
Efficient Implementation of XQuery Constructor Expressions

c©Maxim Grinev Leonid Novak Ilya Taranov

Institute of System Programming

Abstract

Element constructor is one of most expensive
operations of the XQuery language as it re-
quires deep copy of the nodes which make up
the content of the constructed element. In this
paper we propose various optimization and im-
plementation techniques to avoid copying of
the nodes during constructor evaluation. The
proposed techniques are based on using spe-
cial kind of XQuery constructors with modi-
fied semantics which evaluation does not re-
quire content node copying. We also provide
optimization rules which replace standard con-
structors with modified ones without changing
query result. The proposed techniques are de-
signed to minimize modifications of an exist-
ing implementation. Possible technique exten-
sions which might depend on implementation-
specific features are also considered. We
present results from experimental study of the
techniques which demonstrate performance im-
provement of constructor evaluation.

1 Introduction
Support for element constructors is a powerful feature of
XQuery language. Element constructors allow express-
ing transformation of XML data. Element constructors
are also useful for compounding (sub-)query results into
a document structured in such a way that it can be effi-
ciently processed by the database client [1]. Although
useful, element constructor is one of the most expen-
sive XQuery operations when implemented straightfor-
wardly. According to the XQuery specification [2], con-
structing a new element node requires deep copy of the
nodes that makes up its content. Moreover, the presence
of nested (the term nested

¯
is used here in the same man-

ner as in 3.7.1 of [2]) element constructors (very com-
mon for practical queries) causes repeated deep copying
of the same nodes.

Fortunately, a variety of optimizations are possible to
avoid content node copying in many cases. In this paper
we propose query optimization methods based on ele-
ment constructors with modified semantics. Such modi-
fied constructors do not require copying of content node
and in same cases even instantiation of the constructed
nodes. Since replacing standard element constructors
with modified ones might result in a nonequivalent query

Proceedings of the Spring Young Researcher’s Colloquium
on Database and Information Systems, Saint-Petersburg, Rus-
sia, 2008

for each modified constructor we specify the conditions
on which such replacement is allowed.

The conditions can be characterized as follows: a re-
stricted set of operations are applied to the results of el-
ement constructors. Maximum effect is achieved when
this set consists of only “identity” (“node-preserving”)
operations such as return from FLWOR -expression,
then and else from if-expression, element constructor,
etc. Many practical queries are originally expressed in
such a way that they meet the conditions (for example, all
queries of popular XMark benchmark [3] and the major-
ity of examples from the XQuery specification). In many
other cases queries can be rewritten by the optimizer into
an equivalent form that meets the condition as proposed
in [4]. Such rewriting techniques are complementary to
our method and not considered in this paper.

Introducing our optimization methods we pursue a
goal to minimize modifications of an existing imple-
mentation required to support the methods. Thus for
each method we first describe a basic method which
requires minimal modifications of existing implementa-
tions and then consider extensions of the basic method
which might improve its efficiency and usability but re-
quires more complex modifications to incorporate it into
an existing implementation.

The rest of the paper is organized as follows. In
Sections 2, 3, 4 we introduce embedded, virtual and
serialized constructors respectively and query optimiza-
tion methods using the constructors. Section 6 gives an
overview of related work. Section 5 contains the results
of our performance experiments. Section 7 concludes
this paper with suggestions for future work.

2 Embedded Constructor
2.1 Motivating Example

Let us consider the following query:
for $x in doc(’auc.xml’)//person return element

"user" {
element "info" { attribute "name" {$x/name}...

} }
The query results in a sequence of n elements, where

n is the number of <person> in original XMark[17] auc-
tion document. Let us count how many node copies are
made during the evaluation of expression. First of all n
of <user>, <info> and name nodes are created. For
each element <info> a copy of attribute name is made.
Yet, for each element <user> a deep copy of element
<info> is made (i.e. 2*n nodes are copied). In total, we
copy 3*n nodes during evaluation of this query. Copy-
ing of the nodes can be avoided if nodes constructed in

enclosed expressions of newly created elements are con-
structed as children nodes of the element(like in nesting
of direct constructors). In the next section we introduce
embedded constructors which create nodes in enclosed
expressions in the way described.

