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Abstract  
Poor-quality artificial light sources can be harmful to health and affect the productivity of 

workers in the workplace. This research focuses on the effects of pulse-width modulation 

(PWM) of artificial light sources such as displays or lamps on the human body. The main 

objective of the research is to make the process of checking the workplace for the presence of 

pulse-width modulation (PWM) more accessible and to minimize the negative impact of 

pulse-width modulation (PWM) on the human body. To achieve this goal, an alternative 

method of monitoring the pulse-width modulation (PWM) of artificial light sources has been 

developed using artificial intelligence (AI) methods that can even be used on a smartphone. 

The results of this research can be applied in the field of occupational safety and health 

(OSH).  
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1. Introduction 

With the advent of industrialization, most people began to work indoors. Artificial lighting sources 

are used to organize the work process on the premises. Artificial lighting sources include both 

external lighting sources and displays of computers, tablets, and smartphones with which the 

employee interacts [1]. The norms of artificial lighting sources acceptable for the work process are 
described in the sanitary and hygienic requirements for occupational safety and health (OSH) and 

European standards [2]. However, given the variety of artificial lighting sources on the market and the 

dishonesty of employers, they do not always meet acceptable standards. For example, an employer 
may purchase low-quality lighting sources to reduce the company's costs for them. 

The main indicators of the quality of artificial lighting sources are the brightness of this source and 

the pulsation coefficient. Artificial lighting sources, made from cheap components, usually have low 

brightness and high ripple. The presence of a high pulsation coefficient indicates that the light source 
has a flicker that is invisible to the eye. This is because such artificial light sources use the pulse-

width modulation (PWM) method to adjust the brightness [3]. These factors can cause increased 

worker fatigue, decreased visual performance, eye strain, headaches, and anxiety. In addition, it also 
negatively affects the power grid - it causes interference. High-quality artificial light sources do not 

have this flicker and, accordingly, the presence of pulse-width modulation (PWM), because they use a 

different method of dimming, namely a direct current regulation on the diodes. This type of dimming 
is called "DC Dimming" and is also known by the marketing name "Flicker Free" [4, 5, 6, 7]. Not all 

manufacturers of artificial light sources report this on their product packaging. To check artificial 
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lighting sources and place monitors for compliance with sanitary and hygienic requirements, the 
workplace is attested using special equipment, namely, lux meters. This equipment is not mass-

produced, it is relatively expensive and, as a rule, only certification commissions have it. 

Given the above, it is advisable to create an alternative to the described equipment, which would 

be devoid of the above disadvantages and solve the problem. 
Thus, the objective of the presented research is to develop an alternative method for detecting 

pulse-width modulation (PWM), which would be more accessible and widespread. 

To solve the problem, artificial intelligence (AI) methods will be used, which will allow the 
creation of a software-hardware implementation for checking artificial light sources for the presence 

of pulse-width modulation (PWM). Specifically, in this research, computer vision methods are used. 

The active development of artificial intelligence (AI) and its use in various fields of activity, which 
allows you to perform specific tasks more effectively, speaks of the feasibility of using this method 

[8]. For example, the resulting trained model can be embedded in an application on a smartphone or 

similar handheld device that has a camera. This will make the process of certification of the 

workplace for the presence of low-quality artificial lighting sources simpler and more widespread and 
will avoid low-quality artificial light sources and prevent a negative impact on the human body. For 

example, a person can use a smartphone camera to check the artificial light source at his workplace in 

live mode.  
This also largely determines the scientific novelty of the research – artificial intelligence (AI) 

methods are used in this area for the first time, in addition, this research proposes a combination of 

various methods. The object of the research is the problem of the application of information 
technologies in the field of occupational safety and health (OSH).  The subject of the research is the 

process of analyzing artificial lighting sources and displays at workplaces to improve the certification 

process for sanitary and hygienic requirements and avoid negative consequences for human health. 

