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Abstract

Based on loosely coupled services in an XML
engine, we describe how to realize fine-grained
lock protocols, which can guarantee transaction
isolation for applications using different lan-
guage models. We illustrate the superiority of
the taDOM lock protocol family and its tailor-
made lock modes and lock granules adjusted to
the XML language model. We emphasize the
importance of a prefix-based node labeling
scheme for lock management. Using meta-lock-
ing, we have found the key concept for integra-
tion and evaluation of various isolation protocols
that can even be exchanged at runtime without
affecting other engine services. Benchmark runs
convincingly illustrated the flexibility and per-
formance benefits of our approach and revealed
that careful lock protocol optimization pays off.
Further, we present optimizations to enhance
scalability of our lock protocols.

1. Motivation

Currently available relational database management sys-
tems (RDBMSs) only manage structured data well. There
is no effective and straightforward way for handling
semi-structured XML data. A “brute-force” mapping
uses “long fields” or CLOBs where individual and direct
access to single XML document nodes (elements or at-
tributes) is not possible. Alternatively, an innumerable
number of algorithms maps semi-structured XML data to
structured relational database tables and columns (the so-
called ,,;shredding®). In any case, there are no specific
provisions to process transactions on XML documents
and, at the same time, to efficiently provide the ACID
properties [14]. Especially isolation of concurrent trans-
actions in RDBMSs is tailored to the relational data mod-
el and does not take the semi-structured data model and
the typical XML document processing (XDP) interfaces
into account. CLOBs or “shredded” mappings of XML
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documents to relational tables may cause disastrous lock-
ing behavior, in particular, if relational systems lock en-
tire pages or even entire tables as their minimal lock gran-
ularity.

Native XML database systems promise tailored pro-
cessing of XML documents, but most of the systems pub-
lished in the DB literature are designed for efficient doc-
ument retrieval and not for frequently concurrent and
transaction-safe document modifications [20, 26]. This
“retrieval-only” focus was probably caused by the early
language proposals [29] where the update part was left
out [30]. On the other hand, missing update requirements
strongly influenced the design of their node labeling
schemes used to identify XML elements. Hence, their
schemes allow for very fast computation of structural de-
pendencies, but modifications of the document structure
often lead to renumeration of large document parts. A
rare example of an update-oriented system, Natix claims
to be designed for the support of concurrent modifica-
tions [8] using the DOM interface. Unfortunately, com-
pelling results are not known so far, because it neither
provides a suitable lock concept nor a running implemen-
tation (see Section 6).

Efficient and effective transaction-protected collabo-
ration on XML documents becomes a pressing issue be-
cause of their number, size, and growing use. Tailor-
made isolation protocols that take into account the tree
characteristics of the documents and the operations of the
workload are considered a viable solution. But, because
of structure variations and workload changes, these pro-
tocols must exhibit a high degree of flexibility as well as
automatic means of runtime adjustments.

Because a number of language models are available
and standardized for XML [6, 29], a general solution for
concurrency control has to support protocols for concur-
rently evaluating stream-, navigation-, and path-based
queries. Furthermore, performance needs dictate the use
of fine-grained isolation protocols as a concurrency con-
trol mechanism for transactional processing of or cooper-
ative collaboration on XML documents. Hence, in a
multi-lingual XML database management system
(XDBMS), more powerful and declarative language
models such as XPath and XQuery [29] are needed in ad-
dition to DOM-based models. To achieve fine-granular
access to document trees, declarative requests have to be
translated into sequences of DOM operations.



With these requirements, we necessarily have to map
all declarative operations to a navigational access model,
e.g., using the DOM operations, to provide for fine-gran-
ular concurrency control. Because of the superiority of
locking (in other areas), we also focus on lock protocols
for XML. We have already developed a group consisting
of four DOM-based lock protocols called the taDOM
family [18] and some other equivalent protocols are
available from the relational world by adjusting the idea
of hierarchical or multi-granularity locking [12] to the
specific needs of XML trees. Here, we discuss mecha-
nisms how such protocols can be efficiently integrated
into a native XDBMS, but, on the other hand, sufficiently
encapsulated from the other engine components such that
they can be automatically exchanged or adapted to new
processing situations at runtime.

In an XDBMS installation, we may have different
XML language models (e.g., DOM. SAX, XPath, or
XQuery) used by the spectrum of applications accessing
the database. Hence, DB requests specified by different
XML languages may be scheduled and arbitrary transac-
tion mixes may occur. Therefore, adhering to the serial-
izability requirement [7], we have to guarantee transac-
tion isolation for applications using different language
models and even for individual application programs us-
ing all or some of them at a time.

Our XDBMS prototype (XML Transaction Coordi-
nator, [17]) called XTC served as a testbed for all imple-
mentations and comparative experiments. All techniques
and mechanisms are provided by XTC and were empiri-
cally evaluated in our experiments. Of course, perfor-
mance results continuously trigger improvements and re-
finements of these mechanisms.

We explain in Section 2 the properties of tree-based
lock protocols and emphasize the need and advantage of
lock protocols tailored to the specific characteristics of
XML processing, before we sketch the novel aspects of
taDOM2. In Section 3, we discuss the role of prefix-
based node labeling for efficient lock management and
outline the implementation of the XTC lock manager.
Section 4 discusses infrastructural aspects of a lock ser-
vice and sketches the concept of meta-locking. It outlines
the mechanism underlying the runtime exchange of lock
protocols which enabled a lock protocol contest with
XTC. Our evaluation and comparison results gained by
running 12 lock protocols under the same benchmark in
an identical runtime environment are also summarized in
Section 4. Section 5 introduces an approach to dynami-
cally balance benefit and overhead of lock management
and demonstrates its feasibility with experimental results.
In Section 6, we review the related work on XML concur-
rency control, before we conclude the paper in Section 7.

