
Application-Tailored XML Storage

Maxim Grinev, Ivan Shcheklein

Institute for System Programming of the

Russian Academy of Sciences

maxim@grinev.net, shcheklein@ispras.ru

Abstract

Several native approaches to storing large

XML data sets exist. In all of these approaches

the internal data representation is designed to

support any ad-hoc XQuery query. In this

paper we argue that XQuery and its data model

are too universal and any one-size-fits-all

XML representation leads to significant

overheads in terms of representation size and

complexity.

Based on the consideration that in many

applications queries/updates workload is

known in advance and does not change often,

we propose an application-tailored XML

storage. Elimination of the superfluous

XQuery data model features and utilization of

the various physical data representations

improve performance on the specified

workload, while ad-hoc queries support can be

limited.

1 Introduction

XML/XQuery [1] provides great flexibility and

extensibility. It is a universal model to represent data

ranging from relational-like to content-oriented

(including mixed content). XML applications are quite

extensible as XML/XQuery can handle irregularity in

data. However, this flexibility/extensibility leads to

inefficiency. There are a number of general approaches

[2, 3, 4, 5] that tackle the issue. However each approach

has its own obvious advantages and disadvantages that

make it applicable only for particular type of

applications (see comparison with the approach in

related work below).

Moreover, in any of the approaches there are a lot of

features that are redundant for any particular

applications. For example, suppose we have relational-

like data stored in XML. When we query such data we

don't usually use features like sibling/parent axes or

document order which are supported in all general

approaches. Another example is a set of queries to

content-oriented XML (such as an encyclopedia article

[7] or Microsoft Word XML format [6]). Such queries

do not usually address rendering elements (such as para,

bold, emphasize, etc which constitute the majority in

content-oriented XML) but address meaningful

semantic elements such as: author, date, bibliography,

etc., so rendering elements can be stored in a

compressed unqueryable form to improve the efficiency

of updates and serialization.

We believe that efficient storage and processing of

XML data cannot be achieved using any general

approach. The only approach to achieve great efficiency

for such a universal and flexible model as

XML/XQuery is to choose appropriate data structures

and processing techniques for a given application (i.e.

given XML schema and set of queries and updates). We

need to go beyond compiling query execution plans and

compile an XML storage tailored for a given workload

of queries/updates. This approach allows us to support

flexible XQuery model at logical level but eliminate the

XQuery data model overhead at physical level. For

example, querying/updating relational-like data (even

more: nested-table data) can have efficiency

comparable with that provided by relational databases.

Content-oriented data can be processed with efficiency

that is comparable with pure text-oriented systems.

In this paper we summarize the preliminary results

of in-progress research on building application-tailored

XML storage.

1.2 Paper Outline

The rest of the paper is organized as follows. Within the

next section we consider an example of the application

which motivates this work. In Section 3 we give brief

overview of the approach proposed. In Section 4 we

propose physical data representation and illustrate it on

example. Within the Section 5 we survey related work

and consider existing approaches. And finally, Section 6

concludes and points out directions of our future work.

2 Motivating Example

To illustrate advantages and various aspects of the

application-tailored XML storage we use simplified

version of the Great Russian Encyclopedia (GRE)

application [7]. Figures 1-2 show fragment of the

encyclopedia XML and its descriptive schema (by

definition, every path of the document has exactly one

Proceedings of the Spring Young Researcher's

Colloquium on Database and Information Systems

SYRCoDIS, St.-Petersburg, Russia, 2008

<volume>

 <article id="2">

 <title>Cyclotron resonance</title>

 <authors>

 <author>Century S.Edelman.</author>

 <author>I. Kaganov</author>

 </authors>

 <body>

 <p>

 Cyclotron resonance Selective absorption of electromagnetic...

 <link idref="1">Effective weight</link>

 <p> ... <i> ... </i> </p>

 <link idref="6">Lorentz force</link>...

 </p>

 </body>

 </article>

 ...

