriptions C1, C2, and every TBox T con-
sisting of general concept inclusions GCI, C1 vT C2 if and only if SLO∃

NR,S |=
(

∧

CvD∈GCI C ≤ D
)

→ C1 ≤ C2.

Let SLS be the class of all structures A = (A,P(A1), . . . ,P(An)), with signature
Π = (S, {∧} ∪ Σ, Pred) with S = {concept, s1, . . . , sn}, Pred = {≤} ∪ {⊆i| 1 ≤
i ≤ n}, where A ∈ SL, the support of sort concept of A is A, and for all i the
support sort si of A is P(Ai).

Theorem 10 ([12]) Every structure (A,P(A1), . . . ,P(An), {fA}f∈Σ), where

(i) (A,P(A1), . . . ,P(An)) ∈ SLS, and
(ii) for every f∈Σ of arity s1. . .sn→s, fA is a partial function from

∏n

i=1 Usi
to

Us with a finite definition domain on which it is monotone,

weakly embeds into a total model of SLOΣ,S (axiomatized by SLS∪Mon(Σ)).

Corollary 11 Let G=
∧n

i=1 si(c)≤s′i(c) ∧ s(c)6≤s′(c) be a set of ground clauses
in the extension Πc of Π with new constants. The following are equivalent:



(1) SLS ∪ Mon(Σ) ∧ G |=⊥;
(2) SLS ∪ Mon(Σ)[G] ∧ G has no partial model with a total {∧SL}-reduct in

which all terms in G are defined.

Let
⋃n

i=0 Mon(Σ)[G]i∧Gi∧Def be obtained from Mon(Σ)[G]∧G by purification,
i.e. by replacing, in a bottom-up manner, all subterms f(g) of sort s with f ∈
Σ, with newly introduced constants cf(g) of sort s and adding the definitions
f(g) = ct to the set Def. We thus separate Mon(Σ)[G] ∧ G into a conjunction
of constraints Γi = Mon(Σ)[G]i ∧Gi, where Γ0 is a constraint of sort semilattice

and for 1 ≤ i ≤ n, Γi is a set of constraints over terms of sort i (i being the
concrete sort with fixed support P(Ai)). Then the following are equivalent (and
are also equivalent to (1) and (2)):

(3)
⋃n

i=0 Mon(Σ)[G]i ∧ Gi ∧ Def has no partial model with a total {∧SL}-reduct
in which all terms in Def are defined.

(4)
⋃n

i=0 Mon(Σ)[G]i ∧ Gi is unsatisfiable in the many-sorted disjoint combina-
tion of SL and the concrete theories of P(Ai), 1 ≤ i ≤ n.

The complexity of the uniform word problem of SLS ∪ Mon(Σ) depends on the
complexity of the problem of testing the satisfiability w.r.t. the many-sorted
disjoint combination of SL with the concrete theories of P(Ai), 1 ≤ i ≤ n –
of sets Cconcept ∪

⋃n

i=1 Ci ∪ Mon, where Cconcept and Ci are unit clauses of sort
concept resp. si, and Mon consists of possibly mixed ground Horn clauses.

Specific extensions of the logic EL can be obtained by imposing restrictions
on the interpretation of the “concrete”-type concepts within P(Ai). (We can e.g.
require that numerical concepts are interpreted as intervals, as in Example 1.)

Theorem 12 CBox subsumption is decidable in PTIME for the following ex-
tensions of EL with n-ary roles:

(1) The one-sorted extension of EL with n-ary roles.
(2) The extension of EL with sorts {concept, num}, such that (i) the semantics of

the sort concept is the usual one, (ii) the concepts of sort num are interpreted
as elements in the ORD-Horn, convex fragment of Allen’s interval algebra
[7], and (iii) any CBox can contain many-sorted GCI’s over concepts, and
constraints over the numerical data expressible in the ORD-Horn fragment.