The results obtained in the course of this research can be used in the field of occupational safety 
and health (OSH). This research includes the following sections: title, authors, abstract, introduction, 

methodology, results, discussion, conclusion, acknowledgments, and references. These sections 

provide a framework for presenting the research process and contributing to the existing body of 
knowledge in the field. 

2. Methodology 

The methodology of this research includes mixed methods, such as methods using artificial 

intelligence (AI), and mathematical methods. 

2.1. Detection using artificial intelligence (AI) methods 

The use of artificial intelligence (AI) methods in various fields of activity is expedient due to its 

rapid development and increasing use throughout the world. Artificial intelligence (AI) methods allow 
you to perform specific tasks more subtly and efficiently [8]. The detection of pulse-width modulation 

(PWM) of artificial light sources using artificial intelligence (AI) methods is the main detection 

method presented in this research. To achieve this goal, computer vision methods are used, to be more 
precise, the detection of objects in images. The resulting trained model can be embedded in 

applications and accordingly used in portable devices such as smartphones. It also largely determines 

the scientific novelty of this research.  

2.1.1. Data collection 

The fact is that before training the image detection model, you need to have an array of data. Since 
the resulting image detection model must determine the pulse-width modulation (PWM) of artificial 

light sources, this imposes some limitations. Firstly, there is no ready-made data set date for this task 

at the moment, but it can be generated by yourself. Secondly, you need to understand what kind of 

training data is needed. 
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Based on already existing articles, it is known that you can see the pulse-width modulation (PWM) 
of artificial lighting sources using a camera that has a CMOS sensor. If you fix a flickering light 

source with such a camera, then black stripes will be displayed in the picture. This effect is also called 

a rolling shutter (RS). This is because pulse-width modulation (PWM) is a fast flicker of an artificial 

light source, and the CMOS sensor reads the image line by line, this allows you to display flicker in 
the pictures [2, 9, 10]. Rolling shutter (RS) mechanism is shown on Figure 1.  

 

Figure 1: Rolling shutter (RS) mechanism 

While the camera is taking a picture line by line, the artificial light source can flicker dozens of 

times. However, there are also some nuances here. To see the flicker more clearly, the camera shutter 

speed must be very fast. As practice has shown, flicker is already visible at a shutter speed of 1/1000. 
At shutter speeds of 1/4000, 1/8000 flicker is even more visible. However, extremely slow shutter 

speeds will result in incorrect exposure, and the viewfinder image will be very dark. In this case, it is 

necessary to increase the light sensitivity of the matrix, which leads to image distortions.  

Based on this information, it was decided to use the maximum fast shutter speed and maximum 
sensor light sensitivity to fix low-quality artificial light sources in the laboratory. Also, since the 

training model needs a variety of data to get good training results, it was a nice decision to take data 

from the Internet, where flicker bands are fixed on the lights.  

2.1.2. Data preprocessing and augmentation 

It is necessary to take into account the current limitations, the smartphone camera is not an 
accurate sensor, so the classification into classes is subjective, however, it shows a trend. Based on 

mathematical measurements, the most popular flicker frequency values of pulse-width modulation 

(PWM) are:  
1. less than 60 hertz (some incandescent lamps) 

2. 250 hertz (common frequency for some LED/ AMOLED displays) 

3. 480 hertz (common frequency for some AMOLED displays) 
4. ~2000 hertz (common frequency for some new AMOLED displays) 

5. ~ 25000 hertz (common frequency for some new laptops 

It is important to note that OLED screens flicker more often than LED. This is due to the fact that 

when the current is dimmed at low brightness values, image artifacts appear [2]. 
However, it is important to keep in mind that this data only describes a trend and may vary from 

one artificial light source to another. In addition, the frequency may change when the brightness of the 

artificial light source changes. As practice shows, it is at the lowest brightness that the lowest flicker 
frequency of pulse-width modulation (PWM) is achieved and, accordingly, the harm to the human 

body increases. Some people, knowing that, for example, their LED monitor is flickering, may use a 

high screen brightness, which can also harm their eyes. 