2.2 Semantics of Embedded Constructor

In order to define the embedded constructor we introduce
a new component of the XQuery dynamic context: con-
text parent node. During the constructor evaluation the
value of the context parent node is set to the newly con-
structed element node. It must be done before process-
ing the enclosed expression. After the evaluation of the
constructor expression the previous value of the context
parent node component is assigned back to the dynamic
context. The semantics of the content of an element con-
structor is changed as follows. Instead of “For each
node returned by an enclosed expression, a new copy is
made of the given node...” there should be: “For each
node returned by an enclosed expression, such that par-
ent property of the node is not equal to the constructed
node, a new copy is made...” The latter means that not all
the nodes from the result of the enclosed expression are
copied.

We use the context parent node in order to define em-
bedded constructor. We modify the semantics of the
standard constructor with respect to assigning values to
the properties of constructed node as follows: instead
of “parent is set to empty” there should be “The parent
property is set to context parent node”.

In order to save space in examples we introduce a
new syntax for embedded constructors by adding the pre-
fix “emb-” to the keywords (e.g. emb-element, emb-
attribute etc). However we point out that we do not have
intension to expand the XQuery language. The embed-
ded constructors are intended to be used in the query ex-
ecution plan rather than in XQuery expressions written
by the user (the same is true for types of constructors
described later in the paper).

Let us return to the motivating example described
above. This query can be rewritten using embedded con-
structors as follows.

for $x in doc(’auc.xml’)//person return
emb-element "user" {

emb-element "info" { emb-attribute "name"
{$x/name}... } }

The result of the latter query is the same as of the former
one but no node copying is made at all. One can easily
see that embedded constructors help to avoid node copy-
ing and cut down the time expenses on constructor eval-
uation (see section 5 for performance results). In fact,
this is generalization of the rule of the processing nested
direct constructors inside the content of the element con-
structors (see Section 3.7.1.3-1-d in [2]) in the case of
arbitrary constructors. But unfortunately, we cannot re-
place standard constructors with the embedded ones ev-
erywhere in the query. The next section explains why.

2.3 Query Optimization Using Embedded Con-
structors

We start with the following example.
<a>{(text)/..}

This query returns <a>. Suppose that we re-
place the direct element constructor with the em-
bedded version.

<a>{(emb-element "b" {"text"})/..}
Let us examine the set of instances of the data model

created by the latter query. Due to the semantics of em-
bedded constructors the parent property of <a> is set
to <a> but it is not contained in the children sequence
of <a>. It means that we have got the violation of the
XQuery data model constraint: “if a node N has a par-
ent element E then N must be among the children of E”.
Moreover, the violation of the data model leads to the
wrong result of the latter query (i.e. <a><a/>)
, because the parent axis applied to returns non-
empty result. It is easy to see that the constraint is vi-
olated due to the semantics of embedded constructor:
while creating -element we set the parent value to
<a>-element. Thus, we should introduce the condition
of applicability of the replacement of the XQuery con-
structors by the embedded ones. In order to do this we
have to introduce a set of XQuery expressions named
node preserving expressions.
Definition 1 An XQuery expression is called node pre-
serving if for each item n in the result of the expression
there is the same (or equal in case of atomic values) item
in the input of the expression and vice versa each input
item is appended to the result of the expression.

We denote the set of node-preserving expressions by
∆. ∆ includes sequence expressions, then- and else-
expressions, return clause of FLWOR expression, etc.

For any given query q we define the class of construc-
tor expressions Cq such that for any e from Cq the fol-
lowing holds: there is another constructor expression f
such that e is nested to the content of f and for any ex-
pression g, such that, e is nested to g, nested to the con-
tent of f , g belongs to ∆

As the latter condition might seem to be obscure let
us consider various cases when g does not belong to ∆
in order to show that optimization of e is impossible:

a. Path expressions: let g be XPath expression (for in-
stance,
(element a {. . .})//b[..]//c..). It is obvious
that the result of the path expression may differ from
the value returned by embedded constructor;

b. Non-element and non-document constructors:
attribute a {<a>txt}. The value of
the node created by embedded constructor is
normalized. Thus the embedding is impossible.

c. Comparisons, Instance of, Cast, Quantified Expres-
sions and all the other expressions which either re-
quire atomization of returned values of nested ex-
pressions or return atomic values.

d. Where and Order By clauses of FLWOR .

e. For and Let clauses: (element a {for $x in

 return 1}). In fact, the usage of the con-
structors nested to the for clause is a complex is-
sue which is the subject of further researches. Let
us take a look at the following example: element a

{for $x in return $x}. As one can see, the

embedding of inner element is possible. But in or-
der to apply the optimization we have to distinguish
different cases of using binding variables inside the
return clause.