 <article id="3">

 <title>Dorfman Jacob Grigorevich</title>

 <authors>

 <author>I. Ivanov</author>

 </authors>

 <body>

 <p>

 Dorfman Jacob Grigorevich the Soviet physicist, the doctor...

 <link idref="2">Cyclotron resonance</link>

 ... <i> ... </i>...

 </p>

 </body>

 </article>

 ...

 <article id="1">

 <title>Effective weight</title>

 <authors>

 <author>I. Kaganov</author>

 </authors>

 <body> ... </body>

 </article>

</volume>

Figure 1: Great Russian Encyclopedia Fragment.

Figure 2: Great Russian Encyclopedia Descriptive Schema

path in the descriptive schema, and every path of the

descriptive schema is a path of the document). In the

example there is one volume that contains at least three

articles. Each article in turn consists of the title, list of

authors and body element contained content of the

article.

For data processing encyclopedia application uses a

number of predefined XQuery queries which are not

likely to change often in the production system. Let us

consider some of them (Q1-Q5):

(Q1): List all articles’ titles.

declare ordering unordered;

volume/article/title

(Q2): Get article by id.

declare ordering unordered;

volume/article[@id eq “...”]

(Q3): Get article by title.

declare ordering unordered;

volume/article[title eq “...”]

(Q4): List articles referenced from the article “1”.

declare ordering unordered;

for $i in volume/article

 [@id eq “1”]//link

return volume/article

[@id eq $i/@idref]/title

(Q5): List articles which have references to the article

‘atom’.

declare ordering unordered;

let $j := volume/article

 [title eq “atom”]/@id

for $i in volume/article

where $i//link[@idref eq $j]

return $i/title

Considering this simplified example we can point

out some interesting observations concerned workload

and XML data which we believe are more or less

common to every XML processing application:

1. Rendering Markup Content - content part of

the XML data usually contains a lot of rendering

elements (e.g. HTML in Figures 1-2) which only aim

are to be used in front-end applications (like browsers

or Word processors) to display proper image on the

screen and they are not used directly in queries. Often

rendering markup language uses XML syntax and

produces additional stress on XML database since it

can’t distinguish rendering elements and elements

which reflect application-level entities (articles,

persons, etc) and extensively used in application

defined queries.

2. Relational Like Content - besides rendering

elements we can single out attributes and elements with

simple content (e.g. id, idref attributes and title

element in the example) which are intended to be used

in queries just as properties of the application-level

entities. For example, id of the article is not interested

for us itself; however we are interested in article with

some id.

3. Document Ordering Avoidance - quite often

document order of the result doesn’t make sense for the

application. Therefore in a lot of cases parent-child

relationships are the only relationship we actually need

between certain entities. In queries Q1 - Q5 we use

standard XQuery prolog declaration to turn off results

ordering.

4. Known Workload - we can derive a number of

quite simple path expressions which play a role of basis

for all queries in application. In our example we have

volume/article, volume/article/link,

volume/article/title and some modifications

with predicates.

5. Fixed Workload - finally, just as in the GRE

application we suppose that basic queries which are

used in production systems are very rare subjected to be

changed. We do not have ad-hoc queries but a number

of well defined, possibly parameterized expressions.

As the paper progresses we will illustrate how these

observations can be used to adjust XML storage for the

specified queries.

3 Approach Overview

The approach we employ can be split into two distinct

phases: storage compilation for the initial workload and

recompilation phase in which storage is reorganized to

restore good performance after the workload changed.

Below is a brief description of each phase from the

logical point of view. A sketch of the physical data

representation is observed in next section.

3.1 Compiling Application-Tailored XML Storage

Given a specific query workload (that can include

update queries) we compile optimized query plans for

the workload and also produce a proper storage plan. In

this plan features of XQuery data model that are not

required to execute the workload are eliminated.