Answering the question of why a person does not notice this flicker, it can be noted that the human 
eye averages the flicker brightness when flickering is above 60 hertz. Flickering at 250 hertz can 

cause increased eye fatigue and headaches with prolonged contact and directly affect performance. 
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Flickering at 500 hertz can still be detected by some people, however, the effects of it are no longer so 
pronounced. Flickering over 2000 hertz is already relatively safe. Here, the brightness of an artificial 

light source is often directly proportional to its flicker frequency. True only if this artificial light 

source uses a pulse-width modulation method (PWM) to adjust the brightness. High-quality lighting 

sources use the method of direct current regulation on the diodes (DC Dimming) [3, 4, 5, 6, 7].  
In other words, pulse width modulation (PWM) flicker can also be described as follows. If the 

brightness of the artificial light source is high, then the artificial light source will burn for a longer 

time. If the brightness of the artificial light source is low, then the artificial light source does not burn 
for a longer time. This can be seen in Figure 2. 

 

Figure 2: Pulse-width modulation (PWM) periods 

Once the data has been collected, it needs to be processed. Firstly, the dataset must be divided into 
at least 2 samples - training and validation. Secondly, you need to classify the images [11, 12]. When 

testing in laboratory conditions, it was found that with the same exposure of the camera, sources with 

different frequencies of pulse-width modulation (PWM) have different widths of black bands. To 
change the frequency of the pulse-width modulation (PWM), it is enough to simply change the 

brightness of the light source, if possible. A larger black bar indicates that the pulse width modulation 

frequency is lower. This suggests that the test source of artificial lighting is the most harmful. A 

smaller black bar indicates that the pulse-width modulation (PWM) frequency is higher. This suggests 
that the test source of artificial lighting is less harmful. Thus, it was decided to classify the resulting 

dataset according to the degree of risk of harm to the human body:  

1. acceptable 
2. tolerable 

3. unacceptable 

4. no risk 

Figure 3 shows the risk scale of the influence of pulse-width modulation (PWM) on the human 
body. Approximate data on the correspondence between health risk and qualitative amount of pulse-

width modulation (PWM) are presented in Table 1.  

 
Figure 3: Risk scale of the influence 

Table 1 
Correspondence between risk and frequency 

Risk Strip width 

acceptable narrow 
tolerable medium 

unacceptable wide 
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Let's look at example classes. They clearly show how the width of the black bars changes when the 
brightness of the AMOLED display changes. Figure 4 shows the class of risk "acceptable". Figure 5 

shows the class of risk "tolerable". Figure 6 shows the class of risk "unacceptable". Figure 7 shows 

the class with no risk.  

 
 

Figure 4: Example of acceptable class risk Figure 5: Example of tolerable class risk 

 
 

Figure 6: Example of unacceptable class risk Figure 7: Example of class with no risk 

In this case, we managed to collect 100 different images for training process and 10 for validation. 
Objectively, it's not much. Therefore, to increase the dataset size by several times, data augmentation 

should be applied. Augmentation is the process of mirroring images and rotating them by several 

degrees. It is also important to note that since object detection methods are used on images, and not 
image classification, to assign the above classes to the collected data set, you must manually specify 

labels with their names and areas on each image. This operation is shown in Figure 8. 

 



141 

 
Figure 8: Data set labeling 

2.1.3. Model architecture 

This research uses a model RetinaNet model for object detection pulse-width modulation (PWM). 

RetinaNet is a model architecture that is commonly used for object detection tasks. It consists of two 

main components: a core network (for example, MobileNetV3 in this case) for extracting features 
from images, and a RetinaNet head for detecting objects based on these features [11, 12].  

Model architecture is shown in Figure 9. 

\ retina_net_model_7" model consists of several layers: 

"mobile_net_6": This is the MobileNet layer that takes an input image and outputs feature maps 
with different development levels (64x64, 32x32, 16x16, 8x8 and 1x1). MobileNet is a convolutional 

neural network architecture with multiple layers that uses depth wise separable convolutions and 

ReLU activation functions. 
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"fpn_6": This is the Feature Pyramid Network (FPN) layer, which takes feature maps from the 
MobileNet layer and sequentially sets feature maps at different scales (8x8, 16x16, 32x32, 4x4 and 

2x2). 