In order to complete the description of optimization
framework for embedded constructors we have to prove
the following proposition:
For the given query Q: any constructor expression from

CQ can be replaced with the embedded version.
The usage of the formal algebra for XQuery [5] in or-
der to provide the rigorous proof of the statement is the
subject of our future research.

2.4 Further Extensions

The optimization method described above is generic and
does not depend on the peculiarities of the implementa-
tion of XQuery. Now let us describe other optimization
methods which depend on the properties of an XQuery
engine.

Resetting the parent property. Consider an arbitrary
expression which does not belong to ∆, thus making the
optimization of nested constructor expression impossi-
ble. Let us change the semantics of that expression. First,
in the beginning of the evaluation of the expression, be-
fore any of sub-expression is evaluated, we set the value
of context parent node to empty sequence. Then, at the
end of the evaluation of the expression, before the result
is returned, we reassign the previous value of context par-
ent node.

Due to the semantics of the embedded constructor
the node-preserving requirement for intermediate ex-
pressions becomes obsolete thus making the optimiza-
tion algorithm much easier. Unfortunately this improve-
ment requires the modification of the semantics of ma-
jority of XQuery expressions, which can be inadmissible
for existing implementations.

Dynamic embedding. Let us forget for a while about
the context parent node and embedded constructors and
start from the very beginning: we have standard con-
structors and nothing else. In order to get rid of node-
copying operations we change the semantics of the con-
structors. In the definition of contructors (see Section
3.7.1.3 in [2]) instead of “For each node returned by an
enclosed expression, a new copy is made of the given
node...” should be: “For each node returned by an en-
closed expression, such that parent property of the node
is not set to empty, a new copy is made ... otherwise the
parent property of the node is set to the node constructed
by this constructor and the node returned by enclosed ex-
pression is appended to its children sequence”. One can
easily see, that there will be no redundant node-copying
and the embedding is made automatically (there are some
exceptional queries with variable binding and utilization
of node identity and parent properties of the node – the
discussion of these artifacts is behind the scope of the
work). But the dynamic embedding (i.e. the ad-hoc mod-
ification of the parent property of the node) is hardly im-
plemented in some XQuery implementations especially
in database systems: it changes the tree structure that can
be unacceptable in presence of numbering schemes [6],
data guides or some other type of descriptive schema and
structural XML indexes [7].

2.5 Constructors in Let clauses

Let us consider the following example.
let $x := <a/> return element "b" {$x}

As it is shown in [2, Basics section] XQuery does
not allow variable substitution if the variable declaration
contains construction of new nodes. However at the same
time in case of lazy evaluation of XQuery queries the cre-
ation of the element happens before the creation of
the element <a>, thus making the embedding of <a> to
 possible. So, if the implementation supports lazy
evaluation the constructor nested to the Let clause can be
replaced with the embedded version. Of course it works
only for Let expressions and only when there is no where

clause.

3 Virtual Constructor
Whereas embedded constructors allow avoiding copying
of elements constructed in enclosed expression virtual
constructors are designed to avoid copying of persistent
nodes retrieved in enclosed expression.

3.1 Motivating example

Let us consider the following query.
<result>

{document("source.xml")//item}</result>
According to the semantics of the standard element

constructor a deep copy of each node returned by the
XPath expression is created. We can avoid copying the
nodes by referencing them as children elements of the
newly constructed result element. It is not allowed by
the XQuery data model as in this case the nodes will
have more then one parent. Nevertheless in this particu-
lar query it will not lead to any anomaly as there are no
operations that traverse the result XML tree. In the fol-
lowing section we introduce virtual constructors that can
be used to implement such optimization.