To build such a storage plan the following main

techniques can be used:

1. Combining structural and textual data

representations (and using appropriate techniques to

process each type of representation). As we mentioned

above, majority of elements (such as rendering and

grouping elements) in content-oriented XML are not

addressed by queries/updates at all or addressed in such

a way that they can be parsed and processed efficiently

on-the-fly (using XML streaming processing

techniques). We have designed a method in which

queries are analyzed to find nodes of XML data that

should be stored in a structural way (preserving parent,

child and/or other relationships between nodes like in

[9] for example) to make evaluation of the specified

queries and updates as much efficient as possible. The

rest of XML data (e.g. rendering elements) are stored as

compressed text in the same way as text content of the

nodes. This method is quite flexible and is not restricted

by storing the whole XML sub-trees as text: structured

elements may have textual children which in turn may

have structured elements inside (see Section 4 for the

method illustration). Compressing nodes in text

representation does not eliminate at all an ability to

query them. They still can be effectively processed

using XML streaming techniques like in [18].

2. Using various schemes of clustering nodes in

blocks. Sedna structured representation [9] can be

combined with the Natix/DB2 [2, 3] approach on the

basis of queries/updates analysis providing significant

performance improvements in comparison with both

approaches.

3. Eliminating redundant structures (such as

redundant pointers, numbering labels, etc.) and

flattening structure when possible (i.e. removing

grouping elements etc.). Analyzing queries/updates we

can identify which structures are redundant to support

the queries/updates. Redundant pointers and grouping

element can be eliminated and data can be represented

using more compact data structures. For example,

“relational-like” XML data can be stored in records

similar to that used in relational storages. Such records

are still not as rigorous as relational records to support

possible irregularity in data but it is much more efficient

then to use any of the general approaches. We can also

flatten the structure of XML in many cases. For

example, if the person element contains the address

element which in turn contains street, house, city as

sub-elements - such the address structure can be flatten.

Note also that the techniques eliminate only

necessary XML-specific features of XML/XQuery data

model. They don’t lead to losing the data or don't lead

to emerging of redundant data. However our approach

can be naturally extended with such powerful

techniques as data projection on the basis of static query

analysis (e.g. identifying constant-based predicate) or

materialized views (might lead to data redundancy).

And last but not least, in the result of building

storage structures for a given application we will get

simpler data structures than that used in general

approaches: elements are less interconnected. It allows

improving not only query/update performance but also

opens the door for improving locking granularity and

building a distributed system. For example, we can

implement data parallelism on shared-nothing

architecture. The main critique of the shared-nothing

approach [8] is that it works well only for particular

queries/update workload. But in our approach we

optimize for particular application so shared-nothing

fits our approach well.

3.2 Recompiling Application-Tailored XML Storage

When the application is modified we might need to

recompile the queries and storage. We can employ a

flexible policy of recompiling the database. First, the

frequency at which we need to recompile the database

depends on the level of optimization that we choose to

customize the storage for the given application (it might

a parameter of optimization as in programming

language compilers: O1-O5). Second, it might be

required not as often as it might seem. Indeed it is very

unlikely that new queries which address a relational-like

XML will start using sibling pointers that were removed

at the phase of storage compilation.

But in general case we might really need to

recompile the whole database into the new structures.

The solution is as follows. The whole database can

be reconstructed using massive-parallel distributed

processing. It is true for small and middle sized

databases that it can be done quite fast even on

commodity hardware. If the reconstructed database is

distributed (see on the possibility to build a distributed

system above) it can be done really fast. In case of

simple scheme of partitioning the database (when it is

not optimized for things like collocated joins [10]) the

reconstruction can be done in parallel just transforming

each document independently. In more complex case

(e.g. data are partitioned to use collocated joins) we can

employ techniques like map-reduce [11] to repartition

the data using the keys for different joins.

There are two main options in reconstructing the

database. Simple solution is to stop the database and

reconstruct it. As it presumably does not take a long

time for small or middle sized database the down time

Figure 3: Three Ways of Storing XML Nodes.

should not be long. Advanced solution is to use

snapshot isolation (shadow/versioning) transaction

mechanism [12] to reconstruct the database without

stopping it.

4 Data Representation

In this section we give a sketch of the physical data

representations used in application-tailored XML

storage to assure best performance for the given

workload.