"multilevel_detection_generator_7": This level is responsible for generating anchor fields at 

different scales and corresponding sides for each map object. 
"retina_net_head_6": RetinaNet top layer that accepts feature maps from the FPN layer and 

performs feature detection. It outputs the coordinates of the turnover limit and probability classes for 

objects at different scales. 

 
Figure 9: Model Architecture 

MobileNetV3 includes pretraining on a large dataset called ImageNet, which comprises millions of 

labeled images from thousands of different classes. Through pretraining on ImageNet, MobileNet can 
learn to recognize diverse visual patterns and features, which can subsequently be transferred and 

fine-tuned for other computer vision tasks, including image classification, object detection, or 

semantic segmentation, using smaller and more specific datasets [11].  

Also, MobileNetV3 includes average pooling as a method to reduce the complexity of feature 
mapping. Average pooling is a type of pooling operation that calculates the average value of a set of 

objects within a pooling window [13]. These techniques can improve the performance and accuracy 

of object detection, since a limited dataset was formed during this research. 
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The choice of these models is due to the fact that they are free, supported by large companies, have 
a balance of performance and accuracy. Thus, they are ideal for an our experimental setup. 

2.1.4. Training and evaluation procedure 

In this research, to retrain the model, the following procedure is used. First, the model is initialized 
with pre-trained weights on large datasets such as ImageNet. Then, the retraining phase is carried out, 

adjusting the model parameters on the generated specific image detection dataset.  

The model training parameters used in this research are presented in Table 2. 

Table 2 
Model training parameters 

Training parameter Value 

Number of epochs 20 
Learning rate 1 

Batch size 4 

The selection of model training parameters is often individual and depends on specific goals and 

datasets. The parameters in Table 2 are often chosen empirically, but there are still some guidelines 

that drive the current values in this research. The main limitation here is a small dataset. With a small 

amount of data, the neural network can quickly remember all the examples, which can lead to 
overfitting. Limiting the number of epochs helps control overfitting and provides more robust model 

training. A higher learning rate can be chosen for faster model convergence. However, this parameter 

must be carefully selected to avoid convergence too fast or too slow. With a small amount of data, a 
smaller batch size can be chosen to improve the generalizing ability of the model and avoid 

overfitting. To achieve adequate accuracy of class determination, a detection accuracy of about 70% 

or more is required.  

2.1.5. Experimental Setup 

To form the dataset materials, a smartphone with a Sony IMX 586 CMOS and Snapdragon 765G 
was used. The shutter speed was set as short as possible – 1/11626, and the sensor light sensitivity 

(ISO) was as high as possible – 5699 [15].  

To conduct experiments with retraining of the MobileNetV3 architecture for detecting images with 

the flickering of pulse-width modulation (PWM) of artificial light sources, Google Collaboratory was 
used as a platform for developing and executing code. Google Collaboratory provides access to 

graphics processing unit (GPU) computing resources, allowing you to effectively train deep learning 

models [16]. The high-level programming language Python was also used in conjunction with the 
MediaPipe framework to implement models and complete tasks. MediaPipe provides extensive 

functionality and tools for machine learning (ML) [17], and the Python language is often used in big 

data [18]. The matplotlib library in Python was used to analyze and obtain results. The labelImg 
program was used to create class labels on images.  

During the experiments, data enhancement technologies were also applied to increase the selection 

of a sample data set and increase the generalizing power of the models. Extension techniques such as 

rotations, scaling, reflection, and adding a noise library have been applied using imgaug tools and 
features. Using this experimental setup, the results, estimated performance, and efficiency of the pre-

trained architecture MobileNetV3 were obtained for the task of detecting images with the flickering 

pulse-width modulation (PWM) of artificial light sources.  

