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Abstract  
Machine learning utilizes data for training. However, there are instances when the data is 

insufficient. To determine the degree of risk of extreme events, it is necessary to predict the 

values of extreme quantiles, which may occur once in a hundred years, having only 30 years 

of historical data. The data is clearly insufficient for conventional forecasting methods. The 

problem becomes even more complicated when the time series has fractal properties and 

contains long-term dependencies. Developing machine learning methods on real data for such 

a task often seems impossible, so we present a method for generating a dataset to obtain precise 

values of extreme quantiles for time series, which are realizations of fractional Brownian 

motion. A key feature of this data acquisition is the parallelization of the Hosking method, 

which is used for the simulation of a fractional Brownian motion. 
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1. Introduction 

Fractal time series is a class of time series characterized by the property of self-similarity, that is, 

the statistical properties of the series are preserved on different time scales. In recent decades, such time 
series have been found in many phenomena of the surrounding world, including weather data, financial 

data, biomedical data, etc. Forecasting fractal time series is of practical importance for decision making 

in various fields. For example, in economics and finance, fractal time series forecasting can help manage 
risk and make decisions about buying and selling stocks or other financial instruments. 

Traditionally, point forecasting has been the primary approach in time series forecasting, where a 

single value is predicted as the most likely outcome. However, point forecasting does not capture the 
inherent uncertainty present in time series data, which can lead to unreliable and inaccurate predictions. 

Probabilistic forecasting [30], on the other hand, provides a range of possible outcomes and their 

associated probabilities. Probabilistic forecasting allows decision-makers to understand the uncertainty 

in the forecast and make informed decisions based on the range of possible outcomes. Probabilistic 
forecasting can also capture important features of the underlying data distribution, such as seasonality, 

trend, and volatility. 

To evaluate the performance of a probabilistic forecasting methods, it is necessary to compare the 
model's predicted probability distribution with the actual probability distribution of the ground truth 

data. One common way to do this is by calculating the quantiles of the predicted probability distribution 

and comparing them with the quantiles of the actual distribution. 
Quantiles are simply points in the probability distribution that divide the data into groups. For 

example, the 50th percentile (also known as the median) is the value that divides the data into two equal 

groups, with 50% of the data above and 50% below this value. Other commonly used quantiles include 
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the 10th percentile, the 90th percentile, and the interquartile range (the difference between the 25th and 
75th percentiles). 

Although fractal time series have specific properties that can make forecasting difficult, in many 

cases it is possible to use the same forecasting methods as for conventional time series. However, the 

challenge arises in predicting extreme quantiles of the probability distribution, often referred to as the 
"tails" of the distribution. These extreme quantiles represent rare but critical events, such as catastrophic 

financial losses, extreme weather events, or catastrophic failures in infrastructure systems.  

In fields such as hydrology and climate science [35], the concept of risk is frequently quantified 
using the T-year return level, symbolized as QT. This return level is a measure of the magnitude of an 

event that is expected, on average, to be exceeded once every T years. Consider Y as a certain variable, 

for which we record nY independent observations each year. For example, if we collect daily data, nY 
would be 365, representing the number of days in a year. The T-year return level, QT, is then computed 

as the quantile Q(1 - 1/(nY * T)).  

Thus, the T-year return level is a probabilistic measure of the size of an event that is expected to be 

exceeded with a frequency of once every T years, based on historical data. It is a critical concept in risk 
assessment, particularly in understanding and preparing for extreme events. Predicting these quantiles 

accurately, especially in fractal time series, is essential in a number of fields to aid in risk management 

and policy planning. A significant challenge in extreme quantile prediction is the limited availability of 
data for estimation. For instance, predicting a 100-year return level becomes problematic when we only 

have training data from the previous 50 years. This scarcity of data makes the statistical estimation of 

extreme quantiles a challenging task, particularly in the context of probabilistic forecasting models. 
Consequently, developing robust methods for extreme quantile prediction under such data constraints 

is a crucial area of research. 

Given the importance of forecasting extreme quantiles in fractal time series, we propose an  approach 

for generating datasets of such time series specifically designed to evaluate extreme quantiles 
forecasting.  

