
Co-evolution model for data sources and views ∗

c© Alexander Dolnik Sergei Syntylskiy

Saint-Petersburg State University
The Faculty of Mathematics and Mechanics
{alexander.dolnik, ssyntulsky}@gmail.com

Abstract

ETL process evolution is investigated below. A
model-driven approach to templates and ETL
process evolution problem is developed. We
suppose that the ETL process evolution prob-
lem is mainly a problem of a low abstraction
level. So the definition of ETL process based on
a conceptual model is a principal step towards
effective ETL evolution. Our approach seems
to be scalable, robust and simpler in use com-
pared to existing ETL evolution frameworks
and tools.

1 Introduction
From day to day new applications of data warehouses
are discovered. A data warehouse is integrated, time-
varying, subject-oriented, non-volatile collections of
data that is used primarily in organizational decision
making.

But sometimes world is changed by various causes.
Some of these causes are consequence of following fac-
tors: juristical, industrial and technological, financial,
analytical and many others.

So we need to support ability for data warehouse
model evolution.

Extract-transformation-load (ETL) process connects
data warehouse with external data sources. ETL pro-
cess and data warehouse are to change when data source
schema has changed. Sometimes this changes may
produce difficulties for developers and administrators.
There are a lot of frameworks (for example, [11], rails,
ARKTOS II, Scriptella), but framework solutions may
be hard to support and costly to implement. Usually
developer divides an ETL process in several stages. A
stage can be implemented using special tools and meth-
ods. Such decoupling makes the whole process more ro-
bust.

We concentrate on an user-friendly and clear design
of the ETL process for considered scope of a problem.

The rest of this paper is organized as follows. In Sec-
tion 2 problem definition and motivation example are
presented. The related works are observed in Section 3.
A co-evolution model for data sources and views of data

∗ This work was partially supported by RFBR (grant 07-07-
00268a).

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2008

warehouse is proposed in Section 4. Following in Sec-
tion 5 we present this model as applied to our example.
We conclude with directions for future work in Section
6.

2 Problem definition
Let us consider an analytical information system used in
a number of state regulating institutions. It is intended
for automation of document flow between a regulating
institution and subjects under regulation and analysis of
collected data.

A natural monopoly regulation is an important eco-
nomical function of the state. The regulation involves
an intensive document flow between a regulating insti-
tution and organizations under control. Today it is a
highly-automated process based on a set of formalized
templates. The templates are filled by actual data of orga-
nizations, for example, expenses or production volume.
Then the data from templates are loaded into the regulat-
ing institution data warehouse.

The basic source of data for the system are templates
filled by organizations under regulation. Templates are
forms for data input implemented as MS Excel tables.
The template is affirmed by the regulating institution and
then published. The template has following characteris-
tics:

• list of organization properties included into the tem-
plate, organizations under regulation must give val-
ues of this properties;

• periodicity of data collection using this template: if
the template must be filled repeatedly, organizations
are obliged to give new data on a regular basis, for
example, yearly or quarterly.

See an example of a template on Figure 1.
When the template is published, officers of the ad-

justable organizations are responsible for filling the tem-
plate. The filled templates are sent back to the regulating
institution. They are validated automatically and, if nec-
essary, manually, then or are accepted, else are sent back
for filling again. For each template a table in the reg-
ulating institution database is generated automatically.
Such tables contain a column for each property of the
corresponding template. Data of templates are loaded
into these tables: properties values, template metadata
containing name of organization, region and time period.
After templates data are loaded into a database they are
used by various applications for viewing and analyzing

Property Value
1. Lubricants
2. Salary
3. Repair
4. Depreciation
5. Nonproduction expenses:

5.1 Credit expenses
5.2 Training expenses

. . .
10. Necessary Gross Receipt
. . .
15. Product 1
16. Product 2
. . .

Figure 1: Template v1

of the data, building reports and analytical cubes. The
templates change rather frequently. This changes con-
cern both structure of collected parameters (usually col-
lected data expands) and names of the parameters already
included in a template. For example, the template shown
on Figure 1, can evolve to one shown on Figure 2 – in the
new version expenses on lubricants are detailed. The ex-
penses on the salary are separated into salary of employ-
ees who are participating and not participating in man-
ufacture. The production of kind 2 is divided into two
subspecies – 2 1 and 2 2.