3.2 Semantics of Virtual Constructors

First of all, we extend the XQuery data model[10] with
the new kinds of nodes: Virtual Document (VDocument)
and Virtual Element (VElement). In order to save space
we consider only VElements. VElements have the same
properties and satisfies to the same constraints as stan-
dard Elements except the following:

1. the children and attribute properties are always
empty sequences;

2. new properties, child-list and attr-list are added;

3. the child-list must consist exclusively of Element,
Processing Instruction, Comment, and Text Nodes
if it is not empty. Attribute, Namespace, and Docu-
ment Nodes can never appear in child-list;

4. the Attribute Nodes from attr-list of an VElement
Node must have distinct xs:QNames;

5. the string-value property of a VElement Node must
be the concatenation of the string-values of the
nodes from the child-list in document order.

The child-list and attr-list properties are similar to
children and attribute properties except that there are
no constraints set on the child-list and attr-list proper-
ties which require the parent-child relationship between
the VElements and nodes from the child-list or attr-list
sequences. We use child-list and attr-list properties in-
stead of children and attributes in order to serialize[9]
virtual node instances.

Next, we introduce a function which converts virtual
nodes to standard nodes:

fn:materialize ($arg as item*) as item*

Each atomic value and non-virtual node from the in-
put sequence is returned unchanged. Each VElement
inp is replaced with a new standard Element result con-
structed according to the following rules:

a. node-name(result)=node-name(inp);

b. base-uri(result)=base-uri(inp);

c. string-value(result)=string-value(inp);

d. the concatenated (attr-list, child-list) sequence is
processed like the enclosed expression in the con-
tent of the node constructor (3.7.1.3 section of
XQuery [2]) and the parent property of the top-most
nodes is set to result.

Finally, we introduce a new type of the constructor
expression, namely virtual element constructor. A vir-
tual element constructor expression returns VElement in-
stance. Below we use “virt-” prefix to keywords to de-
note the usage of virtual constructors instead of standard
ones. The content of the constructed VElement returned
by the enclosed expression is processed exactly in the
same way as the content of the standard constructor ex-
cept the following changes:

a. The nodes returned by the enclosed expression are
not copied.

b. The adjacent text nodes in the content sequence are
not merged.

c. The children and attribute properties of the con-
structed node are left empty.

d. The child-list property consists of all the element,
text, comment, and processing instruction nodes re-
turned by the enclosed expression.

e. The attr-list property consists of all the attribute
nodes specified in the start tag, together with all the
attribute nodes returned by the enclosed expression.

Proposition 1 Let f(...) be an arbitrary element con-
structor expression, e an XQuery query which contains
f . The query e′ derived from e by replacing the f(...)
by materialize(f ′(...)), where f’ is virtual constructor
expression, evaluates to the equivalent result.
We use the notion of equivalency based on the deep-
equivalence [8] of the XQuery result sequences. To de-
termine the deep equality for the virtual nodes we use
attr-list and child-list properties instead of children and
attribute. As far as the virtual node constructor expres-
sion is nested immediately into the materialize function
and is side-effect-free, its result can be processed only

by the materialize function. It allows us to consider
materialize(f ′(...)) as atomic expression which eval-
uates to the result equivalent f(...) due to the definition
of the materialize function.

Using the proposition we can rewrite the query so that
all occurrences of standard element constructors are re-
placed with virtual element constructors nested in ma-
terialize function calls. However the efficiency of the
rewritten query should be the same as of the original ex-
pression as materialize function copies the nodes from
child-list. In the next subsection we consider cases when
it is possible to remove materialize function calls from
query.

3.3 Query Optimization Using Virtual Constructors

Consider we have an XQuery expression e rewritten into
the new expression e′ with all element constructors re-
placed by virtual element constructors nested into mate-
rialize function calls. First of all, we define two classes
of XQuery expressions. The first class, denoted by Σ,
consists of the expressions which use children, parent or
attribute properties of the input node (e.g. XPath expres-
sions and some accessors). The second class, denoted
by Γ, consists of the non-Σ expressions such that none
of the input nodes of the expression are returned to the
output.
Proposition 2 If there is no occurrences of Σ-
expressions in e′ then all the materialize function
calls can be removed from the query.

Let us consider a new query e′′, which is constructed
from e′ by removing all calls to the materialize func-
tion. The only difference between e′′ and e expressions
is that all element constructors are replaced by virtual
element constructors. Let f be an arbitrary expression
which takes the result of a virtual element constructor as
input. As f is not a Σ-expression it does not utilizes chil-
dren,parent and attributes properties of VElement node n
returned by f ′. Thus the materialization of n is obsolete
in this step. Finally, the octet sequence which represents
the serialized virtual node is equal to the octet sequence
of the corresponding materialized node.