2. Tree-Based Lock Protocols

In the following, we will repeat neither the properties of
tree-based lock protocols used in all industrial-strength
DBMSs [13] nor our own work on fine-grained XML
locking [18]. Instead, we refer to these well-known pro-

tocols and only sketch and emphasize those properties for
better comprehension. Our goal is to convince the reader
that the use of fine-grained protocols, whose lock modes
and granules can be tailored to the (internal) data struc-
tures and operations of a native XDBMS, pays off and
that those protocols can be implemented in a way which
enables runtime optimization, especially adaptation to
changing workloads.

2.1 B-Tree Locking

When XML documents are managed in a native way,
they are often stored in some variation of B-tree struc-
tures — actually in XTC, the tree-connected nodes of an
XML document are stored in a set of doubly-chained pag-
es indexed by a B-tree such that the entire physical docu-
ment structure results in a B*-tree [17]. Hence, the ques-
tion immediately arises whether or not specific tree-
based lock protocols can be used. So-called B-tree lock
protocols provide for their structural consistency while
concurrent database operations are querying or modify-
ing database contents and its representation in B- tree in-
dexes [11]. Such locks isolate concurrent operations on
B-trees and are called latches' in the database world. For
example, to minimize blocking or interference of concur-
rent transactions while traversing a B-tree, latch coupling
acquires a latch for each B-tree page before the traversal
operation is accessing it and immediately releases this
latch when the latch for the successor page is granted or
at end of operation at the latest [2]. In contrast, locks iso-
late concurrent transactions on user data and — to guaran-
tee serializability [7] — have to be kept until transaction
commit. Therefore, such latches only serve for consistent
processing of (logically redundant) B-tree structures and
do not address the isolation of concurrent read/write op-
erations on (non-redundant) user data. With similar argu-
ments, index locking can not appropriately cope with the
navigational DOM operations [22].

2.2 Multi-Granularity Locking

Hierarchical lock protocols [12] — also denoted as multi-
granularity locking (MGL) — are used “everywhere” in
the relational world. For performance reasons in
XDBMSs, fine-granular isolation at the node level is
needed when accessing individual nodes or traversing a
path, whereas coarser granularity is appropriate when tra-
versing or scanning entire trees. Therefore, lock proto-
cols, which enable the isolation of multiple granules each
with a single lock, are also beneficial in XDBMSs. Re-
garding the tree structure of documents, objects can be
isolated acquiring the usual subtree locks with modes R
(read), X (exclusive), and U (update with conversion op-
tion), which implicitly lock all objects in the entire sub-
tree addressed. To avoid lock conflicts when objects at
different levels are locked, so-called intention locks with

1. Unfortunately, this mechanism is denoted by the term “lock”
in the literature on operating systems and programming envi-
ronments.
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Figure 1. Lock compatibilities of taDOM2

modes IR (intention read) or IX (intention exclusive)
have to be acquired along the path from the root to the ob-
ject to be isolated and vice versa when the locks are re-
leased [12]. Hence, we could map the relational IRIX
protocol to XML trees and use it as a generic solution
where the properties of the DOM access model are ne-
glected.

Using the IRIX protocol, a transaction reading nodes
at any tree level had to use R locks on the nodes accessed
thereby locking these nodes together with their entire
subtrees. This isolation is too strict, because the lock pro-
tocol unnecessarily prevents writers to access nodes
somewhere in the subtrees'. Giving a solution for this
problem, we want to sketch the idea of lock granularity
adjustment to DOM-specific navigational operations.

2.3 Fine-Grained DOM-Based Locking

To develop true DOM-based XML lock protocols, we in-
troduce a far richer set of locking concepts. While MGL
essentially rests on intention locks and, in our terms, sub-
tree locks, we additionally define locking concepts for
nodes, edges, and levels. So-called edge locks having
three modes [18] mainly serve for phantom protection,
but play only a minor role for the discussion in this paper.
In general, edges have to be protected, too, to guarantee
isolation levels repeatable read and serializability. As-
sume, for example, transaction T has traversed the child
set under parent p. To enable exactly the same navigation
sequence for T later on, new children may not be inserted
under this parent. A subtree lock on p would solve this
problem, is, however, not a fine-grained solution. To pre-
vent children to be inserted into or attached to the current
child set by concurrent transactions, T may use edge
locks in an appropriate mode and, thereby, preserve fine

1. Obviously, a situation the other way around is not serializ-
able. A modification on an inner node while concurrent reads
may occur in its subtree would necessarily affect readers, e.g.,
when traversing this inner node. A situation where readers
have entered the subtree before the writer has locked the relat-
ed root, would only occur under isolation level consistent
read.

granularity of isolation, i.e., impede concurrent transac-
tion processing as little as possible. Due to space restric-
tions and to retain acceptable readability of the paper, we
will not further discuss them.