Contributions: 

1. The method provides a way to efficiently compute multiple continuations of a single fractional 
Brownian motion (fBm) time series using the Hosking algorithm.  

2. In result the dataset with ground truth extreme quantiles of possible continuations can be used 

for evaluating machine learning methods designed for probabilistic forecasting. 

The code for generating a file of the dataset for a specific Hurst exponent can be found at the 
following link: https://www.kaggle.com/code/unfriendlyai/fbm-extreme-quantile-generator. Our fBm 

dataset is available at: https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles 

2. Related Works 

The increasing availability of data demands new processing and analysis methods for effective time 
series forecasting. Machine learning methods for time series forecasting are gaining significance, 

allowing for automated and faster prediction processes, as well as improved accuracy and quality of 

forecasts [4, 13, 14, 15]. Reviews have presented the main methods and approaches for time series 
forecasting using machine learning [6, 25, 31]. Although fractal time series have a wide application in 

scientific and technical fields, the application of machine learning in the field of fractal time series 

analysis has mainly affected classification methods [8, 16, 17, 20, 21] and clustering [18, 27], as well 
as methods for estimating the Hurst exponent by time realizations [3, 19, 27]. 

Datasets with modeled and real time series sets have been created for this, but in fact there are no 

datasets with modeled fractal time series that could be used to validate methods for extreme quantile 

prediction. At the moment, relatively few special methods have been developed for forecasting time 
series with fractal properties. Most of the existing methods are focused on predicting fractional 

Brownian motion (fBm) [7,28]. At the same time, the issue of forecasting extreme quantile of fractal 

time series, in particular fBm, remains open. 
The development of probabilistic prediction is covered in reviews [30, 34]. There are two main 

approaches to modeling a probability distribution. In the first distribution shape is given beforehand 

(eg. Gaussian, exponential), and the model during training should determine 2-4 parameters of this 

https://www.kaggle.com/code/unfriendlyai/fbm-extreme-quantile-generator
https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles
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distribution, depending on the input data [5]. For modeling more complex distributions more complex 
methods may be used like Generalized Additive Models for Shape, Scale, and Location (GAMLSS) 

[29] . The second type is when the model should approximate the conditional cumulative distribution 

function. This Maybe be achieved with direct quantiles or expectiles prediction [32] or using a novel 

Normalizing flow based approach [1, 33]. Existing models allow to obtain information about the 
distribution function in different ways [23]. 

The need for probabilistic forecasting is demonstrated in particular by the increasing number of 

Kaggle competitions that require predicting time series quantiles in the future [10, 11, 12, 22]. For 
example, in “M5 Forecasting – Uncertainty” competition the participants are asked to provide 28 days 

ahead point forecasts for all the series of the competition, as well as the corresponding median and 50%, 

67%, 95%, and 99% prediction intervals. In the reference [35], modeling extreme quantile regression 
and risk assessment were explored, specifically with an application to forecasting flood risk. The study 

provided valuable insights into the practical usage of extreme quantile regression models for predicting 

rare and extreme events, such as floods. 

 
Figure 1: Visualization of example of proposed dataset. Common beginning of length 128 and 
quantiles of its continuation length 16 for antipersistent time series (a) and persistent time series (b) 

3.  Method of generating dataset for extreme quantiles problem   

Hence, there is a clear need for creating specific datasets of fractal time series, with a particular 
emphasis on those designed for probabilistic forecasting of extreme quantiles. The goal of this study is 
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to generate a dataset containing realizations of fractional Brownian motion (fbm) and the corresponding 
true quantiles of their possible continuations.  

Fractional Brownian motion is an extension of classical Brownian motion, which is characterized 

by random walks of particles in space. The fBm has properties of self-similarity and scale invariance, 

which means that its structure and characteristics remain unchanged when the scale of observation 
changes. The increments ΔX(τ) = X(t+τ) – X(t)  have a Gaussian distribution. 

