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Abstract  
A method and algorithms for constructing two-dimensional (2D) discrete fractal step 

multiwavelets and multiwavelet packets, as well as discrete multiwavelet transforms with 

specified sizes of multiwavelet packets for different decomposition levels, have been 

developed. These algorithms allow for the construction of multiwavelets without performing 

convolution and downsampling operations, unlike the classical method. Additionally, low 

complexity algorithms for fast 2D multiwavelet transforms (2D MWT) with specified sizes of 

multiwavelet packets for different decomposition levels have been developed. A methods and 

algorithms for processing and coding image based on 2D MWT have been proposed as a new 

multiwavelet technology. A three-level 2D MWT-based image coding method has been 

proposed, which exhibits a 78.8 times lower multiplicative complexity and requires 22.5 times 

fewer additions compared to the well-known classical Mallat algorithm.  
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1. Introduction 

The systematic theory of constructing orthonormal wavelet bases was developed by Meyer and 
Mallat [1,2] through the construction of short-scale approximations of signals [3]. This theory was 

based on original ideas developed in computer visualization by Bart and Adelson [4] for analyzing 

signals at multiple levels of decomposition. The complete elimination of redundant information is 
equivalent to constructing a basis in the signal space. While wavelet bases were the first to emerge, they 

were quickly followed by other families of bases such as wavelet packets [5], multiwavelets [6], and 

local cosine bases [2]. Multiwavelets (MW) are designed for the decomposition of "multichannel" 

signals that have more than one component. Their attractiveness lies in the fact that, like regular 
wavelets, they generate short-scale approximations of the signal that are more localized in space and 

provide a fast wavelet transform algorithm (Mallat`s algorithm) [2,7]. Constructing multiwavelets 

allows for great flexibility in construction by introducing multiple scaling functions and wavelets. A 
better compromise can be achieved between the supports of the MW and their zero moments [6]. 

However, constructing MW proved to be more challenging than regular wavelets. The issue is that the 

scaling (or dilation) equations have matrix coefficients that do not commute with each other. Therefore, 
finding a suitable set of coefficients that gives a solution to the inverse equation is quite complex. The 

first example of orthogonal continuous MW was obtained by Geronimo, Hardin, Massopust (GHM) 

[6]. The scaling functions and wavelets obtained, known as GHM, were piecewise-like, and the 

construction was based on methods from the theory of integral functional systems that generate fractal 
functions. In [8], MW and multiwavelet packets (MWP) were defined and orthogonal and biorthogonal 

MW were constructed. However, multiwavelet packets increase computational complexity due to the 

process of basis selection. Multiwavelets with the SPIHT algorithm are applied for image compression 
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[9]. Sumalatha and Subramanyam [10] compared the efficiency of different multiwavelets in 
compressing medical images and showed that the SA4 multiwavelet demonstrates the best efficiency 

compared to GHM and CL multiwavelets. It is noted that multiwavelets better detect and represent 

contours compared to wavelets. In [11], the use of SA4 multiwavelet with the SPEC algorithm for image 

compression was proposed, resulting in a 3 dB improvement in PSNR compared to scalar wavelets. In 
[12], multiwavelets with the SPIHT algorithm are used for fingerprint compression. Rema et al. [13, 

14, 15] applied SA4 multiwavelets and the SPIHT algorithm using a genetic algorithm for optimizing 

the coefficients of the pre-filter for fingerprint compression. The improvement in average PSNR for 
FVC 2000 DB1 and 2002 DB3 databases was 4.23 dB and 2.52 dB, respectively, for bit rates ranging 

from 0.01 to 1, at compression ratios of 80:1 and 100:1. As noted in [15], the existing methods in the 

literature currently achieve 100% recognition only up to a compression ratio of 180:1. In [15], 100% 
identification accuracy was achieved for images from the NIST-4, NITGEN, FVC2002DB3_B, 

FVC2004DB2_B, and FVC2004DB1_B databases at compression ratios of 520:1, 210:1, 445:1, 545:1, 

and 1995:1, respectively. In [16], a contour detection method using multiwavelets and the Canny 

algorithm was proposed. The algorithm's performance is compared using the False Correct Ratio (FCR), 
which measures the ratio of falsely detected edges to correctly detected edges, and demonstrates an 

order of magnitude better efficiency for various classes of images compared to scalar wavelets. In [17], 

a new human face recognition system utilizing a combination of multiwavelet transform and neural 
network was proposed. Perfect recognition of thousands of human face images was achieved. In [18], 

it was shown that multiwavelets improve SNR by 29,7% compared to wavelets in the analysis of noisy 

electrocardiograms. 