We differentiate read and write operations thereby
renaming the well-known (IR, R) and (IX, X) lock modes
with (IR, SR) and (IX, SX) modes, respectively. As in the
MGL scheme, the U mode (SU in our protocol) plays a
special role, because it permits lock conversion. Novel
concepts are introduced by node locks and level locks
whose lock modes are NR (node read) and LR (level
read) in a tree which, in contrast to MGL, read-lock only
a node or all nodes at a level, but not the corresponding
subtrees. Together with the CX mode (child exclusive),
these locks enable serializable transaction schedules with
read operations on inner tree nodes, while concurrent up-
dates may occur in their subtrees. While the remaining
lock modes in Figure 1 coincide with those of the URIX
protocol, we highlighted these three lock modes to illus-
trate that they provide a kind of tailor-made XML-specif-
ic extension. Hence, they behave as follows:

* An NR mode is requested for reading context node c.
To isolate such a read access, an IR lock has to be ac-
quired for each node in the ancestor path. Note, the NR
mode takes over the role of IR combined with a spe-
cialized R, because it only locks the specified node,
but not any descendant nodes.

* An LR mode locks context node ¢ together with its di-
rect-child nodes for shared access. For example, eval-
uation of the child axis only requires an LR lock on
context node ¢ and not individual NR locks for all
child nodes.

* A CX mode on context node ¢ indicates the existence
of an SX lock on some direct-child nodes and prohibits
inconsistent locking states by preventing LR and SR
locks. It does not prohibit other CX locks on ¢, because
separate child nodes of ¢ may be exclusively locked by
other transactions (compatibility is then decided on the
child nodes themselves).

Figure 1 contains the compatibility matrix consisting
of 8 lock modes for our basic lock protocol called
taDOM22. To illustrate its use, let us assume that the
node manager has to handle for transaction T an incom-
ing request GetChildNodes() for context node book in
Figure 2. This requires appropriate locks to isolate T,
from modifications of other transactions. Here, the lock
manager can use the level-read optimization and set the
perfectly fitting mode LR on book and, in turn, protect
the entire path from the document root by appropriate in-
tention locks of mode IR. After having traversed all chil-
dren, T navigates to the content of the price element af-
ter the lock manager has set an NR lock for it. Then,
transaction T, starts modifying the value /name and,

2. Although the compatibility of NR is identical to IR in
taDOM?2 and only differs in some protocol optimizations, we
keep these lock modes separate to emphasize that there is a
difference.



Figure 2. Application of the taDOM2 protocol

therefore, acquires an SX lock for the corresponding text
node. The lock manager complements this action by ac-
quiring a CX lock for the parent node and IX locks for all
further ancestors. Simultaneously, transaction T3 wants
to delete the author node and its entire subtree, for which,
on behalf of T3, the lock manager must acquire an IX
lock on the bib node, a CX lock on the book node, and an
SX lock on the author node. The lock request on the book
node cannot immediately be granted because of the exist-
ing LR lock of Ty. Hence, T3 — placing its request in the
lock request queue (LRQ: CX3) — must synchronously
wait for the release of the LR lock of T; on the book node.

A full-fledged lock protocol also needs provisions to
convert a lock held by a transaction to a stronger mode,
e.g., to update an object after having inspected it. As usu-
al, these transitions are specified by a lock conversion
matrix [18] on a node basis. In case, a transaction wants
to upgrade a lock already granted in a specific mode (row
header) to the target lock mode (column header), this ma-
trix defines how the lock on the context node has to be
converted and, as a consequence, all locks on its ancestor
path have to be adjusted. Of course, if the lock upgrade is
in conflict to locks of concurrent transactions, the re-
questing transaction has to be blocked (by waiting at the
front position of the related LRQ). While most of the pos-
sible transitions in the lock conversion matrix are obvi-
ous, some complex transitions have to take place when
LR locks are involved. For example, the upgrade of an
implicitly read-locked child of a context node (holding an
LR lock) to an exclusive lock (SX) is governed by a com-
plex rule.

Hence, by tailoring the lock granularity to the LR op-
eration, the lock protocol enhances transaction parallel-
ism by allowing modifications of concurrent transactions
in subtrees whose roots are read-locked. Furthermore, the
lock state after successful conversion also enables the
former reader T to perform updates in all subtrees of
book not blocked by concurrent writers (see Figure 2).

The lock modes introduced so far are the core part of
the taDOM protocol family and are primarily responsible
for its excellent performance behavior (see Figure 6).
Nevertheless, experimental analysis of taDOM?2 revealed
some severe performance penalties in specific situations
which were solved by the follow-up protocol taDOM2+.
As described in [18], conversion of LR can be very cum-

bersome, because individual node locks have to be set on
all children of the context node. As opposed to efficient
ancestor determination (see Section 3.1) of a context
node, identification of its children is very expensive, be-
cause access to the document is needed to explicitly lo-
cate all affected nodes. By introducing 4 additional inten-
tion modes, we can avoid access and explicit locking of
child nodes in case of an LR conversion of the parent
node. As a consequence, we obtained the more complex
protocol taDOM2+ having 12 lock modes. The DOM3
standard introduced a richer set of operations which led
to several new tailored lock modes for taDOM3 and —
again to optimize specific conversions — we added even
more intention modes (again indicated by the +-suffix)
resulting in the truly complex protocol taDOM3+ speci-
fying compatibilities and conversion rules for 20 lock
modes (see [18] for details). Recently, a model-checking
approach was used to show the correctness of the taDOM
protocol family [27].