Fractional Brownian motion (fBm) X is a type of self-similar stochastic process characterized by its 

Hurst exponent H (0 < H < 1)  which determines the degree of long-range dependence of the process. 
A persistent time series is a series with a Hurst exponent greater than 0.5, indicating that future values 

are likely to exhibit a positive autocorrelation with past values. This means that when past values are 

higher (lower) than average, future values are also likely to be higher (lower) than average. On the other 
hand, an anti-persistent time series has a Hurst exponent less than 0.5, indicating that future values are 

likely to exhibit a negative autocorrelation with past values. This means that when past values are higher 

(lower) than average, future values are likely to be lower (higher) than average. When the Hurst 

exponent is equal to 0.5, this indicates a case of a random walk or white noise, where future values are 
independent of past values.  

There are a number of exact methods to simulate fBm realizations [2]. The Hosking method is 

simple, popular and implemented in Python. The Hosking method involves simulating the fBm using 
the following steps: 

1. Generate a sequence of independent and identically distributed (IID) random variables from a 

standard normal distribution with zero mean and variance one. 
2. Compute the autocovariance function of the FBM using the formula above for a range of lags. 

3. Use the autocovariance function to compute the Cholesky decomposition of the covariance 

matrix. 

4. Multiply the IID random variables by the Cholesky factor to obtain a sequence of correlated 
random variables. 

5. Compute the cumulative sum of the correlated random variables to obtain the simulated FBM. 

6. Repeat steps 1-5 to obtain a sample of the FBM. 
The Cholesky decomposition is a technique for decomposing a positive definite matrix into a product 

of a lower triangular matrix and its transpose. In the context of simulating FBM, the Cholesky factor is 

used to generate a sequence of correlated random variables from a sequence of IID random variables. 

Also a very popular exact estimation method, particularly because of its fast speed is the Davies-
Harte method. Davies-Harte method generates fBm by transforming a Gaussian white noise process 

with a discrete Fourier transform, applying a scaling factor based on the desired Hurst exponent, and 

then inverse transforming the noise process to produce the fBm. However, this method does not generate 
values iteratively and therefore cannot be used to continue time series with predefined values.  

To verify that the examples generated for the dataset possess the required characteristics, we 

examine their Hurst exponent and the standard deviation of increments. The Whittle method [26] is a 
powerful tool for estimating the Hurst exponent of time series. The method has some drawbacks. In 

particular, it does not work well with non-Gaussian time series. However, in the case when it is known 

in advance that the time series are fBm, the method is one of the most accurate [9, 24, 26]. 

The problem addressed in this work is the need to evaluate extreme quantile forecasting methods for 
time series with long-range dependence, specifically those generated by fractional Brownian motion  

processes. To address this problem, we propose a method for creating a dataset of fBm time series and 

their ground truth continuations using the Hosking algorithm. Our method involves parallel calculation 
of M series, each with a common value of Hurst exponent, and the generation of a matrix of quantiles 

for each time step.  

Our method for creating a single instance of the evaluation dataset for a specific Hurst exponent 
value, as illustrated in Figure 1, involves the following steps: 

 Set the Hurst exponent value. 

 Generate a matrix of normally distributed numbers of size M x N, where M is the number of 

continuations and N = N1 + N2. Here, N1 represents the length of a common beginning of the time 

series, and N2 represents the length of continuations. 
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 To obtain a common beginning of length N1,  make all M beginnings of the previous matrix 

equal. This is achieved by copying the first row into all other rows.  

 Employ the Hosking method to iteratively calculate a set of M time series that are independent 
of each other. This method is selected due to its capacity for parallel calculation of the values of the 

succeeding time steps based on normally distributed random numbers using matrix operations. 

 The output from the previous step is M time series, in which the first N1 increments are identical 

and the following N2 values are independent of each other but dependent on the N1 initial identical 

increments. 

 Calculate the target true quantiles for N2 steps using M variants of continuation. 

 The final result is stored as a covariate time series of length N1 and a matrix of ground truth 

target quantiles of length N2.  

4. Experiment and results 

As a result of the proposed method described above, the following fractal time series dataset was 
designed for the realizations of fractional Brownian motion. One can freely download or utilize the 

dataset on Kaggle platform by searching for the dataset with the name " fBm Extreme Quantiles" or by 

using the following link: https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles 

The dataset was created with the following parameters: 

 The set of Hurst exponent values comprises [0.3, 0.35, 0.45, 0.53, 0.6, 0.65, 0.72, 0.85, 0.9, 
0.93]. This range is chosen to represent various types of time series behavior: antipersistent (values 

less than 0.5), nearly independent (around 0.5), and persistent (greater than 0.5) series. The diverse 

selection of Hurst values allows us to capture a broad range of potential dynamics in the data, thereby 
creating a more robust and comprehensive dataset for model evaluation.  

