
New Objective Function for Vertical Partitioning
in Database System.

© Thanh Hung Ngo

Don State Technical University
nthungla@yahoo.com

PhD supervisor: Michael V. Grankov

Abstract.
In this paper we introduce the objective
function for vertical partitioning in database
systems. It has been built with the new
evaluative criterion: cache hit probability.
Testing the validity of the derived evaluative
formula via program simulation shows its high
accuracy.
Index terms: vertical partitioning, objective
function, evaluation criterion, cache hit
probability.

1 Introduction
Vertical partitioning of a table splits it into two or more
tables (which we refer to sub-tables), each of which
contains a disjoint subset of the attributes of the original
table, except for the key attributes. Since a subset of
attributes is more frequently accessed by transactions
than the subset of the rest attributes, so vertical
partitioning can reduce the amount of data that needs to
be scanned to answer the transactions.

As indicated in [1], many data partitioning
algorithms have been developed basing on statistical
and pattern classification and analysis. They cluster data
using various criteria. The most common used criterion
is the square-error. The lack of these algorithms is that
they don’t estimate the “goodness” of partition schemes
in the relation with an index of system performance. In
[2], authors develop the complex method, in which they
first create a set of “candidate” partition schemes, and
then analyze each of them via optimization unit of
database system to find the best scheme. The work is of
great interested, but it is too complicated. On the other
hand the performance of optimization unit strongly
depends on the current tuning of database system.

In this paper we will build the objective function
for vertical partitioning with the evaluative criterion: the
cache hit probability. As many algorithms in this area

we use an attribute usage matrix (AUM) as the input
data. We will consider that number of sub-relations
equaling to two, and both of them being located in the
same site.

2 Cache system and database system
specification
 Let’s consider a table T in a database system. Tuples of
T have M attributes, and cache memory for its caching
is limited to L bytes.

Assume that each transaction queries a subset of
attributes of a tuple by its record number in the table. It
means that a transaction is a sequence of three
operations: select table, select a subset of attributes and
select a tuple by record number in table. Then a
transaction can be defined as a triplet ()jj IDΔT, , ,

where, T – table name, – the sub-set of query

attributes, – the query record number. Assume that
these selects are independent between one and the
others, and the select of record number obeys uniform
law. Let us have Q different transactions and there
attribute usage is described in table 1:

jΔ

jID

Trans\Attrs A1 A2 … AM
Tr1 u11 u12 … u1M
Tr2 u21 u22 … u2M
… … … … …
TrQ uQ1 uQ2 … uQM

Table 1: attribute usage matrix.

where uij equals either pi or 0, and pi is the execution
probability of transaction Tri. Thus the following
expressions are the case:

121 =+++ Qppp K ,

Qipi ≤≤≤≤ 110 , .
Cache is divided into parts, each of which contains

tuples of one table. Write to cache and read from it are
executed per tuple. A tuple is loaded into cache if at
least one of its attribute is claimed. At first time cache
is empty. In operation it is filled with tuples. For the
current transaction if copy of the query tuple is in

Proceedings of the Spring Young Researcher's
Colloquium On Database and Information Systems
SYRCoDIS, St.-Petersburg, Russia, 2008

mailto:nthungla@yahoo.com

cache, then it is fetched from cache to answer the query.
Otherwise it is fetched from disk and its copy is
inserted into cache. In the first case we say that it was a
cache hit, in the last case – a cache miss. After cache
having been filled, a new tuple will substitute one
among the present tuples. We will consider that the
cache replacement strategy being randomized. Since the
period, while cache hasn’t been filled yet, is a
transitional period, we can derive the objective
function, having skipped this period.

The assumptions, are described in this section, has
been made as a result of deductive analysis the literature
[1], [2], [3], [4]. Note that these assumptions, except for
the attribute usage matrix, are only for the purpose of
mathematical deriving and validity testing of the
estimated formula, but not for implemented areas of the
derived objective function.

3 Method implementing vertical
partitioning
In this and in the following sections we will consider the
vertical partitioning of table T into two sub-tables T1, T2.
Attribute sets of tables T, T1, T2 are S, S1, S2
correspondingly. These following expressions are the
case:

SSS =∪ 21 ,

TSKSS =∩ 21 ,

TSKS >1 ,

TSKS ≥2 ,
where, SKT – the sub-set, containing all key attribute of
table T.