Example 2. Consider the special case described in Example 1. Assume that the
concepts of sort num used in any TBox are of the form ↑n, ↓m and [n, m]. Con-
sider the TBox T consisting of the following GCIs:

{∃price(↓n1)vaffordable, ∃weight(↑m1)ucarvtruck, ↓n1v↓n, ↑m1v↑m, Cvcar,

has-weight-price(↑m, ↓n)v∃price(↓n)u∃weight(↑m), Cv∃has-weight-price(↑m, ↓n)}

In order to prove that C vT affordable u truck we proceed as follows. We refute
∧

DvD′∈T D ≤ D
′
∧ C 6≤ affordable ∧ truck. We purify the problem introducing

definitions for the terms starting with existential restrictions and obtain the
following set of constraints:



Def Cnum Cconcept Mon

fprice(↓n1) = c1 ↓n ≤ ↓n1 d1 ≤ affordable ↓n1 ≤ ↓n → c1 ≤ c

fprice(↓n) = c ↑m ≤ ↑m1 d1 ∧ car ≤ truck ↓n1 ≥ ↓n → c1 ≥ c

fweight(↑m1) = d1 e ≤ c ∧ d ↑m1 ≤ ↑m ≤ d1 ≤ d

fweight(↑m) = d C ≤ car ↑m1 ≥ ↑m ≤ d1 ≥ d

fh-w-p(↑m, ↓n) = e C ≤ e

C 6≤ affordable ∧ truck

The task of proving C vT affordableu truck can therefore be reduced to checking
if Cnum ∧Cconcept ∧Mon is satisfiable w.r.t. the combination of SL (sort concept)
with P(Q) (sort num). For this, we note that Cnum entails the premises of the
first, second, and fourth monotonicity rules. Thus, we can add c ≤ c1 and d ≤ d1

to Cconcept. Thus, we deduce that C ≤ e ∧ car ≤ (c ∧ d) ∧ car ≤ c1 ∧ (d1 ∧ car) ≤
affordable ∧ truck, which contradicts the last clause in Cconcept.

4.4 Extensions of EL
+

For roles with arbitrary arity we also consider role inclusions of the form r1◦r2 v
r with the semantics that for every interpretation I, if (x1, . . . , xn) ∈ rI1 and
(xn, . . . , xn+k) ∈ rI2 then the tuple (x1, . . . , xn−1, xn+1, . . . , xn+k) ∈ rI . Mono-
tone functions f∃r, f∃r2

associated with r1, r2 can be constructed by defining:

f∃ri
(U1, . . . , Umi

) = {x | ∃y1, . . . , ymi
, (x, y1, . . . , ymi

) ∈ rIi and yj ∈ Uj}.

The composition rules which correspond to the role inclusion constraints are:

f∃r1
(U2, . . . , Un−1, f∃r2

(Un+1, . . . , Un+k)) =

= {y1 | ∃yi∈Ui, 2≤i≤n − 1, ∃yn∈f∃r2
(Un+1, . . . , Un+k), (y1, y2, . . . , yn)∈r1} =

= {y1 | ∃yi ∈ Ui, 2 ≤ i ≤ n − 1, ∃yi ∈ Ui, n + 1 ≤ i ≤ n + k,

(yn, yn+1, . . . , yn+k) ∈ rI2 and (y1, y2, . . . , yn) ∈ rI1 } =

= {y1 | ∃yi∈Ui, for 2≤i≤n + k, i6=n, (y1, y2, . . . , yn−1, yn+1, . . . , yn+k)∈rI2 ◦r
I

1 }

⊆ {y1 | ∃yi ∈ Ui, for 2 ≤ i ≤ n + k, i 6= n, (y1, y2, . . . , yn−1, yn+1, . . . , yn+k) ∈ rI}

= f∃r(U2, . . . , Un−1, Un+1, . . . , Un+k) if r2 ◦ r1 ⊆ r.

Locality results similar to those in Thm. 6 can be obtained also in this case.

5 Conclusions

In this paper we have shown that subsumption problems in EL can be expressed
as uniform word problems in classes of semilattices with monotone operators, and
that subsumption problems in EL+ can be expressed as uniform word problems
in classes of semilattices with monotone operators satisfying certain composition
laws. This allowed us to obtain, in a uniform way, PTIME decision procedures
for EL, EL+, and extensions thereof. These locality considerations allow us to
present a new family of PTIME (many-sorted) logics which extend EL.

The results in [11] show that the class of semilattices with monotone op-
erations allows ground (equational) interpolation. We plan to use the results



presented in this paper for studying interpolation properties in extensions of EL
and for analyzing possibilities of efficient (modular) reasoning in combinations
of ontologies based on extensions of EL.
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