 Number of records per Hurst exponent is 50. Each Hurst exponent value has 50 records in the 

evaluation dataset, sufficient for obtaining statistically significant experimental results when 

comparing different prediction methods. 

 The length of the original time series N1 is 128. 

 The length of the continuations of the original series, for which quantiles are provided N2 is 16. 

 Number of continuation examples (M): 3,650,000 examples of continuations are used to 
calculate quantiles. This number was chosen for the convenience of determining the true quantile 

when an event occurs once every hundred years under daily observation [35]. The number of such 

outcomes for accurate computation is taken as 100 (365 days x 100 years x 100 events = 3,650,000). 

 Set of true quantiles includes the median (0.5), usual quantiles (0.05 and 0.95), and quantiles 

corresponding to 100-year return levels T=100y (1/36500 and 1-1/36500) and 10-year return levels 
T=10y (1/3650 and 1-1/3650). This provides a comprehensive range of quantiles for analysis, from 

the most common to the most extreme (Figure 1).  

 Time series increments are normalized (divided by STD of increments). 

 Original time series are presented as cumulative sums of increments. Quantiles are calculated 

on their cumulative continuations. 

 The training dataset consists of 10,000 examples of length 128 for covariates and values of the 
following 16 time steps for the target. These parameters are similar to those used in [36]. In this 

case, the data for calculating extreme quantiles of a hundred-year period is not enough, as 10,000 

days are roughly three times fewer than a hundred years. 
The code for generating a file of the dataset for a specific Hurst exponent can be found at the 

following link: https://www.kaggle.com/code/unfriendlyai/fbm-extreme-quantile-generator 

The obtained dataset was tested using three machine learning methods known for their efficiency 

and speed, often used in Kaggle competitions, that can predict specific quantiles: LightGBM [36], 
CatBoost, and Statsmodels QuantReg [37]. The results of the three models for one time series are shown 

in Figures 2, 3. The 0.05, 0.50, and 0.95 quantiles were satisfactorily predicted by all three methods. 

The extreme quantiles were predicted unsatisfactorily for persistent fBm time series. For antipersistent 
fBm time series with H=0.30, LightGBM and CatBoost show more satisfactory results for extreme 

quantiles. However, the prediction from Statsmodels QuantReg is unsatisfactory. 

https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles
https://www.kaggle.com/code/unfriendlyai/fbm-extreme-quantile-generator
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Figure 2: LightGBM (a), CatBoost (b) and Statsmodels QuantReg (c) results for fBm time series H=0.93. 
The 0.05, 0.50, and 0.95 quantiles were satisfactorily predicted by all three methods. However, the 
prediction of quantiles corresponding to an event occurring once in a hundred years proved to be 
extremely unsatisfactory. 
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Figure 3: For antipersistent fBm time series with H=0.30, LightGBM (a) and CatBoost (b) show more 
satisfactory results for extreme quantiles. However, the prediction from Statsmodels QuantReg (c) is 
unsatisfactory.  
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When the Hurst exponent is close to 0.5, the prediction values do not depend on the previous values 
of the series and these predictions are not interesting. When the Hurst exponent deviates from 0.5, the 

predictions for the 0.05, 0.50, and 0.95 quantiles in all cases depended on the previous values of the 

series, and all three models captured these dependencies.  

However, for extreme quantiles in this case, it was noted that the predictions often did not depend 
(or almost did not depend) on the previous values. Whether for a persistent descending series or an 

ascending one, the predictions were quite symmetrical relative to the last value of the series, unlike the 

adequately predicted median (Figure 4). 

 
Figure 4: The predictions of extreme quantiles by LightGBM did not depend on the previous values of 
the time series. Regardless of whether the series was persistently descending (a) or ascending (b), the 
predictions were quite symmetrical relative to the last value of the series.  

