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Abstract. 
In this paper we introduce the objective 
function for vertical partitioning in database 
systems. It has been built with the new 
evaluative criterion: cache hit probability. 
Testing the validity of the derived evaluative 
formula via program simulation shows its high 
accuracy.  
Index terms: vertical partitioning, objective 
function, evaluation criterion, cache hit 
probability. 
 

1 Introduction 
Vertical partitioning of a table splits it into two or more 
tables (which we refer to sub-tables), each of which 
contains a disjoint subset of the attributes of the original 
table, except for the key attributes. Since a subset of 
attributes is more frequently accessed by transactions 
than the subset of the rest attributes, so vertical 
partitioning can reduce the amount of data that needs to 
be scanned to answer the transactions.  

As indicated in [1], many data partitioning 
algorithms have been developed basing on statistical 
and pattern classification and analysis. They cluster data 
using various criteria. The most common used criterion 
is the square-error. The lack of these algorithms is that 
they don’t estimate the “goodness” of partition schemes 
in the relation with an index of system performance. In 
[2], authors develop the complex method, in which they 
first create a set of “candidate” partition schemes, and 
then analyze each of them via optimization unit of 
database system to find the best scheme. The work is of 
great interested, but it is too complicated. On the other 
hand the performance of optimization unit strongly 
depends on the current tuning of database system.    

In this paper we will build the objective function 
for vertical partitioning with the evaluative criterion: the 
cache hit probability. As many algorithms in this area 

we use an attribute usage matrix (AUM) as the input 
data. We will consider that number of sub-relations 
equaling to two, and both of them being located in the 
same site.  

2 Cache system and database system 
specification 
 Let’s consider a table T in a database system. Tuples of 
T have M attributes, and cache memory for its caching 
is limited to L bytes.  

Assume that each transaction queries a subset of 
attributes of a tuple by its record number in the table. It 
means that a transaction is a sequence of three 
operations: select table, select a subset of attributes and 
select a tuple by record number in table. Then a 
transaction can be defined as a triplet ( )jj IDΔT, , , 

where, T – table name,  – the sub-set of query 

attributes,  – the query record number. Assume that 
these selects are independent between one and the 
others, and the select of record number obeys uniform 
law. Let us have Q different transactions and there 
attribute usage is described in table 1: 

jΔ

jID

Trans\Attrs A1 A2 … AM
Tr1 u11 u12 … u1M
Tr2 u21 u22 … u2M
… … … … … 
TrQ uQ1 uQ2 … uQM

Table 1: attribute usage matrix. 

where uij equals either pi or 0, and pi is the execution 
probability of transaction Tri. Thus the following 
expressions are the case: 

121 =+++ Qppp K , 

Qipi ≤≤≤≤ 110 , . 
Cache is divided into parts, each of which contains 

tuples of one table. Write to cache and read from it are 
executed per tuple. A tuple is loaded into cache if at 
least one of its attribute is claimed. At first time cache 
is empty. In operation it is filled with tuples. For the 
current transaction if copy of the query tuple is in 
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cache, then it is fetched from cache to answer the query. 
Otherwise it is fetched from disk and its copy is 
inserted into cache. In the first case we say that it was a 
cache hit, in the last case – a cache miss. After cache 
having been filled, a new tuple will substitute one 
among the present tuples. We will consider that the 
cache replacement strategy being randomized. Since the 
period, while cache hasn’t been filled yet, is a 
transitional period, we can derive the objective 
function, having skipped this period.  

The assumptions, are described in this section, has 
been made as a result of deductive analysis the literature 
[1], [2], [3], [4]. Note that these assumptions, except for 
the attribute usage matrix, are only for the purpose of 
mathematical deriving and validity testing of the 
estimated formula, but not for implemented areas of the 
derived objective function. 