2. Fractal step functions, fractal multiwavelets and multiwavelet packets 

In [19], a new class of normalized fractal step functions (FSF) is introduced, and based on them, a 

method is developed to construct a complete family of orthonormal basis systems of a new class of 
fractal multilevel wavelets with different shapes and linear and nonlinear value changes. The key 

properties of FSF are their recurrence, self-similarity at different scales, and fractal dimension, hence 

the name "fractal". In [20], a new class of fractal step multiwavelets (FSMW) is constructed based on 

FSF with linear and nonlinear value changes, and their transformations with fast algorithms of linear 
computational complexity are developed. FSMW are symmetric and orthogonal, and they possess high 

frequency localization, which enhances the representation of high-frequency signals. They exhibit 

excellent short-scale approximating properties for smooth functions, allowing for more accurate 
representation of images with complex textures. 

In [21], orthonormal bases of fractal step multilwavelets and multiwavelet packets are described, 

and based on them, a method and algorithm for fast multiwavelet transform with low computational 
complexity are developed. The proposed algorithm achieves a 70-fold reduction in computational 

complexity compared to the well-known classical Mallat algorithm [2,7] in terms of multiplicative 

complexity and a 20-fold reduction in terms of additive complexity. The obtained results present a new 

multilwavelet technology for signal and image processing. 

2.1. The discrete multiwavelet transform  

For a function  f t  represented by a sequence of numbers, the discrete multiwavelet transform 

(DMWT) is defined by a pair of discrete wavelet  transforms [21] 
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where N  - number of multiwavelet functions of rank k that represent a multiwavelet packet of size 

N N , 2 , 2pN p  , 
   ,
k

j i t - i-th function of a fractal step multiwavelet of rank k [20], 
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0,1,... 2k p   for j-th level of decomposition, 0,1,2,...j m  ;  
0 0,j i t  - Haar scaling function 0 0j   

and 0 0i  ,  0,0 1t  .  

In this case, addition is performed for the values of t, i, and j.  

For function   1, 0,2 ,n n
f x x m

p

  
   

 
.  

2.1.1. Fast multiwavelet transform  

In [21] a fast multiwavelet transform (FMWT) is proposed, which is an efficient method for 

computing the DMWT. It utilizes the interdependencies between the coefficients of the DMWT at 

neighboring levels of decomposition. Approximation coefficients  01,W j i   and detail coefficients 

   1,kW j i


  level 1j   can be calculated through approximation coefficients  0,W j i  level  j. 

Theorem [21] 
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Expressions (3) and (4) represent the algorithm of fast multiwavelet transform, which can be 

computed using only scalar product operations without convolution (equivalent to filtering) and 
downsampling by a factor of 2, as required by the well-known Mallat algorithm for fast wavelet 

transform (FWT) [2,22].  

In fig. 1 (a), for example, a block diagram of a three-level fast multiwavelet transform with 

multiwavelet packets of size 4x4 is presented. For example, the space JV  ( function  f t ) can be 

expressed in the form of 

3 3,3 3,2 3,1 2,3 2,2 2,1 1,3 1,2 1,1J J J J J J J J J J JV V W W W W W W W W W                  

representing a two-level tree with 10 different layouts. As a result, we will get a tree of subspaces of 

the analysis (Fig. 1 (b)) and a tree of coefficients (Fig. 1 (c)) for the three-level FMWT of the analysis 
block in Fig. 1. (a). 

At the same time, the well-known classical three-scale fast wavelet transform assumes the presence 
of three possible schedules, the analysis tree of the wavelet package leads to 26 different layouts. In the 

general case, P-scale transforms based on classical wavelet packets (and their corresponding analysis 

tree consisting of P+1 level) make it possible to obtain different distributions in the number of 

   
2

1 1D P D P      

where  1 1D  . With such a large number of admissible decompositions, transformations based on the 

application of packets allow for better control of the process of splitting the spectrum, which is subject 
to decomposition of the function into parts. Of course, this leads to an increase in computational 

complexity. 

2.1.2. A method for constructing a discrete multiwavelet transform based on 
a 4x4 multiwavelet packet  

Let's construct a discrete multiwavelet transform matrix of order 4, in which the zeroth row 

represents a scale rectangular function  h t , which is a Haar function of zero index  0, 1/ 4h t 

. The first line represents the function  h t , the mother FSMW of rank zero (k=0) of type 1 with 
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decreasing values at an interval equal to its period, and in a form that approaches the first cos-function 
of type II. 

 
       (a)  

 
                       (b)                                                                           (c) 

Figure 1. Block diagram of a three-level FMWT with one multiwavelet packet of size 4x4, (a) is a 
block diagram, (b) is a tree of analysis subspaces, and (c) is a tree of coefficients. 