Proposition 2 allows us to rewrite the following query:
<result> {document(’source.xml’)}</result>

In the rewritten query due to the definition of the vir-
tual element constructor we avoid copying the content of
’sources.xml’ document. Next, we extend Proposition 2
as follows:
Proposition 3 An element constructor expression f can
be replaced by virtual element constructor expression
preserving the result of the query if one of the following
conditions holds:

a. f (or variable reference to f) is not nested to any
Σ-expression;

b. f (or variable reference to f) is nested to Σ-
expression g, but there exists Γ-expression h, such
that f (or variable reference to f) is nested to h,
and h (or variable reference to h) is nested to g.

The latter proposition is sufficient to rewrite the query
from the motivating example in order to avoid deep cpy-
ing of persistent nodes.

virt-element "result"
{document(’source.xml’)//item}

However, there is still a common case which does not
meet the requirements of proposition 3: when an XPath
expression is applied to the constructed node. The typi-
cal example of such query is the application of an XPath
expression to the transformed version of the original doc-
ument (see I.4 section of XQuery specification [2]). In
this case, we cannot replace the element constructors by
the virtual ones as far as Σ-expressions cannot be applied
to virtual (non-materialized) nodes.

3.4 Further Extensions

Optimization method based on virtual constructors as
proposed above can be realized by extending existing im-
plementations with their minor modifications required.
Below we consider extensions which requires more com-
plex modifications of existing implementations.

Postponed materialization The idea of the post-
poned materialization resembles the dynamic embedding
presented in Section 2.4. We can regard the materialize
function as a part of functionality of any Σ-expression
(i.e we apply the materialization to any input virtual node
of a Σ-expression). Thus, we can remove all occurrences
of the materialize function from the query and replace
all constructor expressions with its virtual forms. The
advantage of this approach is that we do not have to ex-
tend the XQuery optimizer: instead of checking whether
the requirements of Proposition 3 are fulfilled all the con-
structor expressions can be simply rewritten to the virtual
form and the decision to call the materialize function is
made during execution when a Σ-expression is evaluated
over a virtual node. The disadvantage of this approach
is that it requires modifications of semantics and imple-
mentation of many XQuery operations.

This approach also requires a further modification of
the materialize function. Let us consider the following
query.

let $x:= return $x//@b/.. is $x

After rewriting we have the following query.
let $x:=virt-element "a" {attribute "b" "c"}
return fn:materialize($x)//@b/.. is $x.

As far as the materialized version of the virtual node has
its own identity, the query is evaluated to false while the
original query evaluates to true. In order to fix this we
have to change the semantics of materialize function as
follows: the identity of the new node should be the same
as its corresponding virtual node.

Evaluating XPath on virtual nodes Let us consider
the following query:

let $x := virt-element "result"
{document(’source.xml’)//item} return

fn:materialize($x)//id

To support such XPath expression over virtual nodes
we redefine the
dm:children accessor on a virtual node. If e is a virtual
node then dm:children(e) return the child-list property of
e instead of the children property. As far as descendant
axis is defined as transitive closure of child axis, which
in its turn is defined via dm:children we can assert that
we have defined the semantics of some axes (child, de-
scendant, etc.) on the virtual nodes. We can remove the
fn:materialize function from the above query as the

result is equivalent to the original one. Obviously, such
optimization is possible only in case of in-depth traversal
of virtual nodes.

In order to specify query optimization rules to support
such queries we define a new class of XPath expressions,
denoted by Λ, which do not use parent property of the
nodes. An XPath expression e belongs to Λ if none of the
following axes are used in e: following-sibling, follow-
ing and all the reverse axes. Next, we modify definitions
of Σ-expressions: Σ′ ≡ Σ \ Λ. The proposition 3 also
holds for Σ′ class.

4 Serialized Constructor
In this section we assume that the result of the query is
serialized to the octet sequence. Next, we introduce an-
other optimization method in addition to embedded and
virtual constructors.