Besides the structure of a template the period of data
collection can change. Changes of template are treated
as a combination of deactivation of old template and
adding new ones. So the old table in which data were
collected using previous version of template does not
change, and a table for new template is added. It is ob-
vious, that though the structure of template evolves, ap-
plications and views based on previous versions of tem-
plates should work in the same way with new versions
of templates where it is possible. Thus, the problem
is offering a method of automatic (or semi-automatic)
co-evolution of views and templates. Some views con-
structed on the basis of example templates are listed be-
low:

1. The view ”Organization expenses” contains de-
tailed information on structure of expenses of the
organizations in the accounting periods. For this
view inclusion of the greatest possible set of param-
eters is desirable. Thus the situation in which value
of some parameters for some periods is not known
must be considered. This view should contain all
parameters concerning the expenses even included
only in one version of the template.

2. The dynamic of production 2 is in the whole state.
This view should display value of annual production
2 of the first version of the template and the produc-
tion values sum of kinds 2 1 and 2 2 summed for
four quarters from second version.

3. The effectiveness of product 1 in various regions.
Calculation of a product effectiveness of volumes
and expenses is a complex procedure. There are
various ways to divide constant expenses, such

Property Value
1. Lubricants

1.1 Fuel
1.2 Diesel
1.3 Other

2. Salary of production
employees
3. Social expenses
4. Repair expenses
5. Depreciation
6. Nonproduction expenses:

6.1 Credit exps
6.2 Training exps
6.3 Salary of
nonproduction exps

. . .
10. Necessary Gross Receipt
. . .
15. Product 1
16. Product 2 1
17. Product 2 2
. . .

Figure 2: Template v2

as rental costs of administrative office, on various
kinds of production. In this article we treat this pro-
cedure as a black box. This view, probably, must
not change when template evolves.

The example of transition from one version of template
to another has been considered. Three views using tem-
plates’ property values should be differently processed:

• new columns should be added to representation
”Organization expenses”,

• calculation of production dynamics will become a
little more complicated for data of second version
template due to reduction of data collection period
and splitting of production 2 on subtypes,

• the view, containing the information on the effec-
tiveness, does not depend on the evolution of pat-
terns.

In a Figure 3 the schema of a system’s part under con-
sideration is given. In the figure connections between
properties, views and templates are shown as arrows.

Aforementioned example illustrates typical problems
that ETL process developer faces with. Today there is
no general solution for this problem. Practice shows that
there is not ”silver bullet”. Developers usually avoid us-
ing these frameworks because of their complexity. Often
evolution problems can be solved by using correct and
well considered conceptual design of schemas and ETL
processes.

The main aim of this paper is to develop evolution
model for aforementioned case and demonstrate how it
can help to construct flexible and stable ETL process.

3 Related work
Some methods are developed for ETL processes and data
warehouse design and modelling (for example [5]). In

Figure 3: Scheme of Conceptual Level. Motivation Ex-
ample

work [5] framework for data description and ETL pro-
cess design by using extend of traditional UML is sug-
gested. Moreover, OMG defines MOF-based standard
for modelling warehouses (CWM, [2]). Instead of OMG
modelling methods EER or ontology-based languages
can be used. Approach suggested in [8] divides concep-
tual and logical levels: the conceptual level (ontology
defined in OWL SemanticWeb) is used for describing ex-
tern data sources and data warehouses, the logical level is
used for describing ETL process. Logical level is defined
with declarative language LDL++ ([13]). This language
was chosen because of its expressiveness (for example,
supported external function call).

In work [10] semi-automatic framework is developed.
The main idea is to define a number of template blocks
and build a process of them.

The main problem of aforementioned frameworks is
absence of universal approach to connecting conceptual
level with logical. Another evolution method is sug-
gested in [6]. This method is based on ETL process graph
construction. Each graph node corresponds to trans-
formation model element and is annotated with What-
If policies, containing instructions for changing graph
structure.