Then the table T is replaced with two sub-tables T1,
T2. Using method simulating the vertical partitioning
[2], we create regular tables, one for each sub-table. The
queries referencing the original table T, is rewritten to
execute against the sub-tables T1, T2. If assume that any
query contains at least one of non-key attributes, then a
query ()jj IDΔT, , is replaced only in one of three
variants:

• 1-st variant: by one query, referencing sub-
table T1, ()jj IDΔ,T ,1 , if all the query

attributes are in S1, i.e. ()1SΔ j ⊂ ;

• 2-nd variant: by one query, referencing sub-
table T2, ()jj IDΔ,T ,2 , if all the query

attributes are in S2, i.e. ()2SΔ j ⊂ ;

• 3-rd variant: by two queries
()jj IDSΔ,T ,11 ∩ and

()()jTj IDSKSΔ,T ,\22 ∩ simultaneously in
the rest cases, i.e.

()() ()()Tjj SKSΔSΔ ⊄∩∧∅≠∩ 21 .
The cache allocated for caching the table T is now

divided into two parts for caching its sub-tables. Sizes
of these parts are the parameters for partitioning
algorithm.

4 Deriving of the objective function
In this section we will derive the objective function,
which estimate the cache hit probability for caching the
original table and its sub-tables. The cache system and
database system have been specified in section 2. The
method implementing the vertical partitioning was
described in section 3.

4.1 Preliminaries

The following are used in derivation of the objective
function.

N – the tuple count of table T as well as T1 and T2.
M – the attribute count of tuples of table T.
li – length of attribute i of table T for i = 1, 2, …, M.
lT, lT1, lT2 – tuple length of table T, T1, T2.
L, L1, L2 – size of part of cache memory, allocated

for caching table T, T1, T2. L1, L2 – the parameters,
which satisfy the restriction (L1 + L2 ≤ L).

K, K1, K2 – number of tuples of table T, T1, T2,
which can exist in the corresponding part of cache
memory at the same time.

Operation [] – operation achieving the integer part
of a fraction.

4.2 Cache hit probability for caching the original
table

In this case any transaction queries a tuple of table T,
which may be one among K tuples, copy of which has
already existed in cache, or may be one among the rest
(N – K) tuples, which have not any copies in cache. If
the first occurrence is the case, finding of query tuple in
cache will successfully finish, i.e. it will be a cache hit.
Since the select of tuples obeys the uniform law, the
cache hit probability is estimated by expression:

N
KPT = (1)

where,
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=

∑
∈∀ SrAr

rT l
LN

l
LNK

:

,min,min .

4.3 Cache hit probability for caching the sub-tables

Let’s mark the occurrence, when the original query is
replaced in the first, the second, the third variant, the
event C1, C2, C3; the occurrence, when the finding of
query tuple in cache finishes successfully, the event B.
According to formula of complete probability, cache hit
probability is estimated by expression:

() (()∑
=

⋅=
3

121 i
iiTT CpCBpP /)

For i = 1:
() ∑

⊂Δ∀
=

1
1

Sjj
jpCp

:
;

since the query ()jj IDΔT, , is replaced by the

query ()jj IDΔ,T ,1 , then the cache accessing
for the original query is successful, if and only

if the cache accessing for the substituting query
is successful. Similarly to (1):

()
N
K

CBp 1
1 =/

with

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=

∑
∈∀ 1

1

1

1
1

SrAr
rT l

L
N

l
L

NK

:

,min,min .

For i = 2: in the same way we can achieve
() ∑

⊂Δ∀
=

2
2

Sjj
jpCp

:
;

()
N

K
CBp 2

2 =/

with

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=

∑
∈∀ 2

2

2

2
2

SrAr
rT l

L
N

l
L

NK

:

,min,min .

For i = 3:

() () (213 1 CpCpCp −)−= ;

since the query ()jj IDΔT, , is replaced by

query ()jj IDSΔ,T ,11 ∩ and query

()()jTj IDSKSΔ,T ,\22 ∩ , then cache
accessing for the original query is successful, if
and only if the cache accessing for both of the
substituting queries are successful.

() () ()
N

K
N
K

BpBpCBp TT
21

213 ⋅=⋅=/

()
2

21
3

N
KK

CBp
⋅

=/ .