3 Method implementing vertical 
partitioning 
In this and in the following sections we will consider the 
vertical partitioning of table T into two sub-tables T1, T2. 
Attribute sets of tables T, T1, T2 are S, S1, S2 
correspondingly. These following expressions are the 
case: 

SSS =∪ 21 , 

TSKSS =∩ 21 , 

TSKS >1 , 

TSKS ≥2 , 
where, SKT – the sub-set, containing all key attribute of 
table T.  

Then the table T is replaced with two sub-tables T1, 
T2. Using method simulating the vertical partitioning 
[2], we create regular tables, one for each sub-table. The 
queries referencing the original table T, is rewritten to 
execute against the sub-tables T1, T2. If assume that any 
query contains at least one of non-key attributes, then a 
query ( )jj IDΔT, ,  is replaced only in one of three 
variants: 

• 1-st variant: by one query, referencing sub-
table T1, ( )jj IDΔ,T ,1 , if all the query 

attributes are in S1, i.e. ( )1SΔ j ⊂ ; 

• 2-nd variant: by one query, referencing sub-
table T2, ( )jj IDΔ,T ,2 , if all the query 

attributes are in S2, i.e. ( )2SΔ j ⊂ ; 

• 3-rd variant: by two queries 
( )jj IDSΔ,T ,11 ∩ and 

( )( )jTj IDSKSΔ,T ,\22 ∩  simultaneously in 
the rest cases, i.e.  

( )( ) ( )( )Tjj SKSΔSΔ ⊄∩∧∅≠∩ 21 . 
The cache allocated for caching the table T is now 

divided into two parts for caching its sub-tables. Sizes 
of these parts are the parameters for partitioning 
algorithm. 

4 Deriving of the objective function 
In this section we will derive the objective function, 
which estimate the cache hit probability for caching the 
original table and its sub-tables. The cache system and 
database system have been specified in section 2. The 
method implementing the vertical partitioning was 
described in section 3.  

4.1 Preliminaries 

The following are used in derivation of the objective 
function. 

N – the tuple count of table T as well as T1 and T2. 
M – the attribute count of tuples of table T. 
li – length of attribute i of table T for i = 1, 2, …, M. 
lT, lT1, lT2 – tuple length of table T, T1, T2. 
L, L1, L2 – size of part of cache memory, allocated 

for caching table T, T1, T2.  L1, L2 – the parameters, 
which satisfy the restriction (L1 + L2 ≤ L). 

K, K1, K2 – number of tuples of table T, T1, T2, 
which can exist in the corresponding part of cache 
memory at the same time. 

Operation [ ]  – operation achieving the integer part 
of a fraction. 

4.2 Cache hit probability for caching the original 
table 

In this case any transaction queries a tuple of table T, 
which may be one among K tuples, copy of which has 
already existed in cache, or may be one among the rest 
(N – K) tuples, which have not any copies in cache. If 
the first occurrence is the case, finding of query tuple in 
cache will successfully finish, i.e. it will be a cache hit. 
Since the select of tuples obeys the uniform law, the 
cache hit probability is estimated by expression: 

N
KPT =   (1) 

where,
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4.3 Cache hit probability for caching the sub-tables 

Let’s mark the occurrence, when the original query is 
replaced in the first, the second, the third variant, the 
event C1, C2, C3; the occurrence, when the finding of 
query tuple in cache finishes successfully, the event B. 
According to formula of complete probability, cache hit 
probability is estimated by expression: 

( ) (( )∑
=

⋅=
3

121 i
iiTT CpCBpP / )  

For i = 1: 
( ) ∑

⊂Δ∀
=

1
1

Sjj
jpCp

:
; 

since the query ( )jj IDΔT, ,  is replaced by the 

query ( )jj IDΔ,T ,1 , then the cache accessing 
for the original query is successful, if and only 



if the cache accessing for the substituting query  
is successful. Similarly to (1): 
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For i = 2: in the same way we can achieve  
( ) ∑
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For i = 3: 

( ) ( ) ( 213 1 CpCpCp − )−= ; 

since the query ( )jj IDΔT, ,  is replaced by 

query ( )jj IDSΔ,T ,11 ∩  and query 

( )( )jTj IDSKSΔ,T ,\22 ∩ , then cache 
accessing for the original query is successful, if 
and only if the cache accessing for both of the 
substituting queries are successful. 