4.1 Motivating example

The idea behind serialized constructors described below
can be demonstrated by the following example.
for $x in document(’auc.xml’)//person return

<user>$x/name</user>

This query results in the sequence of <user> ele-
ments. It requires constructing of n elements. Since
we assume that the query result is serialized to octets,
it might be a good idea to rewrite it as follows:
for $x in document(’auc.xml’)//person return

("<user>",$x/name,"</user>")

In the latter query we avoid the element constructions
at all, while serialized result remains almost the same. To
make the second query return the same serialized result
as the first one we have to modify it further. The problem
is that there is a character expansion phase during serial-
ization. During this phase the "<" and ">" characters
are replaced by "<" and ">" correspondingly (es-
cape rules). Thus, the resulting octet sequence contains
escape characters for XML tags In order to avoid escap-
ing of "<" and ">" characters during serialization we
can use a standard mechanism of character maps which
replace "<" and ">" with themselves:

declare option use-character-maps ">>"
declare option use-character-maps "<<"

for $x in document(’auc.xml’)//person return
("<user>",$x/name,"</user>")

The latter form of the second query is equivalent to
the first query (up to the whitespace characters). This
method allows avoiding node construction at all and
essentially improves query performance. Below we
propose serialized constructors which generalizes the
method described above.

4.2 Semantics of Serialized Constructors

We start with the definition of a new XQuery function
which has the following signature:

fn:serialized-value ($arg as node()) as
xs:string

fn:serialized-value returns the input node serial-
ized to octets. Precisely speaking this function is defined
as follows:

a. If $arg is an element node, let child[1..n]
≡ dm:children($arg) and attr[1..m]
≡ dm:attributes($arg). Then,
fn:serialized-value($arg) ≡
fn:concat("<", dm:node-name($arg), " ",

fn:serialized-value(attr1),

. . ., " ", fn:serialized-value(attrm), ">",

fn:serialized-value(child1),

. . ., fn:serialized-value(childm), "</",

dm:node-name($arg),">");

b. In order to define the fn:serialized-value on
attribute nodes we have to expand XQuery type
system by adding new simple type: xs:Attribute

which is the descendant of xs:string type and is
used to represent serialized attributes. If $arg is
attribute, then fn:serialized-value($arg) ≡
fn:concat(dm:node-name($arg), "=",

dm:string-value($arg))

cast as xs:Attribute.

c. If $arg is text node, then
fn:serialized-value($arg) ≡
dm:string-value($arg)).

d. For other node kinds the function is defined in sim-
ilar manner.

Now we can define serialized constructors. In order
to save space we will define only serialized element and
attribute constructors and omit those details that are com-
mon for serialized and standard constructors.

Serialized element constructor returns an xs:string

value. It has the same signature as the computed element
constructor and proceeds as follows:

1. The name expression (if exists) is processed just
like in the computed element constructor. Let us
denote the result of the name expression by name.
If the keyword element is followed by a QName
rather than a name expression name denotes that
QName literal.

2. The content is evaluated to produce a sequence of
xs:string values called the content sequence as
follows:

(a) For each adjacent sequence of one or more
xs:Attribute values returned by the enclosed
expression, a new xs:Attribute value is
build, containing the result of casting each
atomic value to a string, with a single space
character inserted between adjacent values;

(b) For each adjacent sequence of one or more
atomic values (which is not of xs:Attribute
type) returned by the enclosed expression, a
new xs:string value is build, containing the
result of casting each atomic value to a string,
with a single space character inserted between
adjacent values;

(c) For each node arg returned by the enclosed
expression, the
serialized-value($arg) is appended to the
sequence.

3. If the content sequence contains an xs:Attribute

value following the value which is not of type
xs:Attribute, a type error is raised.

4. The content sequence is used to build two
xs:string values: attributes and content. At-
tributes value is concatenation of all xs:Attribute
values from content sequence with a single space
character inserted between adjacent values. Cor-
respondingly, content value is concatenation of all
non-xs:Attribute values from content sequence
with a single space character inserted between ad-
jacent values.

5. If the content value is empty, then the resulting
value of serialized expression is concatena-
tion of the following strings: ("<",name,"

",attributes,"/>"). Otherwise, the follow-
ing strings are merged: ("<", name, " ",

attributes, ">", content, "</", name,

">").

Serialized attribute constructor returns an
xs:Attribute value and is defined as follows:

1. The name expression (if exists) is processed just
like in computed attribute constructor. Let us de-
note the result of the name expression by name.

2. The resulting value of serialized expression is
concatenation of the following strings casted to
xs:Attributes: (name,"=",value). Where value
is the result of content expression after the process-
ing defined in computed attribute constructor.