Thus the evaluative formula is

() () (32
212

1
1

21
2 Cp

N
KK

Cp
N

K
Cp

N
K

P TT ⋅
⋅

+⋅+⋅=) (2)

Let’s mark

() () ()
2
321

N
Cpc

N
Cpb

N
Cpa === ;;

Formula (2) is rewritten as

212121
KKcKbKaP TT ⋅⋅+⋅+⋅= (3)

Notice: if S2 = SKR, then p(C2) = p(C3) = 0. In this
case the partition is not the case. So the cache memory
allocated for table T is completely assigned to table T1.
As a result of (2) we achieve formula (1). So the case,
when the original table is not partitioned, is only a
special case of its partitioning.

4.4 The objective function

For a table T, a usage matrix of its attributes, lengths of
its attributes and limited to L (bytes) cache memory,

allocated for its caching, the best scheme of partitions is
defined as the result of the programming problem (*):

() 2121211 KKcKbKaKKS ⋅⋅+⋅+⋅=,,P max (4) →

With these restrictions:
SSSSKT ⊆⊂ 11 , , (5)

LlKlK TT ≤⋅+⋅ 2211 , (6)
00 21 ≥≥ KK , , (7)

21 KK , are the integers (8)
Since the estimated formula is easy for

computation, the programming problem (*) can be
solved via full search algorithm for input data with
small dimensionality. For large dimensionality it’s
necessary that the more effective algorithm have been
developed.

5 Simulation program and validity testing
Validity testing of the derived estimated formula has
been carried out via program simulation. The program
has been written in Delphi. It uses the exhausted search
algorithm to solve the programming problem (*). It
allows simulating the performance of cache system and
database system, which have been defined in section 2.
It also allows registering the cache hit rate. Using the
program, we have carried out a number of experiments
with randomized data input. For all that we randomized
the value of M and Q in interval [5..10]. The relative
error in all these experiments is less than 2.5%. This
confirms the high accuracy of derived formula.

For example let’s consider the table T with 6
attributes, where A1 is key attribute. Lengths of
attributes are 30, 37, 51, 21, 46, 11 (bytes). The attribute
usage matrix is defined in table 2.

Trans
\Attrs

A1 A2 A3 A4 A5 A6

Tr1 .194 0 .194 .194 0 .194
Tr2 .089 .089 0 0 0 .089
Tr3 .281 .281 0 0 .281 0
Tr4 .157 .157 0 0 .157 .157
Tr5 .279 0 0 0 .279 .279

Table 2: example of attribute usage matrix.

The cache size is 2000 (bytes), and the tuple count is
200 (tuples).

For this example the best scheme of partitions is
},,{},,,,{ 431265211 AAASAAAAS == ,

and cache lengths for T1, T2 are
0 16 21 == KK , .

With this scheme the cache hit probability is
0.0649, and it has increased to 1.27 (times) according to
non-partitioning case.

Simulation has been carried out with 10000 run-
throughs, in each of which has been executed 5000
queries. Result gives the average value of cache hit rate
equaling to 0.065.

6 Conclusions
In this paper we have derived the objective function for
vertical partitioning with a new estimated criterion:
cache hit probability. We also have carried out validity
testing of the achieved formula via program simulation.
The simplicity of the achieved formula and its high
accuracy confirm the availability of its using in database
design and database reconstruction to achieve the
significant enhancement of system performance.

We are currently developing a heuristic algorithm
for solving the programming problem (*). We will
discuss it in future work.

References
[1] Sharma Chakravarthy, Jaykumar Muthuraj, Ravi

Varadarajan, Shamkant B. Navathe. An Objective
Function for Vertically Partitioning Relations in
Distributed Databases and its Analysis. In
Distributed and Parallel Databases 2(2): 183-
207(1994).

[2] Sanjay Agrawal, Vivek Narasayya, Beverly Yang.
Integrating Vertical and Horizontal Partitioning into
Automated Physical Database Design. In SIGMOD
2004, June, 2004.

[3] C. J. Date. An Introduction To Database Systems –
Seventh edition. Addision-Wesley Longman, Inc,
2000.

[4] William Page, David Austin, Willard Baird II,
Nicholas Chase and others. Special Edition: Using
Oracle8/8I. QUE Corporation, 1999.