Let us return to the example described in Section 2

(Figures 1-2). Descriptive schema defines XML nodes

decomposition according to pathways in the document.

For each group the best storage method is determined in

compliance with workload (Figure 3, a-c):

• Node descriptor - each node in group can be

stored as ‘node descriptor’ structure, which

through direct pointers reflects

child/sibling/parent relationships between

nodes. This way gives effective navigation and

goes very well to evaluate structured path

expressions [9]. Besides (or along with) direct

pointers in this approach numbering scheme

can be effectively employed [11, 9]. Every

node descriptor can have a label ‘nid’. The

main goal of using numbering scheme is to

quickly determine ancestor-descendant

relationship between any pair of nodes in the

hierarchy of XML data. It can also be used for

determining document order relationship.

• Value packed in node descriptor – like in

relational databases for some nodes we employ

structures similar to the relational records [20].

Record is packed in node descriptor of the

ancestor (like id and title values shown in

Figure 3, b). Actually, in this option we cluster

application-level entity (like article or

person) with its “relational-like” flat

properties (e.g. id, name etc). It gives several

advantages. Firstly, presentation is as much

compact as possible since we do not have to

store irrelevant pointers and numbering

scheme labels. Second, it speeds up a whole

number of path expressions, particularly with

predicates with condition on packed nodes

(like //aricle[@id eq “1”]). Finally, it

also speeds up serialization process.

• Node packed in text - nodes which are not

expected to be queried (e.g. rendering

elements) can be stored in the textual form.

Obviously, it saves space (since we do not

have to allocate data blocks for each type of

nodes) and speeds up serialization process. As

mentioned in Section 3 this method is quite

flexible and is not restricted by storing the

whole XML sub-trees as text. Textual node can

have placeholders inside for the descendants

stored using first two options.

Database executor uses descriptive schema to

determine the way the node is stored and as an entry

point to the data blocks in which node is located.

In Figure 4 storage plan for the example defined in

Section 2 is shown. According to this plan:

• ‘article’ and ‘link’ nodes are stored in a

structural way using node descriptors – since

we directly query and serialize them in Q1-Q5

Figure 4: Two Articles Stored in the Application-Tailored Way.

queries. Numbering schema labels and some

pointers are eliminated because document

order and sibling axes are not used in the

workload;

• ‘id’, ‘idref’ attributes values are packed in

their parents node descriptors – they have

simple content and are used in predicates to

filter out application-level entities like article

or link;

• ‘title’ nodes is queried and serialized in

path expressions in Q1-Q5. Though they are

also flatten in their parents nodes descriptors

since they have simple content;

• ‘author’ nodes along with content markup

nodes encircled in Figure 2 are packed in

textual representation which parent is article’s

node. It is used only to serialize article and has

#id, #title and #link placeholders for the

id, title and link values respectively.

5 Related work

There are a few works on building customizable XML

storage exists. In the OrientStore [13] system authors

propose approach based on the combination of Natix [2]

and Sedna [4] storage strategies but the choice of the

strategy is data-driven (schema-driven) and the physical

representation contains all the features to execute any

ad-hoc query. There are a number of approaches like in

the LegoDB [14, 15] or XCacheDB [21] which are very

close to our work but these storages are based on the

relational storage which brings its limitations and

overhead. Ideas proposed in all these works might be

useful but they do not provide any complete solution for

building application-tailored XML storage.

What we propose should not be mixed up with

component database [16, 17]. We think that component

databases are too general approach which cannot be

efficiently implemented in practice. We do not propose

to generate database systems for various kinds of

database applications such as OLTP, OLAP, etc and for

various hardware and software platforms such as PDA,

desktop, or server. We just extend the idea of query

optimization from building query execution plan to

choosing storage structures also. That is aimed at first

place to reduce XML/XQuery-specific overhead caused

by extra flexibility and extensibility of XML/XQuery.

6 Conclusion and Future Work

In this paper we propose a method of compiling query-

driven XML storage designed to reduce the overhead

caused by the universality of XQuery data model.