However, this approach is difficult to implement, be-
cause of enormous amount of additional information re-
quired in nontrivial cases.

In article [1] the authors propose technical solution of
problem in question applied to analytical cubes. How-
ever it does not cover the whole ETL process evolution.

It is possible to describe evolution methods based on
axioms [7, 9]. Actually axiomatic approach can be used
to formalize a part of the problem under consideration,
but fails to solve it as a whole.

4 Common conceptual model
In this section we suggest model of views and templates
co-evolution. First of all we divide each ETL process
into three levels:

• templates conceptual schema represents a set of in-
put data sources schemas;

• data warehouse conceptual schema represents a data
warehouse schema that necessary for data mining or
for support decision making applications;

Figure 4: Scheme of Common Conceptual Model

• common area conceptual model represents an ETL
process model (mapping templates into data ware-
house).

This construction depicted on Figure 4.
Then we describe common area conceptual model

metadata in natural way using the EER model suggested
by Bernhard Thalheim in [3, 4, 12]. Schema of the whole
system is depicted on figure 3.

Now we have got common area conceptual model in
EER model terms. A lot of drag-and-drop tools exist
for easy (visual) mapping concepts in the common area
conceptual model to concepts in templates conceptual
schema. The second task is to describe mathematical
conditions and equations for the common area concep-
tual model. Mathematical conditions and equations in-
clude following elements:

• Aggregation functions. There are three types of ag-
gregation functions: distributive, algebraic, holistic.
Distributive and algebraic aggregation functions are
investigated in Thalheim’s work in [3, 4]. A struc-
tural recursion is used for their description. Holistic
functions are under investigation. But this class of
aggegation funsctions is not mentioned in article.

• Group operations. They will be described in section
4.1).

• Time constraints. They will be described in section
4.2.

• Transformations. Properties of transformation func-
tions can be found in work [4]. Details explanation
is not included into this article.

The third question is to map concepts in the common
area conceptual model to the data warehouse conceptual
schema. We developed high-level view declaration lan-
guage for this purpose (will be described in section 4.1).
This language must be stable to changes in templates
set. Also it must be flexible for describing transformation
with wide diapason of different templates. We suppose
engine for looking through templates set and generating
SQL code for templates based on our view declaration.

4.1 View declaration

Our model has the following basic and extended mod-
elling constructs:

1. Set of entities, actually in our case it is enough to
consider only one entity – Organization.

2. Set of simple properties, each property has name
and domain.

3. Groups, group is a complex property that contains
another groups or simple properties. All properties
contained in a group (immediately or transitively)
must have the same type.

4. Constraints. Constraints can be defined for each
group or property. A corresponding logical oper-
ator can be defined for each type. A set of logical
formulas using this operator can define the integrity
constraints which are valid for each instance of the
type.

5. Operations, defined for each type.

Typical (in relational databases) views are created by
execution some query like:

create view name (projection variables) as
select projection expression

from database sub-schema
where selection condition
group by expression for grouping

having selection among groups
order by order within the view;

But this is not convenient for our purposes. We need
to develop new view based on our model. Following ex-
tensions of EER model must be taken into account: data
temporality, hierarchical types, schema modularity, cal-
culated values. These extensions will be described below
in details. Generally we have auxiliary schema A. See
[12] for details of auxiliary schema construction method.
New view is defined on top of an EER schema by

• a schema V = {S1; . . . ; Sm}, where Si is a target
type,

• an auxiliary schema A mentioned above and

• a query q : D × A → V , where D is a given
database.

Generalized view schema suggested by Thalheim is
depicted below:

generate Mapping : Vars −→ output structure
from database types
where selection condition
represent using general presentation style

& Abstraction (Modularity, measure, precision)
& Orders within the presentation & Points of view
& Hierarchical representations & Separation
& Temporality

browsing definition condition & Navigation
functions Search functions & Export functions

& Input functions & Session functions
& Marking functions

We simplified this generalized view schema for our
needs. And special language for construction views has
been developed. It has the following Backus-Naur nota-
tion (BNF):

generate Mapping ::= properties properties,
[hierarchical type], [order by], [where]

hierarchical type ::= ((level[modifiers2])∗, scope)+
time ::= (period[modifiers2])∗timeset
properties ::=
(property[modifiers1][{properties}])∗
modifiers1 ::= ([show][sumignore, sumundefined])
modifiers2 ::= mandatory

Time can be represented as a hierarchical type. A
generate Mapping is parsed to SQL code by finding
appropriate templates, aggregation, sorting and filtering.
Detail parser description is omitted in this work.