2.2. Additional Math helper methods to improve the result accuracy 

As mentioned above, the method for determining the pulse-width modulation (PWM) of artificial 
light sources using artificial intelligence (AI) methods is the main one in this research. However, to 

implement this method, you need to use a camera, for example, on a smartphone. Using the camera 

imposes some restrictions. The camera perfectly shows high-frequency ripples. For example, if the 
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flicker frequency is extremely low, for example, about 30 hertz, then black bars may not form - the 
camera will track the flicker like a stroboscope.  

2.2.1. Averaging the color of image pixels over time 

This method consists in getting an image from the camera and then averaging the RGB colors. 

This will give the brightness of the color. This information should be added to the array over some 

time, such as 1 second. Compared to the first method, this method can be more accurate but still 
requires the use of a camera. You can then use a formula to calculate the relative deviation of the 

mean (the sum of the values divided by the number of values) of the data set (x) from the maximum 

value (max) as a percentage. An example of a mathematical formula that can represent this method is 

presented below 

𝑃 =
100 ∗ (

∑𝑥
𝑛 )

𝑥𝑚𝑎𝑥
, 

(1) 

where P – is the percentage of flickering, ∑𝑥 – is the total sum of average color values, n – is the total 

number of average color values, 𝐸𝑚𝑎𝑥 – is the max value of average color value brightness.  

Thus, the formula can show how much percent the light source flickers. If it turns out 100%, then 

this indicates that the light source does not flicker. 

2.2.2. Averaging the luxes from the built-in light sensor over time 

This method consists in getting an illumination of light from built-in hardware light sensor in 

luxes. However, keep in mind that installed light sensors in portable technology often have very low 

sensitivity and may be useless. To implement this method, you can use the principles and approaches 

described in section 2.2.1. Thus, it will be necessary to collect data from the built-in light sensor for 
some time and apply formula 1. 

3. Results 

This section presents the results of this research related to the detection of pulse-width modulation 

(PWM) of artificial light sources using artificial intelligence (AI) methods, namely computer vision to 

prevent their harm to human health. Here is the performance data for the object definition model. 
The resulting model, based on the MobileNetV3 architecture and retraining, achieved a relatively 

average object detection accuracy on the test dataset. The results of validation on the test selection in 

COCO are shown in Table 3. 

Table 3 
Model validation in COCO metrics  

Metric IoU Area Max Dets Value 

Average Precision 0.50:0.95 all 100 0.703 
Average Precision 0.5 all 100 0.914 
Average Precision 0.75 all 100 0.889 
Average Precision 0.50:0.95 small 100 -1 
Average Precision 0.50:0.95 medium 100 -1 
Average Precision 0.50:0.95 large 100 0.704 

Average Recall 0.50:0.95 all 1 0.746 
Average Recall 0.50:0.95 all 10 0.754 
Average Recall 0.50:0.95 all 100 0.754 
Average Recall 0.50:0.95 small 100 -1 
Average Recall 0.50:0.95 medium 100 -1 
Average Recall 0.50:0.95 large 100 0.754 

The model training results show that the average accuracy (AP) at various IoU values ranges from 

0.703 to 0.914. This means that the model accurately detects and classifies objects in the image. 
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However, the average accuracy for small and medium objects cannot be calculated, which may 
indicate difficulties in detecting such objects. In terms of recall (AR), the model achieves a value 

between 0.746 and 0.754 for various IoUs and maximum detections. This means that the model is 

able to detect most of the objects, but some may be missed. 

The total validation loss is [0.8219069242477417, 0.5985177159309387, 0.003196648322045803, 
0.758350133895874], indicating that the model converges and trains well enough. Given the 

relatively average detection accuracy of the resulting model, quantization was not applied to it. 

The essence of quantization is rounding the values of the model. This allows to reduce the speed of 
detection, but reduce the accuracy of detection. Checking the model on random images from the 

public domain. Example of successful detecting tolerable class risk on LED lamp is shown in Figure 

10 with 62% probability. Example of successful detecting acceptable and tolerable class risk on 

displays is shown in Figure 11 with 89% and 33% probability.  