Proposition 4 Constructor expression f can be re-
placed by corresponding serialized constructor expres-
sion preserving the result of the query (up to whitespace
characters) if the following holds: (a) f (or variable ref-
erence to f) is not nested to any non-∆- expression, ex-
cept the content expression of other constructors.

In order to save space we omitted the descriptions
of handling the namespace declaration attributes, typing
and some other features of constructors but we hope that
one who has an interest to this topic can easily find the
solution in order to implement those features in the opti-
mization framework described above.

5 Performance Experiments
In this section, we will discuss the results of experiments
for each type of constructors proposed above. The exper-
iments are conducted using Sedna XML database system
[15].

Our measurements were performed on the computer
equipped with T2300E (1.6 MHz two-core), 1024 Mb of
RAM, running Windows. The buffer size for Sedna was
set to 100Mb.

We ran each test 6 times and took the average value
of last 5 runs (the first run is omitted in order to ignore
data buffering time). In our experiments we only mea-
sure time needed to execute the query plan.

Figure 1: Embedded constructor performance - large
document constructed

scaling data size embedded standard
0.001 115 Kb 0.56 s 13.52 s
0.002 210 Kb 0.86 s 14.98 s
0.003 318 Kb 1.26 s 18.22 s
0.004 457 Kb 1.60 s 26.41 s
0.005 567 Kb 2.61 s 29.96 s
0.006 681 Kb 2.24 s 34.75 s

Figure 2: Embedded constructor performance - recour-
sive construction

recursion embedded standard
depth
100 0,24 s 0,41 s
200 0,32 s 0,95 s
300 0,46 s 5,04 s
400 0,67 s 40,46 s

5.1 Embedded constructor

Since this type of modifed constructor helps to avoid
redudant copying of temporary nodes, embedded con-
structors should provide the best results when the large
amount of nested constructors are used. The XMark
benchmark [17] is used to generate these constructors.

In the first test we use the XMark document as an in-
put query (i.e. each XML element of the XMark docu-
ment is evaluated as direct element constructor). We vary
the XMark data from 100Kb to 700Kb (approx.) (Fig.
5.1).

The next test is a slightly modified Parts use case from
the XQuery test suite [16] (Fig. 5.1). The dataset for this
test is modified to make the recursion deep enough to
evaluate the performance.
declare function local:one_level($p as element())
as element()
{ element part {

attribute partid { $p/@partid },
attribute name { $p/@name },

for $s in doc("partlist")//part
where $s/@partof = $p/@partid
return local:one_level($s) } };

element parttree {
for $p in doc("partlist")//part[@partid = 1]
return local:one_level($p)

}

Figure 3: Virtual constructor performance
case expression nodes virtual standard

1 //book 1 227 0,14 s 0,18 s
2 //book/cite 3 319 0,21 s 0,35 s
3 //article/title ≈ 3 · 105 4,58 s 39,75 s
4 //article ≈ 4 · 106 103,67 s 649,46 s

Figure 4: Serialized and embedded constructor perfor-
mance

case nodes standard embedded serialized
1 2000 3,16 s 1,22 s 0,95 s
2 4000 9,13 s 2,42 s 1,80 s
3 6000 18,17 s 3,61 s 2,66 s
4 8000 30,43 s 4,85 s 3,50 s
5 10000 50,21 s 6,00 s 4,37 s
6 33333 668,97 s 25,31 s 14,41 s
7 100000 - 190,84 s 43,28 s

5.2 Virtual constructor

We use simple queries (as that presented below) against
the DBLP database that generate large amounts of nodes
to be copied from the database.

<result> { for $i in document("dblp")//book
return $i } </result>

We run the test several times with different XPath ex-
pressions varying the size of output document tree.

5.3 Serialized constructor

We run the XMark query Q10 over large XMark datasets
generated with various scaling factors. There are many
nested nodes that contain simple data in this test. Con-

Figure 5: Serialized and virtual constructor performance
n standard serialized virtual

10000 2,66 s 1,1908 s 1,3874 s
50000 34,55 s 5,6098 s 6,4998 s
100000 87,46 s 11,3126 s 12,9154 s
500000 379,71 s 74,1028 s 76,4968 s

sequetly there are many temporary nodes to be copied.
Both embedded and serialized constructors should work
fine here. But as our measure show serialized construc-
tors provide better performance.