At the section 5 our example will be described in de-
tail using aforementioned BNF.

The next section we will discuss temporal aspects of
our model.

4.2 Temporal properties for templates and views

Suggested procedure of views change or creation con-
tains the following steps:

1. The User selects parameters of the Organization
from the list of available parameters, including both
directly collected, and calculated;

2. Using given list of parameters and the list of pos-
sible periods of data collection (year, quarter or
month) program constructs pairs of time sets and
periods such as all necessary parameters are col-
lected with this period within given time set;

3. The User selects the period and the time interval,
being a subset of the set constructed for the period
on the previous step;

4. Program automatically creates or updates view, in-
cluding data on parameters chosen on step 1 with
the period and the restrictions set by the user on step
3.

In the following part of the current section we intro-
duce method allowing to construct pairs of periods and
temporal constraints using temporal annotations of tem-
plates. These annotations are automatically created as a
result of start and stop of data collection. This method
implements step 2 of the procedure. For each template
it is possible to define a set of pairs, containing period
of data and time when data were being collected with
this period. The period of data collection is a year, a
quarter or a month. The time when data were being col-
lected with given period can be represented as union of
several intervals. Thus borders of intervals should repre-
sent points, multiple to the period of data collection. For
example, if data are collected yearly, the interval should
begin and end on the first of January.

It must be noticed, that as the considered periods of
data collection form a hierarchy. It is possible to treat
time intervals as disjunctive. For example, some time
the template data are being collected simultaneously with
the periods equal to month and to quarter. If suddenly it
appears quarterly collections can be ignored. However
such situation is hardly probable in practice.

We use following notation: Hold(t, p) means time set
when data of template t is collected with period p. So,

because periods are hierarchically ordered, if interval p
is shorter than q then statement Hold(t, p) ⊂ Hold(t, q)
holds. V ars(x) means set of properties, used by x,
where x is a template or view. So the time set of view
v for period p can be calculated using the following for-
mula:

Hold(v, p) = ∧u∈V ars(v) ∨{t|u∈V ars(t)} Hold(t, p).

Thus, a method of calculating temporal characteristics
of view on the basis of information about templates data
collection is introduced.

4.3 Constraints and hierarchical types

As it was mentioned above hierarchical types and
schema modularity (groups) must be constructed. Firstly
formal model need to be determined on subject domain.
Then using this formal model we will be able to check
correctness of our construction.

Thereto, following hierarchical data types are intro-
duced.

It can be defined on base types, but with
the following extensions. Base type B =
(Dom(B), Op(B), P red(B), Υ) is extended with
predicate set Pred(B) and constraint set Υ. Predicates
Pred(B) define a number of equivalence relations eq on
domain Dom(B). Each of these equivalence relations
define a partition Πeq of the domain into equivalence
classes. For each equivalence class c of partition Πeq we
introduce a name nc. This partition with named classes
can be denoted by Π∗.

There are two trivial named partitions that only relate
elements to themselves is denoted by ⊥∗ and that con-
sists of {Dom(B)} is denoted >∗.

Equivalence relations and partitions may be ordered.
The canonical order of partitions on Dom(B) relates two
partitions Π∗, Π′∗. We define Π∗ � Π′∗ if and only
if for all (c, nc) from Π∗ there exists one and only one
element (c′, nc′) from Π′∗ such that c ⊆ c′.

If it is necessary, we can also consider non-classical
orderings such as the majority order �choice

m that relates
two named partitions. In our example canonical order is
enough.

For instance, we can define types hierarchy for time
and volume types.

According group definition we can declare type hier-
archy for whole group.