To determine correctness of examples in dataset and limits for calculating Hurst exponent of 

predicted time series, the values of the Hurst exponent for each time series of length 128 were 

determined using the Whittle algorithm. The results are shown in Table 1.  

To compare the correctness, we generated the same number of time series for each value of the Hurst 
exponent with the Davies-Harte method. The estimate of the Hurst exponent for the time series of the 

dataset and the fBm generated by the Davies-Harte method has similar scatter values.  

The results of comparison with the Davies-Harte method show that the time series by the Hosking's 
method with parallel calculation of M the continuations of one row are executed correctly. 
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Table 1 
Hurst exponent statistics (mean and standard deviation) determined with Whittle algorithm 

Target H value H (Dataset) 
mean 

H (Davies-Harte) 
mean 

H (Dataset)  
std 

H (Davies-Harte)  
std 

0.30 0.299 0.295 0.062 0.071 
0.35 0.348 0.355 0.053 0.051 
0.45 0.440 0.447 0.048 0.051 
0.53 0.526 0.525 0.054 0.073 
0.60 0.582 0.589 0.057 0.064 
0.65 0.651 0.644 0.057 0.056 
0.72 0.716 0.697 0.063 0.074 
0.85 0.822 0.824 0.072 0.060 
0.90 0.882 0.859 0.055 0.042 
0.93 0.901 0.875 0.047 0.052 

The Python code of experiments is available for review on Kaggle platform 

at https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles/code 

5. Discussions 

In this study, we successfully employed parallel computation using the Hosking method to obtain 

the true values of extreme quantiles for fBm (fractional Brownian motion) time series. This was 

achieved by substituting normally distributed random numbers at the begining of the series with 
identical numbers for all numerous variants of the series. By using 100 times more series variants than 

the number of days in 100 years, we were able to prepare a dataset of time series and their true quantiles 

with sufficient accuracy for the evaluation of machine learning methods predicting extreme quantiles. 
Although we could generate an unlimited number of training examples, inspired by [35], we limited 

the training dataset to the same size, specifically 7000 training examples, and an additional 3000 for 

validation used for hyperparameter selection (in our case, early stopping points). This corresponds to 

approximately 19 years of daily observations. At the same time, the task was to predict an event with a 
frequency of once in 100 years of daily observations (quantile 1/36500). 

Given such a limited volume of training data, conventional machine learning models were unable to 

predict extreme quantiles. However, there were no issues with predicting the median and 0.95 quantile. 
We also noted that the presence of long-term dependencies in the time series, due to the fact that the 

time series is a realization of fractional Brownian motion, was necessary. In the absence of long-term 

dependencies (Hurst exponent close to 0.5), it was impossible to compare the effectiveness of prediction 

methods. The prediction of extreme quantiles of persistent time series compared to antipersistent ones 
proved to be a significant challenge and deserves special attention. 

Some models predicted extreme quantiles independently of the previous values (increments) of the 

time series. This was noticeable by the symmetrical distribution of quantiles 1/36500 and 1-1/36500 
relative to the last value of the time series for strongly persistent series (consistently increasing or 

decreasing). Although in this case it sometimes seems that one of the extreme quantiles is predicted, 

this is refuted by the symmetrical opposite quantile, which clearly does not depend on the input data. 
This feature also needs to be taken into account when calculating the effectiveness of methods. 

6. Conclusions 

This study presents a novel method for generating a dataset to evaluate the prediction of extreme 

quantiles in fractional Brownian motion time series. Despite the challenges posed by limited training 
data and long-term dependencies, our approach provides a foundation for further research into refining 

existing prediction methods and exploring new machine learning approaches for this task.  

These findings highlight the challenges and potential avenues for improving the prediction of 

extreme quantiles in fractal time series data, a task of significant relevance in risk assessment and other 

https://www.kaggle.com/datasets/unfriendlyai/fbm-extreme-quantiles/code
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fields. It's important to note that while we have proposed a method for creating a dataset for evaluation, 
we have not proposed the prediction methods themselves. Further research is needed to refine these 

methods, such as those proposed in [35], and to explore other machine learning approaches for this task. 

This work lays the groundwork for such future investigations.   
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