3. Lock Manager Implementation

So far, hardly anything was reported in the literature
about the implementation of XML lock managers. With-
out having a reference solution, the XTC project had to
develop such a component from scratch where the gener-
ic guidelines given in [13] were used. An initial version
of the lock manager as described in [16] was based on
static memory allocation of the lock buffers. Such a
scheme cannot be dynamically adjusted to a widely vary-
ing number of active transactions and their lock request
blocks. A reimplementation as sketched in Section 3.2
provided substantial improvements of the lock manager
behavior. Some more lessons were learned the hard way,
because XTC initially used a sequential node labeling
scheme [17] revealing a catastrophic performance behav-
ior.

3.1 The Role of Node Labeling

Why is the node labeling scheme so important for the
flexibility and performance of a lock manager implemen-
tation? Many XML operations address nodes somewhere
in subtrees of a document and these often require direct
jumps “out of the blue” to a particular inner tree node. Ef-
ficient processing of all kinds of language models [6, 29]
implies such label-guided jumps, because scan-based
search should be avoided for direct node access and nav-
igational node-oriented evaluation (e. g., getElementBy-
1d() or getNextSibling()) as well as for set-oriented eval-
uation of declarative requests (e.g., via indexes). Because
each operation on a context node (inner node) requires
the appropriate isolation of its path to the root, the lock
manager not only has to lock the node itself by a suffi-
cient mode, but also has to identify all ancestor nodes to
set the corresponding intention locks (or to check wheth-
er they are already granted). Therefore, the node labeling
scheme used critically influences lock management over-
head.



A comparison and evaluation of node labeling
schemes in [15] recommends prefix-based node labeling
based on the Dewey Decimal Classification [5]. As ab-
stract properties of Dewey order encoding, each label
represents the path from the document’s root to the node
and the local order w.r.t. the parent node; in addition,
sparse numbering facilitates node insertions and dele-
tions. Refining this idea, a number of similar labeling
schemes were proposed differing in some aspects such as
overflow technique for dynamically inserted nodes, at-
tribute node labeling, or encoding mechanism. Examples
of these schemes are ORDPATHSs [23], DeweylIDs [15],
or DLNSs [3]. Because all of them are adequate and equiv-
alent for our processing tasks, we prefer to use the substi-
tutional name stable path labeling identifiers (SPLIDs)
for them. !

Here we can only summarize the benefits of the
SPLID concept; for details, see [15, 23]. It provides ho-
listic system support which is important for lock manage-
ment, too. Existing SPLIDs are immutable, that is, they
allow the assignment of new IDs without the need to re-
organize the IDs of nodes present. Comparison of two
SPLIDs allows ordering of the related nodes in document
order. As opposed to competing schemes, SPLIDs great-
ly support lock placement in trees, e.g., for intention lock-
ing, because they carry the node labels of all ancestors.
Hence, access to the document is not needed to determine
the path from a context node to the document root. De-
clarative queries and the required locks for them are also
supported by the efficient evaluation — that is, computa-
tion without the need to access the document on disk — of
the eight axes frequently occurring in XPath or XQuery
path expressions: parent/child, ancestor/descendant, fol-
lowing-sibling/preceding-sibling, and following/preced-
ing. Even sequential document processing and naviga-
tional operations to parent/child/sibling nodes from the
context node are facilitated when suitable storage struc-
tures are available [17].

3.2 Lock Buffer Management

The lock manager is the key component of the locking
functionality. It coordinates so-called lock services
which are invoked by various system components when
locks have to be acquired or released [1]. Furthermore, it
serves as a factory to create lock services thereby facili-
tating the encapsulation of lock management internals
from other system components. Besides the NodeLock-
Service, the lock manager offers a number of different
lock services (for DB buffer management, edge locks, in-
dex locks, etc.) which are equipped with interfaces tai-
lored to the requirements of the respective component
(see Figure 5).

Lock request scheduling is centralized by the lock
manager. The actions for granting a lock by a lock service
are considered in detail below. Otherwise, a lock service

1. For example, such prefix-based labeling schemes are used in
DB2 and MS SQL Server.

calls the wait method provided by the lock manager to
suspend the requesting transaction until the request can
be granted or a time-out occurs. Moreover, the detection
and resolution of deadlocks is enabled by a global wait-
for graph for which the transaction manager initiates the
so-called transaction patrol thread in uniform intervals to
search for cycles and, in case of a deadlock, to abort the
involved transactions owning the fewest locks.

Each lock service has its own lock buffer containing
a number of data structures as illustrated in Figure 3. To
understand the general principles, it is sufficient to focus
on the management of node locks. The main structures of
the lock table are two pre-allocated buffers for lock head-
er entries and lock request entries, each consisting of a
configurable number (m) of blocks. This use of separate
buffers serves for storage saving (differing entry sizes are
used) and improved speed when searching for free buffer
locations and is supported by tables containing the related
free-placement information. To avoid frequent blocking
situations when the lock table operations (look-up, inser-
tion of entries) or house-keeping operations are per-
formed, use of a single monitor is not adequate. Instead,
latches are used on individual hash-table entries to pro-
tect against accesses by concurrent threads thereby guar-
anteeing the maximum parallelism possible.

For each locked object, a lock header encoded as a
byte array is stored which contains name and current
mode of the lock together with a pointer to the lock queue
where all lock requests for the object are attached to.
Such a lock request carries among other administration
information the requested/granted lock mode together
with the ID of the respective transaction. To speed-up
lock release, the lock request entries are doubly chained
and contain a separate pointer to the lock header, as illus-
trated in Figure 3. Furthermore, a transaction entry con-
tains the anchor of a chain threading all lock request en-
tries which minimizes lock release effort at transaction
commit.