The second line represents the function of the mother FSMW of type 2, which is the function of the 

mother modified Haar wavelet (MHW) [23] of rectangular shape, which approaches the second cos-

function of type II [19,20,21]. The MHW function can be represented by Haar wavelets of the following 
scale: 
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   2 (2 ) (2 1),h h ht t t t         

where    1, 2 2k ht t k    are the Haar wavelet functions at a given scale with index 1j  . 

The third row represents the function  (0)
3 t  of the zero-rank (k=0) of mother FSMW of type 3 

with decreasing values on the half-intervals of the unit interval  0,1  and saw-like form, that approaches 

the third cos-function of type II.  Let's consider the DMWT matrix, which represents a 4x4 multiwavelet 
packet (MWP) with permuted rows based on bit reversal permutations (BRP) [26] 

*
4 4 4 ,SWT P SWT  

* *
4 4 4 ,SWT B S                                          (5) 

where 4P  is a BRP 4x4 matrix, 4 2[1, ,1],P diag I  2

0 1
.

1 0
I

 
  
 

 

*
4S  is a MWP 4x4 matrix with permuted rows. 

4B  is a diagonal matrix 4x4 of the normalization coefficients, 4 1 3[1/ 2,1/ 2, , ],B diag b b  

Matrix 
*
4S  can be constructed based on the  recurrent method: 

 
*
4 4 4 2 2[ , ],S R H diag H H                                     (6) 

where 2H  is a 2х2 Hadamard matrix, 4H is a factor-matrix 4x4 with non-zero elements 1 . At the 

same time 
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                              (7) 

 0
4 2 2, ,R diag I R 

 
 

 
   

   

0 0
0 1 1

2 0 0

2 2

r s
R
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 
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,                                  (8) 

4R  is a 4x4 diagonal matrix that contains a 2x2 identity matrix 2I  and a 2x2 size matrix 
 0

2R , a 

zero-rank  0k   «rotate-compression/stretch» operator [21] with constants of 
 0

1r , 
 0

2r , 
 0

1s  and 

 0

2s  of rank  0k  , which satisfy the condition of the "rotation-compression" operator 
   0 0

1 1 1r s   

& 
     

2 2
0 0

1 1 1r s   and the "rotation-stretch" operator 
   0 0

2 2 1r s  , 
     

2 2
0 0

2 2 1r s  . 

The 4S  MWP matrix of size 4х4 looks like 

4

1 1 1 1

1 1

1 1 1 1

1 1

s s
S

q q

 
  
 
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 

  

.                                              (9) 

For example, the elements s  and q  of the matrix 4S  for functions 
   
0

1 t  and 
   
0

3 t  with 

nonlinear FSF [21] acquire the following values: 2 / 3s   and 3/2q  . At the same time, the constants 

of the operator matrix 
 0

2R  take the following values: 
 0

1, 5/ 6Hr  , 
 0
2, 5/ 4Hr  , 

 0
1, 1/ 6Hs  , 

 0
2, 1/ 4Hs  . 

2.1.3. A method for constructing a discrete multiwavelet transform based on 
a 8x8 multiwavelet packet  

Let's construct the 8-order DMWT matrix, in which the zeroth row represents a scaled rectangular 

function  h t , which is a Haar function of zero index  0, 1/ 8h t  . The first row represents the 
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function 
   
1

1 t  of the first-rank  1k   of mother FSMW of type 1 with decreasing values at an 

interval, which is equal to its period, and in a form that approaches the first cos-function of type II. The 

second row represents the function 
   
0

2 t of the zero-rank  0k   of mother FSMW of type 2 with 

decreasing values on the first half-interval and rising values on the second half-interval, which is close 

in form to the second cos-function of type II and can be represented by a wavelet function 
 
   
0

1 1,
2

j
t  

of the zero-rank  0k   of type 1 [19,20,21] 

           
0 0 0

2 1,0 1,12 2 1t t t     . 

The third row represents the function 
   
1

3 t  of the first-rank  1k   of mother FSMW of type 3 

with decreasing values on the half-intervals of the unit interval  0,1  and saw-like form that approaches 

the cos-function of type II [19,20,21]. Fourth and fifth rows represent zeroth and first MHW functions, 

which can be obtained by scaling at a given scale with an index of 1i  , 0,1j  ; 

     1, 2 2 2hh j t t j   . The sixth and seventh lines represent the zero and first functions FSMW 

zero rank  0k   type 3 
 
       
0 0

33 1,
2 2 2

j
t t j   , which are obtained by scaling at a given scale 

1i  , 0,1j  . Consider the matrix 
*

8SWT  DMWT, which represents MWT order 8х8 with rearranged 

lines on the base BRP [26] 

*
8 8 8SWT P SWT ,               (10) 

where 8P  - matrix 8х8 BRP,    8 0,7 0,4,2,6,1,5,3,7P  . 