The execution of the next query can be boosted by
both virtual and serialized constructors. The document
“auction” is generated by XMark with scaling factor set
to 10. The query is as follows.

for $x in
doc("auction")/descendant::person[position() <

n] return <result> { $x } </result>

6 Related Work
The issue of efficient implementation of XQuery con-
structors is still not widely presented in the research lit-
erature. In contrast to our work where we do query anal-
ysis to choose the efficient plan for constructor execution
existing techniques solely exploit logical query optimiza-
tion where a query is rewritten to remove constructor ex-
pressions when it is possible. First of all, an algorithm of
“predicate push-down” is proposed [4], which helps to
avoid intermediate node constructions. Second, the fol-
lowing statement is proved in [11, 12] “for each expres-
sion containing operations that construct new nodes and
whose XML result contains only original nodes, there ex-
ists an equivalent “flat” expression in XQuery that does
not construct new nodes.” The term “flat” originates from
SQL and means the table without any nesting tables. In
[13] a benchmark intended to validate optimization is de-
scribed. The authors of the latter work come to conclu-
sion that some implementations use optimization algo-
rithms similar to the ones described above but description
of the algorithm are not available in the literature. Finally
the efficient implementation of XQuery constructors on
SQL hosts [14] is studied.

7 Conclusions and future work
In this paper we introduced various methods of efficient
evaluation of XQuery constructor expressions by modi-
fying semantics of the standard constructors. We inves-
tigated conditions on which standard constructors can be
replaced with new ones in a query plan. Finally, we de-
scribed some advanced techniques for query optimiza-
tion which depend on the peculiarities of an XQuery im-
plementation. Experiments presented in this paper prove
that using proposed methods leads to significant perfor-
mance improvements. In further research we plan to
provide a formal framework for constructor optimization
based on many-sorted algebra representation of XQuery
and to prove the criteria of optimization applicability in
terms of the algebra. Finally we want to examine our op-
timization methods for constructor expressions bounded
to variables (for and let clauses) in presence of lazy and
strict evaluation of a query.

References
[1] A. Boldakov et al. XQuery, XSLT, and

OmniMark: Mixed Content Processing,
http://www.xml.com/pub/a/2006/12/06/
xquery-xslt-omnimark-mixed-content-processing.html

[2] XQuery 1.0: An XML Query Language. W3C Rec-
ommendation, 23 january 2007.

[3] Schmidt, A. et al. XMark: A Benchmark for XML
Data Management. In Proceedings of 28th VLDB
Conference, Hong Kong, China (2002)

[4] M. Grinev, P. Pleshachkov. Rewriting-based Opti-
mization for XQuery Transformational Queries. In
IDEAS 2005

[5] L. Novak, A. V. Zamulin. An XML Algebra for
XQuery. ADBIS 2006: 4-21

[6] Aznauryan N. et al. ”SLS: A numbering scheme for
large XML documents”. Programming and Comput-
ing Software 32(1): 8-18, 2006.

[7] R. Kaushik et al. Updates for structure indexes. In
VLDB, 2002.

[8] XQuery 1.0 and Xpath 2.0 Functions and Operators.
W3C Recommendation.

[9] XSLT 2.0 and XQuery 1.0 Serialization. W3C Rec-
ommendation, 23 january 2007.

[10] XQuery 1.0 and Xpath 2.0 Data Model. W3C Rec-
ommendation, 23 january 2007.

[11] Wim Le Page et al. On the Expressive Power of
Node Construction in XQuery. WebDB 2005: 85-
90

[12] Wim Le Page et al. Expressive Power of Xquery
Node Construction . Technical Report 2005-2006

[13] Ioana Manolescu et al. Towards micro-
benchmarking XQuery, in Experimental Evaluation
of Data Management Systems (EXPDB), 2006.

[14] T. Grust, S. Sakr, J. Teubner. XQuery on
SQL Hosts, VLDB 2004, Toronto, Canada, Au-
gust/September 2004

[15] Sedna XML Database Home Page,
http://www.modis.ispras.ru/sedna

[16] XML Query Test Suite,
http://www.w3.org/XML/Query/test-suite/

[17] An XML Benchmark Project,
http://monetdb.cwi.nl/xml/