A lock request of object with SPLID = 1.19.7.5 for
transaction T proceeds as follows. A hash function de-
livers h(T) in hash table T. If no entry is present for T1,
anew transaction entry is created. Then, hy (1.19.7.5) se-
lects (possibly via a synonym chain) a particular lock en-
try for object 1.19.7.5 in hash table L. If a lock entry is
not found, a lock header is created for it and, in turn, a
new lock request entry; furthermore, the various pointer
chains are maintained for both entries. For checking the
lock compatibility or the lock conversion, a registered
locking scheme is used. In the same way, intention locks
for the ancestors of 1.19.7.5 can be checked or newly cre-
ated using hy (1.19.7), hy (1.19) and hy (1). Because of the
frequency of this operation, we provide a single function
which acquires a lock and all necessary intention locks.

3.3 Locking Efficiency and Effectiveness

What is a reasonable approach to quantify the quality of
a lock protocol? It is certainly meaningless to measure the
CPU cycles consumed by the lock manager when running
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a specific protocol. Therefore, we must rather consider its
efficiency in terms of transaction throughput obtained and
compare it to its effectiveness, that is, how many locks
have to be acquired and maintained to gain this transac-
tion throughput. Of course, the ideal goal would be to
minimize the number of (fine-grained) locks and, at the
same time, to maximize throughput — obviously only
achievable by tailoring the lock granules to the operation
isolation needs in the best possible way.

To answer this question concerning our approach to
tailor-made lock protocols, we designed a specific exper-
iment to check efficiency and effectiveness of the taDOM
protocol family. We created a library XML document
(similar to the structure illustrated in Figure 2) with a size
of 184 MB and over 4.5 million XML tree nodes. The
transactions of the experiment were prepared to figure
out the strengths of our lock protocols: A single transac-
tion completely reconstructs a randomly selected book by
invoking the getChildNodes() operation at each level re-
quiring a lock for shared level access. Then, a randomly
chosen chapter is renamed (exclusive lock on the chapter
name; CX and IX locks on the ancestor path) which en-
forces a lock conversion on the nodes holding the level-
read locks. In our experiment, 25 threads were initialized
where each was consecutively processing the transaction
operations outlined above for 5 min. on the XTCserver.

The results for the successfully committed transac-
tions and the maximum number of concurrently main-
tained locks are summarized in Figure 4. Hence, with the
growing number of lock modes — and, therefore, with bet-
ter adjusted lock granules (from taDOM2(+) to
taDOM3(+)) —, the locking effectiveness is strongly im-
proved. On the other hand, lock protocol efficiency —
quantified in terms of successfully committed transac-
tions — is increasing from taDOM2 to taDOM2+ and
from taDOM3 to taDOM3+, because the substantial cost
of child node accesses (needed in case of lock conversion
for the determination of their node labels) can be avoided.

4. Lock Manager Adaptivity

In our initial implementation, the taDOM protocols were
hard-wired and, thus, their exchange was cumbersome.
Therefore, we looked for an elegant integration mecha-
nism to transparently enable protocol changes (e.g., an-
other compatibility matrix) or use of alternative proto-
cols.

4.1 Use of a Protocol Family

As a first step, we decoupled the logic for navigating and
manipulating the documents from all protocol-specific
aspects by encapsulating them in so-called lock services,
which are provided by the lock manager. The node man-
ager uses them to enforce its isolation needs, instead of
directly requesting specific locks from the lock manager
[1]. For this purpose, the lock service interface offers a
collection of methods, which sufficiently cover all rele-
vant cases, e.g., for locking a single node or an entire sub-
tree in either shared or exclusive mode. Figure 5 sketches
the interaction of node manager and locking facilities in-
volved in protocol use, lock mode selection, and enforce-
ment of conversion rules.

This small restructuring reduced the responsibility of
the node manager for coping with how the resources have
to be locked to simply saying what resources have to be
locked. Based on such “declarative” lock requests, the
lock service infers the appropriate locks and lock modes
according to the respective protocol and acquires them
from the lock manager. The granted locks and the waiting
lock requests are maintained in a conventional lock table
and a wait-for graph as it is known from relational sys-
tems. For protocol-specific details like compatibility ma-
trix and lock conversions, however, the lock manager de-
pends on information provided by the lock service. Thus,
the internal structures of the lock manager like the lock
table and the deadlock detector could be completely de-
coupled from the used protocols, too. Finally, we are now
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able to replace the lock protocol by simply exchanging
the lock service used by the node manager. Moreover, it
is now even possible to use several protocols, e.g.,
taDOM2+ and taDOM3+, simultaneously for different
kinds of and workloads for documents inside the same
server instance.

4.2 Meta-Locking

As described in the previous section, the key observation
for transparent lock protocol exchange is an information
exchange between lock manager and a lock service about
the type of locks and compatibilities present. The lock
services controlled by the lock manager can then be
called by specific methods and each individual lock ser-
vice can act as a kind of abstract data type. As a conse-
quence, the node manager can plan and submit the lock
requests in a more abstract form only addressing general
tree properties. Using this mechanism, we could ex-
change all “closely related” protocols of the taDOM fam-
ily and run them without additional effort in an identical
setting. By observing their behavior under the same
benchmark, we gained insight into their specific blocking
behavior and lock administration overhead and, in turn,
could react with some fine-tuning.