Matrix 
*

8SWT  order 8х8 DMWT with permuted rows can be written through a matrix MWT 

* *
8 8 8SWT B S ,                                                 ( 11) 

where 
*
8S  - matrix 8х8 MWT with permuted rows, 8B  - diagonal 8x8 matrix of normalization 

coefficients. 

Matrix 
*
8S  can be built based on the recursive method: 

* * *
8 8 8 8 4 4,S B R H diag S S 

 
,                                           (12) 

where 8H  - factor matrix 8x8 with nonzero elements 1 , 

  0
8 4 3 4 2 2, 1, ,H diag I I antidiag I I I    

 
,                 (13) 

0 0 0
4 2 2,I diag I I  

 
, 

0
2 [1,0]I diag , 

0
2

1 0

0 0
I

 
  
 

, 

0
4I  - a 4x4 diagonal matrix that contains matrices 

0
2I  order 2х2, 2I , 3I , 4I  - unit matrices of size 

2х2, 3х3 і 4х4,   - sign of Kronecker multiplication of two matrices, 8B - diagonal matrix with 

elements 1 і 2 ,  8 2B diag B , 
2 1, 2B diag  

 
, 8R  - diagonal matrix 8х8, that contains unit matrix 

4I  order 4х4, matrix 
 1

3R  order 3х3 first rank rotation-compression/extension operator  1k  and a 

unit, 

 1
8 4 3, ,1R diag I R 

 
.                                             (14) 

Matrix 
 1

3R  contains non-zero elements, a unit and constants 
 1

1r , 
 1

2r , 
 1

1s  і 
 1

2s  first rank  1k 

, which satisfy the condition of the operator 
 1

3R : 
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This is a new operator introduced by Hnativ [21] and generalizes the well-known classical Givens 

rotation operator, which satisfies the condition r
2
+s

2
=1. 

Matrix 
8S  MWT size 8x8 looks like 

1 2 3 3 2 1

4 4 4 4

1 2 3 3 2 1
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For example, elements is , iq , 1,4i  , matrix 8S  for functions    
1

1 t ,    
1

3 t ,    
0

2 t ,    
0

3(1, ) 2j t j

, 0,1j   with non-linear FSF [19,20,21] acquire such values: 1 7 /8s  , 2 3/8s  , 3 1/ 4s   4 2 / 3s  , 

1 7 /17q  , 2 33/17q  , 3 43/17q  , 4 3/ 2q  . At the same time, the constants of the matrix 
 1

3R  take 

the following values: 
 1

1, 5/8Hr  , 
 1
2, 30 /17Hr  , 

 1
1, 3/8Hs   і 

 1
2, 13/17Hs  . 

In [20] a recurrent matrix method for constructing a size N N multiwavelet package is proposed.   

Algorithm for fast calculation of 8-point DMWT 

Based on the recurrent matrix representation of the multiwavelet packet size N N  in [20] the 

factorized representation of the matrix as a product 22log 1N   matrix is obtained. This makes it 

possible to build a fast calculation algorithm (FA) DMWT. Thus, the matrix 
*

8SWT  can be represented 

as a product of five factor matrices: 

*
8 8 8,5 8,4 8,3 8,2 8,1SWT B S S S S S ,                             (22) 

where 8,kS  - k -i, 1,5k  , factor-matrix 8x8 of the algorithm proposed in [20] for fast calculation 

of 8-point DMWT, 8B  - diagonal 8x8 matrix of normalization coefficients: 

                                    8,1 4 2S I H  ,  8,2 4 4,S diag H H ,  
   0 0

8,3 2 22 2, , ,S diag I R I R 
 

,  

                                                  8,4 8S H , 
 1

8,5 8 4 3, ,1S R diag I R  
 

,                       (23) 

3/2
8 2 4 1 3 42 1, 2, , , , 2, ,B diag b b b b b  

 
.

1 2 3 48 2/63, 3 2/13, 17/ 819, 4 / 13b b b b    . 

Algorithm for fast calculation of 8-point inverse DMWT 

Matrix 
1

8SWT 
 the inverse DMWT of order 8 can be obtained by transposition: 

1 *
8 8

TSWT SWT  .                                           (24) 

Matrix 
1

8SWT 
 on the basis of (12)-(14) taking into account the symmetry of the matrix  2 2

TH H  

can be represented as a product of five transposed factor matrices: 

1
8 8,1 8,2 8,3 8,4 8,5 8

T T T TSWT S S S S S B  ,                                       (25) 
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where 8,
T

kS  - k -i, 2,5k  , transposed 8x8 factor matrices of the proposed algorithm for fast 

calculation of the 8-point inverse DMWT: 

8,2 4 4,T T TS diag H H 
 

, 
   0 0

8,3 2 22 2, , ,
T TTS diag I R I R 

 
,                    (26) 

8,4 8
T TS H , 

 1
8,5 8 4 3, ,1

TT TS R diag I R  
 

, 

     0 0
8 4 3 2 2 4, 1, ,TH diag I I antidiag I I I    

 
. 