( ) ( ) ( )
N

K
N
K

BpBpCBp TT
21

213 ⋅=⋅=/  

( )
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Thus the evaluative formula is 

( ) ( ) ( 32
212

1
1

21
2 Cp

N
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Cp
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N
K

P TT ⋅
⋅

+⋅+⋅= ) (2) 

Let’s mark 

( ) ( ) ( )
2
321           

N
Cpc

N
Cpb

N
Cpa === ;;  

Formula (2) is rewritten as 

212121
KKcKbKaP TT ⋅⋅+⋅+⋅=   (3) 

Notice: if S2 = SKR, then p(C2) = p(C3) = 0. In this 
case the partition is not the case. So the cache memory 
allocated for table T is completely assigned to table T1. 
As a result of (2) we achieve formula (1). So the case, 
when the original table is not partitioned, is only a 
special case of its partitioning.   

4.4 The objective function 

For a table T, a usage matrix of its attributes, lengths of 
its attributes and limited to L (bytes) cache memory, 

allocated for its caching, the best scheme of partitions is 
defined as the result of the programming problem (*): 

( ) 2121211 KKcKbKaKKS ⋅⋅+⋅+⋅=,,P   max  (4) →

With these restrictions: 
SSSSKT ⊆⊂ 11 , ,        (5) 

LlKlK TT ≤⋅+⋅ 2211 ,         (6) 
00 21 ≥≥ KK , ,        (7) 

21 KK , are the integers     (8) 
Since the estimated formula is easy for 

computation, the programming problem (*) can be 
solved via full search algorithm for input data with 
small dimensionality. For large dimensionality it’s 
necessary that the more effective algorithm have been 
developed.  

5 Simulation program and validity testing   
Validity testing of the derived estimated formula has 
been carried out via program simulation. The program 
has been written in Delphi. It uses the exhausted search 
algorithm to solve the programming problem (*). It 
allows simulating the performance of cache system and 
database system, which have been defined in section 2. 
It also allows registering the cache hit rate. Using the 
program, we have carried out a number of experiments 
with randomized data input. For all that we randomized 
the value of M and Q in interval [5..10]. The relative 
error in all these experiments is less than 2.5%. This 
confirms the high accuracy of derived formula. 

For example let’s consider the table T with 6 
attributes, where A1 is key attribute. Lengths of 
attributes are 30, 37, 51, 21, 46, 11 (bytes). The attribute 
usage matrix is defined in table 2. 

Trans 
\Attrs 

A1 A2 A3 A4 A5 A6

Tr1 .194 0 .194 .194 0 .194 
Tr2 .089 .089 0 0 0 .089 
Tr3 .281 .281 0 0 .281 0 
Tr4 .157 .157 0 0 .157 .157 
Tr5 .279 0 0 0 .279 .279 

Table 2: example of attribute usage matrix. 

The cache size is 2000 (bytes), and the tuple count is 
200 (tuples). 

For this example the best scheme of partitions is  
},,{},,,,{ 431265211     AAASAAAAS == , 

and cache lengths for T1, T2 are  
0     16 21 == KK , . 

With this scheme the cache hit probability is 
0.0649, and it has increased to 1.27 (times) according to 
non-partitioning case. 

Simulation has been carried out with 10000 run-
throughs, in each of which has been executed 5000 
queries. Result gives the average value of cache hit rate 
equaling to 0.065. 



6 Conclusions   
In this paper we have derived the objective function for 
vertical partitioning with a new estimated criterion: 
cache hit probability. We also have carried out validity 
testing of the achieved formula via program simulation. 
The simplicity of the achieved formula and its high 
accuracy confirm the availability of its using in database 
design and database reconstruction to achieve the 
significant enhancement of system performance. 

We are currently developing a heuristic algorithm 
for solving the programming problem (*). We will 
discuss it in future work. 
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