Even more important is a cross-comparison between
different lock protocol families to identify strengths and
weaknesses in a broader context. On the other hand, when
unrelated lock protocols having a different focus can be
smoothly exchanged, we would get a more powerful rep-
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Figure 5. Interaction of node manager and locking services

ertoire for concurrency control optimization under wide-
ly varying workloads.

To demonstrate the usefulness of optimizing lock
protocols, we implemented and explored a variety of
fine-grained approaches to tree locking. We found quite
different approaches to fine-grained tree locking in the
literature and identified three families with 12 protocols
in total: Besides our taDOM group with 4 members, we
adjusted the relational MGL approach [12] to the XML
locking requirements and included 5 variants of it (i.e.,
IRX, IRX+, IRIX, IRIX+, and URIX) in the so-called
MGL group. Furthermore, we included three protocol
variants described in [19], which were developed as
DOM-based lock protocols in the Natix context. These
protocols called Node2PL, NO2PL, and OO2PL are not
implemented so far and are denoted as the *2PL group in
the remainder of this paper. As will be shown, they are
not competitive at all, but nicely reveal that a mismatch
of lock granules required by the transactional operations
and the isolation granules (here only single nodes) of-
fered by the lock protocol may cause disastrous perfor-
mance behavior in specific situations.

To run all of them in an identical system setting — by
just exchanging the service responsible for driving the
specific lock protocol — is more challenging than that of
the taDOM family. The protocol abilities among the
identified families differ to a much larger extent, because
the MGL group does not know the concepts of node and
level locks. The mismatch of the *2PL group with miss-
ing subtree locks and level locks is even larger.

For this reason, we developed the concept of meta-
locking to bridge this gap and to automatically adjust the
kinds of lock requests depending on the current service
available. Important properties of a lock protocol influ-
encing the kind of service request are the support of
shared level locking, shared tree locking, and exclusive
tree locking. To enable an inquiry of such properties by
the node manager, the lock service provides three meth-
ods.
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Figure 6. Overall results of a transaction benchmark (variation of lock depth)

* supportsSharedLevelLocking: 1f a protocol supports
the level concept, a request for all children or a scan
traversing the child set can be isolated by a single level
lock (i.e., LR). Otherwise, all nodes (and navigation
edges) must be locked separately.

» supportsSharedTreeLocking: Analogously to level
locks, subtrees can be read-locked by a single request,
if the protocol has this option. Otherwise, all nodes
(and navigation edges) of the subtree must be locked
separately.

o supportsExclusiveTreeLocking: This protocol proper-
ty enables exclusive locking of a subtree by setting a
lock on its root node. If this option is not available,
then subtree deletion requires traversal and separate
locking of all nodes, before the deletion can take place
in a second step.

For a lock request on a context node, the node man-
ager can select a specification of the lock mode (Read,
Update, or Exclusive) for the context node itself, the con-
text node and the level of all its children or the context
node and its related subtree. For navigational accesses, a
lock mode for one of the edges prevSibling, nextSibling,
firstChild, or lastChild can be specified, in addition.
Then, the lock manager translates the lock request to a
specific lock mode dependent on the chosen protocol.

4.3 Results of a Lock Contest

Although the MGL group is only distantly related to our
protocol family, this meta-locking concept enabled with-
out further “manual” interaction a true and precise cross-
comparison of all 12 protocols, because they were run un-
der the same benchmark in XTC using the same system
configuration parameters. All benchmark operations and
the node-manager-induced lock protocols were applied to
the taDOM storage model [17] of XTC and took advan-

tage of its refined node structure and the salient SPLID
properties concerning lock management support.

As it turned out by empirical experiments, lock depth
is an important and performance-critical parameter of an
XML lock protocol. Lock depth n specifies that individ-
ual locks isolating a navigating transaction are only ac-
quired for nodes down to level n. Operations accessing
nodes at deeper levels are isolated by subtree locks at lev-
el n. Note, choosing lock depth 0 corresponds to the case
where only document locks are available. In the average,
the higher the lock depth parameter is chosen, the finer
are the lock granules, but the higher is the lock adminis-
tration overhead, because the number of locks to be man-
aged increases. On the other hand, lock conflicts typically
occur at levels closer to the document root (lower lock
depth) such that fine-grained locks (and their increased
management) at levels deeper in the tree do not pay off.
Obviously, the taDOM and the MGL protocols can easily
be adjusted to the lock-depth parameter, whereas the
*2PL group cannot benefit from it.

In our lock protocol competition, we used a docu-
ment of about 580,000 tree nodes (~8MB) and executed
a constant system load of 66 transactions taken from a
mix of 5 transaction types. For our discussion, neither the
underlying XML documents nor the mix of benchmark
operations are important. Here, we only want to show the
overall results in terms of successfully executed transac-
tions (throughput) and, as a complementary measure, the
number of transactions to be aborted due to deadlocks.

Figure 6a clearly indicates the value of tailor-made
lock protocols. With the missing support for subtree and
level locks, protocols of the *2PL group needed a ponder-
ous conversion delivering badly adjusted granules.
Hence, even the MGL protocols — a kind of standard in
the relational world — roughly doubled the transaction
throughput as compared to the *2PL group. Enforced by
the missing concepts of node and level locks, in various



situations the MGL group could only react to lock re-
quests in a suboptimal way, because their lock granules
were badly adjusted to the needs of DOM operations. As
a consequence, they only reached about half of the
throughput achieved by the taDOM group.