 

   

   

1 1

1 2
1

3

1 1

1 2

1
T

r s

R

s r

 
 

  
 
  

, 

8

1 1

1 0

1 1

1 0

1 1

0 1

1 1

0 1

TH

 
 
 
 
 
 
 
 
 
 
 
 

. 

Computational complexity 
In [20] the FA calculation of DMWT with a multi-wavelet packet of size NxN, which requires 

3 / 2 4NM N   multiplication operations, and addition 17 / 4 6NA N   for functions with linear 

changes and 19 / 4 6NA N    – with non-linear changes was developed, that is, it has a linear 

computational complexity.  

Computational complexity of FA computing the DMWT for an input sequence that represents a 

signal N=8 makes up: 8 8M   of multiplications, а 8 28A   additions for functions with linear changes 

and 8 32A   addition - with non-linear changes. For a three-level scheduling scheme using the FA 

multiwavelet transform based on an 8x8 multiwavelet packet, it is necessary 
3

8
,8 8

1

73 73
/8

512 64

i
N

i

M N N
M M N



    multiplication and 

3
8

,8 8

1

73 511
/8

512 128

i
N

i

A N N
A A N



    

addition for functions with linear changes and 

3
8

,8 8

1

73 73
/8

512 16

i
N

i

A N N
A A N




     addition for 

functions with non-linear changes. 
The well-known Mallat algorithm [2,22] of fast classical wavelet transform for filters with K non-

zero coefficients of the wavelet packet of the whole tree with depth log2N needs K N log2N of 

multiplications and additions, which at K=8 makes 8N log2N operations.  
Proposed FA [21] calculation of the multiwavelet transform compared to the well-known classical 

Mallat algorithm for filters with 8 non-zero coefficients requires 2 28 log 512log

73 /64 73
M

N N N
K

N
   times 

fewer multiplications that for N=210 is 70 times and in 2 28 log 1024log

511 /128 511
A

N N N
K

N
    times less 

additions, which is 20 times for functions with linear changes. For functions with non-linear changes 

2 28 log 128log

73 /16 73
A

N N N
K

N
     times less additions, which is 17.5 times less. 

2.1.4. Two-dimensional discrete multiwavelet transform  

Let's define DMWT functions  ,f x y  sizes M N  as follows: 

     
0

1 1

0

0 0

1
, , , , ,

M N

j

x y

W j m n f x y x y
MN

 

 

             (27) 
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       
1 1

, , ,

0 0

1
, , , , , 1, 1, , , .

i

M N
i i

i j m n

x y

W j m n f x y x y i N i H V D
MN

 
 

 

                        (28) 

As in the one-dimensional case,  0j - the initial level of the schedule, and coefficients  0 , ,W j m n
 

determine the approximation of the function  ,f x y  at level 
0

j . Coefficients  , ,
i

iW j m n



 define 

horizontal, vertical and diagonal details for levels 
0

j j  . We consider 
0

j =1  and choose numbers N  

and M  so that they are a power of two. 2JN M


  , 2J   , , 0,1,2,...2 1jm n


  . With, 

0,1, 2, ...J r , /r j p    , 1
2 , 2

p
N p  . Input function  ,f x y  can be restored by given 

coefficients W   and 
i

iW


   in (27) and (28) using the inverse DMWT: 

     
00 , ,

1
, , , ,j m n

m n

f x y W j m n x y
MN

     

   
1 1

, , ,

, , 1 1

1
, , ,

i

N r
i

i j m n

i H V D i j m n

W j m n x y
MN




  

     .                            (29) 

Like one-dimensional DMWT, two-dimensional DMWT can be implemented using only scalar 

product operations without convolution operations (equivalent to filtering) and sparse sampling with a 

factor of 2, which requires the well-known classical method of two-dimensional fast wavelet transform 
[2,22]. Since the used scale and multiwavelet functions are separable, first one-dimensional FMWT is 

calculated along the lines of the function ( , )f x y , and then one-dimensional column-wise FMWT is 

calculated from the obtained result. Note that, as in the case of its one-dimensional counterpart, for 

obtaining approximation coefficients and details for the level of decomposition 1j   two-dimensional 

FMWT operates with approximation coefficients of the decomposition level J.  