 

 

Figure 10: Example of detecting tolerable class 
risk on LED lamp 

Figure 11: Example of detecting multiple classes 
of risk on displays 

It is important to note that in the final implementation of this method on practical experience in the 

form of a native Android application, an auxiliary method for detecting pulse-width modulation 
(PWM) was also additionally used by determining the average pixel color of the resulting image. 

Both of these methods allow you to work in real-time live mode. It takes about 0.1 second to get 

the result on mid-range smartphone with SoC Snapdragon 765G. 
The native Android application works as an expert system (ES) and, after analyzing the artificial 

light source, shows recommendations that can positively affect human health and labor productivity. 

Figure 12 shows an example of a native Android application that implements both of these 

methods and test model in real-time mode on LED lamp in room with probability 80%. This research 
confirms the effectiveness and applicability of the presented methodology within this field. 

4. Discussion 

This section analyzes the results of this research related to the detection of pulse-width modulation 

(PWM) of artificial light sources using artificial intelligence (AI) methods, namely computer vision to 

prevent their harm to human health.  
The resulting image detection model, based on the MobileNetV3 architecture and retraining, 

showed relatively average accuracy and speed. The results obtained can be improved in next ways: 

The very first and most important thing is to increase the size of the dataset. Instead of using 
square masks, masks of different shapes can be used to label the training data. All this will also entail 

a revision of the training parameters. The presented main method for detecting pulse-width 

modulation (PWM) of artificial light sources using artificial intelligence (AI) methods, namely 
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computer vision may also have some limitations. First, the method is based on the rolling shutter (RS) 
effect of CMOS sensors. However, there are matrices of an older generation, namely CCD [9]. Most 

likely, this method will not work on matrices of this type. Secondly, the accuracy of determining 

objects is directly proportional to the quality of learning the object definition model. 

 

Figure 12: Android native application tests LED lamp in room with probability 80% in real-time 
mode. 

In addition, a wide variety of CMOS sensors in portable devices also impose a limitation on the 
objectivity of the results obtained. For example, relatively new CMOS sensors, Sony IMX 586, have a 

shutter speed limit of more than 1/10000, and older ones, Sony IMX 363, have a shutter speed limit of 

1/4000. This can directly affect the bar width [15]. However, given that this method was developed as 
a counterbalance to hardware implementations, we can make allowances for these points. Moreover, 

some of these points can be solved, for example, by introducing the minimum system requirements 

for the CMOS sensor. Although, even at a shutter speed of 1/1000, it is possible to detect the presence 
of pulse-width modulation (PWM) of artificial light sources. 

5. Conclusion 

This section summarizes the results of this research related to the detection of pulse-width 

modulation (PWM) of artificial light sources using artificial intelligence (AI) methods, namely 

computer vision to prevent their harm to human health and concludes its effectiveness, contribution, 
and opportunities for further development. As a result of experiments and analysis of this research, an 

alternative method for determining the pulse-width modulation (PWM) of artificial light sources using 

artificial intelligence (AI) methods, namely computer vision, was proposed and demonstrated. The 

effectiveness of the image detection model based on the MobileNetV3 architecture and additional 
training was shown, which confirms the applicability of the model under research in real scenarios. 

In addition, to improve the results obtained, additional methods were also proposed and presented 

for the possible determination of the pulse-width modulation (PWM) of artificial light sources. 
However, despite the results achieved, some limitations and room for improvement were also 

found. This includes improving the speed and accuracy of model definition. 

For further development of this area of research, it is possible to consider proposals for developing 

a method for calculating the width of the black stripes of pulse-width modulation (PWM) in an image 
and comparing it with the real sizes obtained at different frequencies. Since the current solution 

represents a qualitative characteristic, and not a quantitative one in units of measurement. 
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In general, the results of this research confirm the significance and potential of the proposed 
methods. This work contributes to the development of the field of occupational safety and health 
(OSH), offering alternative available methods for attesting workplaces and preventing the negative 
impact of low-quality lighting sources. 
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