Because of their exclusive use of node locks, *2PL
protocols cannot take advantage of the lock depth para-
meter (as illustrated by Figure 6). A reasonable applica-
tion to enable fine-grained locking, however, requires at
least a lock depth of 2; otherwise, the more sophisticated
protocols cannot leverage their strengths. A certain lock
depth and, dependent on it, reduced lock granules (small-
er subtrees locked) are also important for deadlock avoid-
ance. Hence, careful selection of lock granules and lock
modes is particularly critical at lower lock depths, i.e., at
levels close to the document root. Such a coarse-grained
locking should be avoided at all, as confirmed by the ta-
DOM and MGL protocols when lock depths < 2 were
used (see Figure 6b).

In summary, the impressive performance behavior of
the taDOM group reveals that a careful adaptation of lock
granules and available lock modes to specific operations
clearly pays off (see again the discussion in Section 2.3).

5. Runtime Protocol Adjustment

The value chosen for the lock depth parameter is critical
to the performance of the system. Potential concurrency
is limited, when lock depth is set too low, and system re-
sources are wasted for lock management if it is chosen
too high. Unfortunately, it is generally not possible to
predict the optimal value for the lock depth parameter be-
cause it heavily depends on the documents’ characteris-
tics and the current transaction mix, and thus may change
during a processing period. Hence, we need an effective
mechanism that enables us to preserve a reasonable bal-
ance of concurrency achieved and locking overhead
needed.

5.1 Local Reduction of Lock Depth

The most effective and widely used solution to reduce
lock management overhead is lock escalation the XTC
implementation of which we discussed in more detail in
a short forerunner version [1]: The fine-grained resolu-
tion of a lock protocol is — preferably in a step-wise man-
ner —reduced by acquiring coarser lock granules. Applied
to our case, we have to reduce the lock depth and lock
subtrees at higher levels using single subtree locks in-
stead of separately locking each descendant node visited.
A general reduction of the lock depth, however, would
jeopardize the benefits of our tailored lock protocols.
Therefore, we aim at running transactions initially at a
higher lock depth to benefit from the fine-grained resolu-
tion of our lock protocols in hot-spot regions, and reserve
the option to dynamically reduce the lock depth in low-
traffic regions encountered to save system resources.

In a first step, we made our lock buffer implementa-
tion “tree-aware”. Lock requests for specific document

nodes trigger the lock buffer to transparently acquire the
required intention locks on the ancestor path, which have
to be provided by the lock service. Thus, the lock buffer
knows not only the current lock mode of a node, the num-
ber of requests and the transactions that issued these re-
quests, but also its level in the document and the level of
the target node when it requests the intention locks on the
path from root to leaf. We exploit this cheaply gathered
information to decide about subtree-local lock escala-
tions when the lock buffer acquires the intention locks.
Depending on the fan-out characteristics of a document,
we can now define a suitable escalation threshold for
each level in the document. When the number of requests
for a specific node reaches this threshold, the initial lock
request for a deeper node is replaced by an appropriate
subtree lock on the current node to save system resources.
To avoid blocking situations, we check whether or not
concurrent transactions already hold incompatible locks
on this node.

5.2 Experimental Evaluation

For a first experimental evaluation in our XDBMS proto-
type XTC, we started with three simple escalation heuris-
tics for a mix of eight transaction types, which accessed
and modified a generated XMark [28] document at vary-
ing levels and in different granules, e.g., by placing bids
on items, changing user data, adding items, or reading
and writing mails. To increase the conflict rate, we chose
again an initial document size of only 8 MB. In our mea-
surements, we focused on further lock-depth optimiza-
tion of the taDOM3+ lock protocol, because it outper-
forms all other protocols (see Section 3.3), and varied the
initial lock depth from O to 7. The first two escalation
heuristics use only subtree locks to escalate a lock re-
quest, and compute the level thresholds according to
threshold = k(1920/2'¢"*") with k equal to 1.0 (called
moderate) respectively 0.7 (called aggressive). The third
one uses the same thresholds as the first, but employs the
less restrictive LR lock mode to escalate a NR lock re-
quest for a child node.

The results in Figure 7a reveal that our dynamic es-
calation mechanism does not have a negative effect on
transaction throughput. Furthermore, in some cases the
reduced lock overhead even increases throughput. The
highest transaction rates were achieved at lock depth 3
and 4, which obviously fitted best to our test workload.
At lock depth 5, we observed a small break, because the
additional locks did not contribute to higher concurrency.
At higher lock depths, however, throughput increased
again.

Figure 7b demonstrates how effective simple escala-
tion heuristics could reduce overhead of lock manage-
ment. As expected, the aggressive heuristics saved the
most locks, while the two moderate heuristics are head to
head, but still clearly in advance to the solution without
any lock escalation. Each heuristics saved the setting of
at least 100,000 locks for all relevant lock depths.
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Figure 7. Comparing effectiveness and efficiency of the taDOM3+ lock protocol depending on lock depth

The number of concurrency-induced aborts and the
perceived response times are important aspects for client
applications. Here, Figure 8a clearly indicates that the es-
calation heuristics did not lead to a higher deadlock rate.
Moreover, the fairly constant abort rates at lock depths
higher than 2 were partially caused by page-level dead-
locks (caused by fix and unfix operations on buffer pag-
es) and not by the lock protocol. The average response
times of successful transactions have their minimum at
lock depth 2, but suffer from a high abort rate (see
Figure 8b). The response times for higher lock depths,
however, are only minimally higher because of the higher
lock overhead.