According to our preliminary studies and experiments,

proposed method allows us to reduce the size of internal

representation from several times to orders of

magnitude (consequently optimize buffer memory

usage) and to store data in a way that minimize the

number of blocks addressed by the queries/updates.

The overall effect of such optimization should make

XML database significantly effective.

This paper reports the preliminary results of in-

progress research. The feature work includes

prototyping the system and conducting performance

experiments. Also we are going to design an XQuery

optimizer to construct storage plan automatically (or

semi-automatically using a small number of hits) and a

method of reconstructing internal XML representation

which does not require database shutdown.

References

[1] XQuery 1.0: An XML Query Language. W3C

Recommendation 23 January 2007,

w3.org/TR/2007/REC-xquery-20070123

[2] T. Fiebig, S. Helmer et al. Anatomy of a Native

XML Base Management System, The VLDB

Journal 11/ 4, 2002

[3] M. Nicola, B. van der Linden. Native XML support

in DB2 universal database. In Proceedings of the

VLDB, Trondheim, Norway, 2005

[4] M. Grinev, A. Fomichev, S. Kuznetsov, K. Antipin,

A. Boldakov, D. Lizorkin, L. Novak, M. Rekouts,

P. Pleshachkov. Sedna: A Native XML DBMS,

www.modis.ispras.ru/sedna

[5] M. Haustein, T. Härder. An efficient infrastructure

for native transactional XML processing. Data

Knowledge Eng., June 2007

[6] E. Ehrli. Walkthrough: Word 2007 XML Format

Microsoft Corporation, June 2006

[7] “Great Russian Encyclopedia" Publishing

Company, http://www.greatbook.ru/ (in Russian)

[8] S. Chandrasekaran, R. Bamford. Shared Cache -

The Future of Parallel Databases. In Proceedings

of the ICDE, 2003.

[9] A. Fomichev, M. Grinev, S Kuznetsov. Descriptive

Schema Driven XML Storage. Technical Report,

MODIS, Institute for System Programming of the

Russian Academy of Sciences, 2004

[10] Join methods in partitioned database environments,

IBM DB2 Database Information Center,

http://publib.boulder.ibm.com/infocenter/db2luw/v

9r5/index.jsp

[11] J. Dean, S. Ghemawat. MapReduce:

Simplified Data Processing on Large Clusters.

OSDI, December 2004

[12] H. Berenson, P. Bernstein, J. Gray, J. Melton, E.

O'Neil, P. O'Neil. A Critique of ANSI SQL

Isolation Levels. SIGMOD International

Conference on Management of Data San Jose, May

1995

[13] X. Meng, D. Luo, M. Lee, J. An. OrientStore: A

Schema Based Native XML Storage System. In

Proceedings of the VLDB, 2003

[14] P. Bohannon, J. Freire, J. R. Haritsa, M. Ramanath,

P. Roy, J. Siméon: Bridging the XML Relational

Divide with LegoDB. In Proceedings of the ICDE,

2003.

[15] M. Ramanath, J. Freire, J. Haritsa, and P. Roy.

Searching for Efficient XML to Relational

Mappings. Technical Report, DSL/SERC, Indian

Institute of Science, 2003

[16] M. Seltzer. Beyond Relational Databases: There is

More to Data Access than SQL, ACM Queue 3/3,

April 2005.

[17] S. Chaudhuri, G. Weikum. Rethinking Database

System Architecture: Towards a Self-Tuning RISC-

Style Database System. The VLDB Journal, 2000

[18] D. Florescu et al. The BEA Streaming XQuery

Processor. The VLDB Journal 13/3, September

2004

[19] Q. Li, B. Moon. Indexing and Querying XML Data

for Regular Path Expressions. Proceedings of the

VLDB Conference, Roma, Italy, 2001

[20] H. Garcia-Molina, J. Ullman, J. Widom. Database

Systems: The Complete Book. Prentice Hall,

October 2001

[21] A. Balmin, Y. Papakonstantinou. Storing and

Querying XML Data Using Denormalized

Relational Databases. The VLDB Journal,

14(1):30-49, 2005.