A single-level block of multiwavelet packets can be reused (for which the approximation coefficients 
at the output of this block of multiwavelets must be applied to the input of the same next block of 

multiwavelets), resulting in a p-level transform 1, 2, ...,j j j j p    . As in the one-dimensional 

case, the image ( , )f x y  is used as coefficients ( , , )W j m n  at the entrance. By multiplying n columns 

of the image on the sequence ( )n  і ( )k n , 1,2,3k  , we will get four parts of the image with a four 

times less of resolution in the vertical direction. High-frequency or detailed parts characterize the high-
frequency components of the image in the vertical direction. Low-frequency or approximation contains 

information about low frequencies in the vertical direction. A similar for m rows procedure is then 

applied to the four parts of the image. This gives an output of sixteen images (16 parts of the original 

image), which can be represented by four groups of images, one, three and six images per group: W ,

 
1 2 3
, ,H H HW W W  

,  
1 2 3
, ,V V VW W W  

,  
1,2 1,3 2,1 2,3 3,1 3,2

, , , , ,VH VH VH VH VH VHW W W W W W     
 і  

1 2 3
, ,D D DW W W  

. 

In fig. 2. a block diagram of a one-level two-dimensional fast multiwavelet transform (FMWT) with 
one multiwavelet packet of size 4x4 is presented. In fig. 3. the images are shown, which are the result 

of the scalar product of the image ( , )f x y  and two-dimensional scaling functions and multi-wavelet 

functions for one level of decomposition. In fig. 4 presents the corresponding one-level sixteen-base 
analysis tree of the FMWT (for one level of the schedule).  

Note that the frequency plane is divided into five constituent parts of different areas. The low-

frequency part of the range in the center corresponds to the conversion coefficients ( 1, , )W j m n
 and 

large-scale space 1jV  . This is fully consistent with the one-dimensional case. In the two-dimensional 

case, we have four (instead of three) multiwavelet subspaces. They are denoted as  1,

H

j iW 
,  1,

V

j iW 
, 

 1,

D

j iW 
,  1, ,

VH

j i jW 
 and correspond to the coefficients  ( 1, , )

i

HW j m n ,  ( 1, , )
i

VW j m n , 

 ( 1, , )
i

DW j m n  і  
,

( 1, , )
i j

VHW j m n .  
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The analysis tree for two-dimensional P-scale classical well-known wavelet packets makes it 
possible to construct various expansions in the number [22] 

   
4

1 1D P D P     , 

where  1 1D  . Thus, the total number of different decompositions that can be obtained from a 

three-scale tree is 83522. With such a large number of decompositions, two-dimensional transforms 

based on the application of packets allow better control over the process of dividing the two-
dimensional spectrum subject to image decomposition into parts. However, this leads to a significant 

increase in computational complexity. 

 

Figure 2. One-level two-dimensional FMWT with multiwavelet packet 4х4. 

A method of image coding based on multiwavelets and multiwavelet packets using 2D FMWT 

In [20], a new multi-wavelet technology and image coding method based on 2D DMWT based on 
fractal steps using fast algorithms is proposed. A method of image coding based on a two-level schedule 

using 2D fast DMWT with multi-wavelet packets for the first level of size 4x4 and for the second level 

of size 32x32 was developed. As shown by the experimental results, the proposed method of 
multiwavelet coding in comparison with the well-known block method based on the integer cosine 

transformation (ICT) of order 32, which is used in the H.265 video coding standard [24] according to 

the characteristic of quantitative assessment of  PSNR distortions (dB) for seven of test images of 
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classes A, B, C with a resolution of 2560x1536, 2048x1280, 1280x768 reduces the average value by 
0.43-1.06 dB at average values of the compression ratio from 4 to 58, and at high values - the average 

PSNR reduction is 0.62 dB At the same time, better quality is provided visually than H.265, since there 

are no block distortions, which are amplified at high degrees of compression for H.265. The 

computational complexity of the method proposed in [20] in comparison with the well-known [2] 
classical wavelet method at the filter length  L = 8 based on a 10-level (m = log2N, N = 1024) 2D FWT 

(Mallats algorithm) by multiplication operations is reduced by 80 times, and in comparison with the 

block coding method based on ICT (H.265) [24] – by 11 times. 

 
Figure 3. Two-dimensional FMWT for one schedule level. 

 
Figure 4. Tree of analysis subspaces for one level of schedule. 

Justification of the number of schedule levels 
An important factor that affects the computational complexity and error rate of multiwavelet coding 

recovery is the number of levels of the transform schedule. Since the p-level fast multiwavelet transform 

requires r iterations of the transform, the number of operations when calculating the direct and inverse 

increases with the increase in the number of expansion levels. However, the quantization of the 
coefficients of the higher level of the decomposition spreads over the entire large area of the 

reconstructed image. In many applications, such as searching an image database or transferring images 

for incremental recovery (progressive transfer), the number of conversion levels is determined by the 
resolution of the stored or transferred images, and the scale of the smallest copy used. Note that the 

main compression occurs at the initial schedules. As shown in [22], when the number of expansion 

levels is increased to more than three, the number of coefficients that are set to zero changes little.  