The next step is to add elementary evolution transfor-
mation into group operations:

• adding new property/group;

• deleting useless property/group;

• transferring property up/down over group hierarchy.

Before executing operation model constraints are to
be checked. Constraints may be manually added or auto-
matically obtained from other constraints.

For example, we may define constraints for intro-
duced groups operations. According to the work [3]
when aggregation functions are defined for group the
group operations became restricted in natural way.

Consequently using mentioned above tech-
niques(group definition, aggregation function dec-
laration, hierarchical types and temporal properties
definitions) it is possible to achieve view schema con-
struction and data evolutions with minimal efforts from
developers and database administrators.

Now we can describe extended view as it was pro-
posed in Section 4.1 with our auxiliary schema A.

5 Real example
We defined two types of summarize functions:
sumundefined, sumignore. The sumundefined function
will be ”undefined” if at least one parameter is equal
to ”null” or ”undefined”. The sumignore function will
summarize values, but ”null” and ”undefined” values
are ignored. In view declaration we explain how to use
groups by binding them with summarize functions. We
need to declare data hierarchy:

date = {partitionquarter, partitionyear},

partitionquarter ⊆ partitionyear

For example, there are four organizations: ORG1,
ORG2, ORG3, ORG4. Each organization uses its own
template. The first organization ORG1 collects data of
SocExp and RepExp expenses every quarter. The second
organization ORG2 collects data of SocExp and RepExp
expenses every year. The third organization ORG3 col-
lects data of RepExp expenses only but every quarter.
The fourth organization ORG4 does not collect any ex-
penses group data.

Senior analyst want to obtain detail summary of orga-
nizations expenses in 2001-2002 years.

Using our framework he has to write the query like:

generate Mapping ”View Organization expenses” :
Expenses group(show sumignore as SumE),
Org, date

(
(Quarter, Year mandatory), [2001 :

2002]
)

Order by Org, date

The following table will be produced:

Org Year Quarter SocExp RepExp SumE
ORG1 2001 1 23 3 26
ORG1 2001 2 24 3 27
ORG1 2001 3 NULL 7 7
ORG1 2001 4 23 10 33
ORG1 2001 ALL 70 23 93
ORG2 2001 ALL 80 13 93
ORG3 2001 1 UnDef 5 5
ORG3 2001 2 UnDef 7 7
ORG3 2001 3 UnDef 6 6
ORG3 2001 4 UnDef 6 6
ORG3 2001 ALL UnDef 24 24

Upon supposition that before 2002 year organization
ORG1 used to gather data every year. In 2002 year or-
ganization ORG1 started to collect data every quarter.
Also in 2003 year organization ORG1 splitted quantity
of Prod2 into two parameters: Prod2.1 and Prod2.2.

Group Product2 group evolved in common
area conceptual model. At first it had contained

only Prod2 parameter. Then Prod2 was split-
ted into Prod2.1 and Prod2.2. And equation
”sumignore(Prod2.1, P rod2.1) = Prod2” was
added into mathematical conditions of common area
conceptual model.

The following query helps to construct summary re-
port for ORG1 in 2001-2003 years:

generate Mapping ”View Quantity of product 2” :
Product2 group(show sumignore as Prod2),
Org, date

(
(Quarter, Year mandatory),

[2001 : 2003 years]
)

Order by date, Org

The following table will be produced:

Org Year Quarter Prod2 Prod2.1 Prod2.2
ORG1 2001 ALL 80 UnDef UnDef
ORG1 2002 1 10 UnDef UnDef
ORG1 2002 2 8 UnDef UnDef
ORG1 2002 3 15 UnDef UnDef
ORG1 2002 4 10 UnDef UnDef
ORG1 2002 ALL 43 UnDef UnDef
ORG1 2003 1 13 3 10
ORG1 2003 2 14 7 7
ORG1 2003 3 14 8 6
ORG1 2003 4 9 7 2
ORG1 2003 ALL 50 25 25
.

The following example requires to define hierarchy of
organization region and black box functions for calcula-
tion average effectiveness in a region. Value of the black
box function EffectCalcFunc for a region equals aver-
age value of product cost

expenses fractions for each organization
in the region.