Altogether, the experimental results demonstrate
well that our approach is able to provide a constantly high
transaction throughput even for higher lock depths, and
that it can be easily adjusted to the current workload to
save system resources. On the one hand, lock depth 3
marked the sweet spot in our test scenario with the high-
est transaction rates and the fewest lock requests. On the
other hand, the good results of the heuristics for higher
lock depths revealed that subtree-local lock escalations
are a practical way to balance lock overhead and potential
concurrency. The aggressive heuristics provided the big-
gest savings in combination with a good overall transac-
tion throughput. The throughput of the moderate heuris-
tics with level locks achieved in general a better through-
put, but needed more locks. The comparison with the
moderate heuristics also confirmed that exploitation of
the special level lock mode of the taDOM protocols in-
creases throughput at the cost of slightly more locks.

6. Related Work

To the best of our knowledge, we are not aware of contri-
butions in the open literature dealing with XML locking
in the detail and completeness presented here. So far,
most publications just sketch ideas of specific problem
aspects and are less compelling and of limited expres-

siveness, because they are not implemented and, hence,
cannot provide empirical performance results.

As our taDOM protocols, four lock protocols devel-
oped in the Natix context [19] focus on DOM operations
and acquire appropriate locks for document nodes to be
visited. In contrast to our approach, however, they lack
support for direct jumps to inner document nodes as well
as effective escalation mechanisms for large documents.
Furthermore, only a few high-level simulation results are
reported, which indicate that they are not competitive to
the taDOM throughput performance (see Figure 6).

The XLP/DLP protocol [21] locks all visited docu-
ment nodes, too, but was primarily designed for the eval-
uation of XPath expressions. It is not a strict two-phased
lock protocol and allows to unlock nodes before commit,
if they are not necessary to keep the set of target nodes
stable. Although XLP depends on the navigation seman-
tics of XPath, it is not able to prevent phantoms, e.g.,
when the child axis is evaluated. Further, the protocol
does not scale, because it does not support any kind of
lock escalation.

DGLOCK [10], proposed by Grabs et al., is a lock
protocol for a subset of XPath that locks the nodes of a
structural summary of the document instead of the docu-
ment nodes themselves. Although this enables DGLOCK
to cover large parts of a document with relatively few
locks as compared to approaches that lock single docu-
ment nodes, the protocol can cause severe performance
penalties in general. Its “semantic locks” have to be de-
duced by analyzing the path expressions, which made it
necessary to annotate them with additional content pred-
icates to achieve satisfying concurrency. Hence, even if
only simple predicates are used, a compatibility check of
a lock request may require physical access to all docu-
ment nodes affected by a lock respectively by its predi-
cate. Furthermore, the protocol does not support the im-
portant descendant axis.

XDGL [24] works in a similar way, but provides
higher concurrency due to a richer set of lock modes, and
introduces logical locks to support also the descendant
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Figure 8. Lock-strategy-induced effects on transaction performance — as a function of lock depth

axis. The general problem of locks with annotated predi-
cates, however, remains unsolved. SXDGL is an en-
hancement of XDGL that has been implemented in the
Sedna system [9]. It uses additional lock modes to cap-
ture also the semantics of XQuery/XUpdate and employs
a multi-version mechanism, which allows read-only
transactions to get a snapshot-consistent view of the doc-
ument without requesting any locks.

OptiX and SnaX [25] are two akin approaches, which
make also extensive use of a multi-version architecture.
OptiX is the only optimistic concurrency control ap-
proach adapted to the characteristics of XML so far. In
the verification phase, it uses special algorithms that re-
spect the hierarchical structure of the documents. SnaX is
a variant of OptiX that relaxes serializability, and guaran-
tees readers only snapshot consistency.

Finally, so-called path locks were presented in [4] as
one of the first proposals for XML concurrency control at
all, but are limited to a very small subset of XPath.

7. Conclusion

In this paper, we proposed the use of techniques adapt-
able to various application scenarios and configurations
supporting high concurrency in native XDBMS. We
started with an introduction into the basics of our tailor-
made lock protocols, which are perfectly eligible for fine-
grained transaction isolation on XML document trees.
Prime concepts responsible for concurrency enhance-
ments and a performance boost for transaction processing
in XML trees were novel lock modes for individual nodes
and child sets under a parent node (so-called level locks).
We showed how they can be encapsulated and integrated
into an XDBMS environment. By introducing the con-
cept of meta-locking, we discussed the principles for the
exchange of a specific lock protocol. Furthermore, we
demonstrated how we could extend our approach initially
designed for taDOM protocols to also support other lock-
ing approaches in our prototype XTC to cross-compare
foreign protocols and to prove the superiority of our pro-

tocols with empirical tests in an identical system config-
uration.

Finally, we presented an effective mechanism, which
allows us to easily control and optimize the runtime be-
havior of our lock protocols without making concessions
to the encapsulation and exchangeability properties. Our
future work will focus on improvements concerning the
efficient evaluation of declarative queries based on the
XQuery language model as well as the self-optimizing
capabilities of our XDBMS prototype.
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