Computational complexity of the image coding method based on the 8-point 2D FMWT for 

three levels of schedule. 
For a three-level schedule scheme when encoding an image of size NxN based on an 8-point 2D 

FMWT with an 8x8 multiwavelet packet, it is necessary 
23

2 2 1 8
,8 8

1

4161
2 /8

16384

i
N

i

M N
M M N 



   of 

multiplications that at 8M =8 makes up 
24161

2048

N
 multiplications, or by one pixel is required 
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8/ 2,03pM   multiplication by pixel, and 
23

2 2 1 8
,8 8

1

4161
2 /8

16384

i
N

i

A N
A A N 



   additions that at 8A =28 

makes up 
27 4161

4096

N
  additions, by one pixel is required 8/ 7,11pA   additions by one pixel for 

functions with linear changes. For functions with non-linear changes - 8A =32 is required 

2 2

,8

32 4161 4161

16384 512
N

N N
A


    additions, that makes up 8,13 additions, by one pixel. 

The well-known Mallat algorithm [2] 2D FWT for filters with K non-zero coefficients of the whole-
tree wavelet packet of log2N depth for an NxN image requires 2K N 2log2N of multiplications and 

additions, which at K=8 makes 16N2 log2N operations, or 16 log2N  operations per pixel. 

The proposed image coding method based on the three-level 8-point 2D FMWT compared to the 

well-known Mallat algorithm 2D FWT for filters with 8 non-zero coefficients requires 

2
2

16log
7,88log

2,03
M

N
K N    times fewer multiplications that for N=210 makes up 78,8 times and in 

2
2

16log
2,25log

7,11
A

N
K N   times less additions, which is 22.5 times less for functions with linear 

changes in values. For functions with non-linear changes in values 2
2

16log
1,97log

8,13
A

N
K N    times 

less additions, which is 19.7 times less. The paper proposes a multi-wavelet method of image coding 

based on a three-level two-dimensional FMWT with a multi-wavelet packet of size 8x8. The proposed 
method of image coding based on a three-level 8-point two-dimensional FMWT compared to the well-

known classical Mallat algorithm [2] FWT for filters with 8 non-zero coefficients has 7,88 log2N times 

the lower multiplicative complexity, which for N=210 is 78.8 times and needs in 2,25log2 N  times less 
additions, which is 22.5 times less for functions with linear changes. 

3. Conclusions 

The construction methods and algorithms of two-dimensional (2D) discrete fractal step 
multiwavelets and multiwavelet packets, 2D discrete multiwavelet transforms with multiwavelet 
packets of given sizes for different levels of the schedule without performing convolution and sample 
thinning operations, unlike the classical Mallat method, have been developed. Algorithms of 2D fast 
multiwavelet transforms have been developed based on fast algorithms for calculating discrete 
multiwavelet transforms with multiwavelet packets of given sizes of linear computational complexity 
for different levels of the decomposition of low computational complexity for more accurate and faster 
image analysis and coding. A method and algorithms for image coding based on 2D FMWP are 
proposed as a new multi-wavelet technology for image coding, which, based on a three-level 8-point 
2D FMWP, compared to the classic Mallat algorithm, 2D FVT for filters with 8 non-zero coefficients 
has 78.8 times lower multiplicative complexity and 22.5 times lower additive complexity.  

4. References 

[1] Meyer, Y. Wavelets Algorithms and Applications. 1993. 133 p. 

[2] S. Mallat. A Wavelet Tour of Signal Processing. 1998, 577 p. 

[3] Mallat S. Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R). Transactions 
of the American Mathematical Society. 1989, Vol. 315, No. 1, pp. 69-87. 

[4] Burt, P. and Adelson, E. The Laplacian Pyramid as a Compact Image Code. IEEE Transactions on 

Communications, 1983, Vol. 31, №4, pp. 532-540. 
[5] Coifman R R, Meyer Y., Wickerhauser V. Wavelet analysis and signal processing, in: Wavelets 

and Their Applications, Boston, 1992. pp. 157-178. 



294 

 

[6] Jeffrey S. Geronimo; Douglas P. Hardin; Peter R. Massopust. Fractal Functions and Wavelet 
Expansions Based on Several Scaling Functions. Journal of Approximation Theory, 1994, Vol.78,  

№3, pp. 373-401.  

[7] Mallat S A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE 

Trans. Pattern Anal. Machine Intell. 1989, Vol. 11,№7, pp. 674-693. 
[8] Martin M.B., Bell A.E. New image compression techniques using multiwavelets and multiwavelet 

packets. IEEE Trans Image Process. 2001, Vol.10, №4, pp. 500-510.  