View constructions has became more complex in cal-
culations but declaration remains clear and short.

generate Mapping ”Effectiveness of organizations in
regions” :

EffectCalcFunc
(
Product Cost, Expenses group

)
Org(region mandatory),
date

(
(Quarter, Year mandatory), [2001 : 2002]

)
Order by region, date

The following table will be produced:

region Year Quarter EffectCalcFunc
SPb 2001 1 34,23
SPb 2001 2 32,53
SPb 2001 3 35,67
SPb 2001 4 30,00
SPb 2001 ALL 33,34
SPb 2002 ALL 31,89
LenObl 2001 1 23,05
LenObl 2001 2 18,17
LenObl 2001 3 24,67
LenObl 2001 4 23,45
LenObl 2001 ALL 22,13
LenObl 2002 1 25,34
LenObl 2002 2 24,10
LenObl 2002 3 25,07
LenObl 2002 4 26,08
LenObl 2002 ALL 25,63

6 Conclusion
We developed a conceptual model for considered data
warehouse metadata and used this model to define ETL
process. Definition of ETL process based on conceptual
model is more abstract than sql-based one, proper ab-
straction level helped us to keep off many problems both
with schema evolution and consistency maintainency.
Suggested model is based on EER model developed by
Bernhard Thalheim. This method allows to escape ver-
sioning and damping evolution. A method developed in
this paper has been applied to data warehouse of natural
monopoly regulating institution.

References
[1] Jim Gray, Surajit Chaudhuri, Adam Bosworth, An-

drew Layman, Don Reichart, Murali Venkatrao,
Frank Pellow, and Hamid Pirahesh. Data cube: A
relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. Data Min. Knowl.
Discov., 1(1):29–53, 1997.

[2] OMG group. Common Warehouse Meta-
model(CWM) Specification, 2001), ee = .

[3] Hans-J. Lenz and Bernhard Thalheim. Olap
databases and aggregation functions. In SSDBM
’01: Proceedings of the Thirteenth International
Conference on Scientific and Statistical Database
Management, page 91, Washington, DC, USA,
2001. IEEE Computer Society.

[4] Hans-Joachim Lenz and Bernhard Thalheim. Olap
schemata for correct applications. In TEAA, pages
99–113, 2005.

[5] Sergio Lujan-Mora, Panos Vassiliadis, and Juan
Trujillo. Data mapping diagrams for data ware-
house design with uml.

[6] George Papastefanatos, Panos Vassiliadis, Alkis
Simitsis, and Yannis Vassiliou. What-if analysis for
data warehouse evolution. In DaWaK, pages 23–33,
2007.

[7] Randel J. Peters and M. Tamer Ozsu. An axiomatic
model of dynamic schema evolution in objectbase
systems. ACM Trans. Database Syst., 22(1):75–
114, 1997.

[8] Timos K. Sellis and Alkis Simitsis. Etl workflows:
From formal specification to optimization. In AD-
BIS, pages 1–11, 2007.

[9] A. Simanovsky. Evolution of schema of xml-
documents stored in a relational database. In
J Barzdins, editor, Proc. of the Baltic DBIS’2004,
volume 672, pages 192–204, Riga, Latvia, June
2004. Scientific Papers University of Latvia.

[10] Alkis Simitsis. Mapping conceptual to logical mod-
els for etl processes. In DOLAP ’05: Proceedings
of the 8th ACM international workshop on Data
warehousing and OLAP, pages 67–76, New York,
NY, USA, 2005. ACM.

[11] Darja Solodovnikova. Data warehouse evolution
framework. In Proc. of the SYRCoDIS’2007,
Moscow, Russia, June 2007.

[12] Bernhard Thalheim. Entity-Relationship Modeling,
Foundations of Database Technology. Splinger,
2000. XII, 627 pp. 160 figs., Hardcover.

[13] Carlo Zaniolo. LDL ++ Tutorial, 1998), ee =
http://www.cs.ucla.edu/ldl/tutorial/ldlcourse.html,.