[9] U.S. Ragupathy, D. Baskar and A. Tamilarasi, “New Method of Image Compression using 
Multiwavelets and Set Partitioning Algorithm”, Proceedings of 10th IEEE International 

Conference on Industrial and Information Systems, 2008, pp. 1-6. 

[10] R.Sumalatha, M.V.Subramanyam, Medical Image Compression Using Multiwavelets for 
Telemedicine Applications. International Journal of Scientific & Engineering Research. 2011, Vol. 

2, № 9, pp. 1-4. 

[11] M Ashok and T.B. Reddy, “Image Compression Techniques Using Modified high quality Multi 

wavelets” International Journal of Advanced Computer Science and Applications (IJACSA), 2011, 
Vol.2, №7, pp.153-158. 

[12] S. Radhakrishnan and J. Subramaniam, “Fingerprint Compression using Multiwavelets”, 

International Journal of Signal Processing, 2006, Vol. 2, № 2, pp. 78-87. 
[13] Rema N.R , Shanavaz K.T and Mythili P. Better fingerprint image compression at lower bit-rates: 

an approach using multiwavelets with optimised prefilter coefficients/ ICTACT Journal on Image 

and Video Processing. 2017. Vol. 8 ,№ 1, pp. 1588-1595. 
[14] N.R. Rema and P. Mythili, Improved fingerprint compression technique with decimated multi-

wavelet coefficients for low bit rates. ICTACT journal on image and video processing, 2018, Vol. 

9, № 1, pp. 1801-1806. 

[15] N. R. Rema and P. Mythili, Extremely High Compression and Identification of Fingerprint Images 
Using SA4 Multiwavelet Transform. International Journal of Image and Graphics 2021,Vol. 21, 

No. 3, 2150037, https://doi.org/10.1142/S0219467821500376. 

[16] N. M. Mary Sindhuja, T. Prathiba, S. Nisha Rani. Edge Detection of Synthetic Image Using GHM 
Multiwavelet Transform/ International Journal of Computer Applications in Engineering Sciences. 

2012, Vol II, № IV, December, pp. 399-403. 

[17] W. A. Mahmoud, Majed E. Alneby, W. Zayer 2D-Multiwavelet Transform 2D-Two Activation 

Function Wavelet Network Based Face Recognition. Journal of Applied Sciences Research, 2010, 
Vol. 6, №8, pp.1019-1028. 

[18] B.Subramanian, A. Ramasamy and K. Rangasamy. Performance Comparison of Wavelet and 

Multiwavelet Denoising Methods for an Electrocardiogram Signal. Advances in Mathematical 
Methods for Image and Signal Processing. 2014, Article ID 241540.  

https://doi.org/10.1155/2014/241540. 

[19] Hnativ L.O. The method of constructing a family of orthonormal basis systems of fractal 
multiwavelets based on step functions. Pr. International sh. "Issues of optimization of calculations 

(POO-HLII), Kyiv: Institute of Cybernetics National Academy of Sciences, 2015, P. 37-38. 

[20] Hnativ L.O. Fractal step multiwavelets are a new wavelet technology for signal processing and 

image coding. Theses add. International of science conf. "Modern informatics: problems, 
achievements and ...", Ukraine, Kyiv, December 13-15, 2017. P. 195-197. 

[21] Hnativ L.O. Orthonormal bases of fractal stepped multiwavelets - a new multiwavelet technology 

for signal and image processing. Physical and mathematical modeling and information 
technologies. 2021. No. 32. P. 91-95. 

[22] Gonzalez D., Woods R. Digital Image Processing. 2-nd Edition. 2002. 793 p. 

[23] B.M. Shevchuk, V.K. Zadiraka, L.O. Hnativ, S.V. Fryer Technology of multifunctional processing 
and transmission of information in monitoring networks. Kyiv. Naukova Dumka. 2010. 375 p. 

[24] ITU-T Rec. H.265|ISO/IEC 23008-2: 2013. Information technology – High efficiency coding and 

media delivery in heterogeneous environments – Part 2: High efficiency video coding, 2013. 

 


	1. Introduction
	2. Fractal step functions, fractal multiwavelets and multiwavelet packets
	2.1. The discrete multiwavelet transform
	2.1.1. Fast multiwavelet transform
	2.1.2. A method for constructing a discrete multiwavelet transform based on a 4x4 multiwavelet packet
	2.1.3. A method for constructing a discrete multiwavelet transform based on a 8x8 multiwavelet packet
	2.1.4. Two-dimensional discrete multiwavelet transform


	3. Conclusions
	4. References

