

55

Research on Security Challenges in Cloud Environments
and Solutions based on the “Security-as-Code” Approach

Oleksandr Vakhula1, Ivan Opirskyy1, and Olha Mykhaylova1

1 Lviv Polytechnic National University, 5 Knyaz Roman str., Lviv, 79013, Ukraine

Abstract
“Security as code” is an approach to security organization in cloud environments, which
is based on the method of integrating security controls, policies, and best practices
directly into the software development and deployment processes. The integration
process includes the transformation of security requirements and configurations into
software code, which in turn is considered an integral part of the full software
development life cycle. By embedding security measures into code, scripts, templates, and
automated workflows, an organization ensures that there are well-defined security
controls that will be consistently enforced across all operational phases of software
creation (development, testing, implementation, and support). This article examines the
main problems of building security in cloud environments and their causes, also
considers the components and principles of the “Security as Code” approach,
implementation examples with an explanation, of the advantages of this approach, as well
as the role of DevSecOps. This article aims to help readers understand the importance of
the security-as-code approach as one of the most effective methods for managing security
in cloud environments. As cloud environments continue to evolve and proliferate, and
threats become more sophisticated, the Security as Code approach represents a core
strategy for proactively protecting digital assets. This publication serves as a guide to
understanding, implementing, and benefiting from a security-as-code approach,
providing insight into the future cloud security landscape and the critical role of
automation and integration in addressing today’s security challenges. To support the
research, an extensive review of literature and articles providing information on the
Security as Code approach and its application was conducted.

Keywords 1
Security as code, Infrastructure as code, DevSecOps, DevOps, cloud environments, cloud
service provider, software development cycle, cloud security threats, shift-left security
approach.

1. Introduction

In cloud computing, which is constantly
evolving and combining flexibility and
innovation, the importance of robust security
measures cannot be overstated. As
organizations continue to harness the
transformative potential of cloud technologies,
the need to protect digital assets from a
growing spectrum of threats becomes not just
a priority but a strategic imperative [1–2].

CPITS-2023-II: Cybersecurity Providing in Information and Telecommunication Systems, October 26, 2023, Kyiv, Ukraine

EMAIL Oleksandr.p.vakhula@lpnu.ua (O. Vakahula); ivan.r.opirskyi@lpnu.ua (I. Opirskyy); mykhaulovaolga1@gmail.com
(O. Mykhaylova)

ORCID: 0009-0008-5367-3344 (O. Vakahula); 0000-0002-8461-8996 (I. Opirskyy); 0000-0002-3086-3160 (O. Mykhaylova)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

“Security as Code”, born at the intersection of
cybersecurity and software development,
represents a paradigm shift in how
organizations conceptualize, implement, and
maintain their security strategies in cloud
environments. This approach encapsulates the
fusion of security principles into code, creating
a proactive, automated, and integrated security
ecosystem seamlessly aligned with modern
development methodologies [3–4].

The authors examine the fundamental
security challenges faced by consumers of

56

cloud services. Root causes include a lack of
understanding of the shared responsibility
model, which is foundational; the dynamic and
scalable nature of the environment, unlike
traditional on-premises infrastructure;
inadequate visibility of resources or “shadow
IT;” underestimating risks associated with
APIs; the complexity of navigating data in a
distributed environment, including sensitive
data; manual configuration settings and the
high likelihood of errors due to human factors;
the complexity of Identity and Access
Management (IAM) services; multi-cloud and
hybrid environments; and the shortage of
qualified cloud security professionals—
demand outweighs supply [5].

This publication aims to highlight the
aforementioned problems, actuality, and their
root causes, and to explore the “Security as
Code” approach, which can help to solve part of
it and mitigate risks related. A lot of articles
point out that DevOps practitioners degrade
the priority of security since the regard
security is the biggest hurdle to rapid
application development considering
traditional security methods do not fit the
pipeline and are an inhibitor to DevOps agility [6].

Traditionally, security measures are
typically addressed after the development
team has completed the product. This approach
often results in a backlog of challenging bugs to
fix. The project manager may think, “If we
implement all these fixes, we'll be delayed, and
the company won't be pleased. Let's put it off
until the next iteration” [7–8].

As an illustration, consider a scenario where
a product manager wants to grant customers
access to certain data without requiring any
form of authentication. In the past, the security
team has consistently rejected such requests.
However, with the implementation of
DevSecOps, the response shifts to, “Yes, you can
provide this access, but it must be done in a
secure manner” [9]. In many instances, in
pursuit of business agility and velocity,
essential security aspects are overlooked in
operational applications. Security is often
relegated to the final check, conducted after the
application is fully developed. In practical
terms, ensuring security with each iteration
can be a considerable challenge, both in terms
of time and financial resources, unless it is
deliberately incorporated into the early stages
of the DevOps workflow [10].

The latest research in this field shows, that,
Security as Code is the driving force behind
future application security. According to
O’Reilly, Security as Code is a way to build
Security by mapping how code and
infrastructure change to DevOps tools and
workflows and finding places to add security
controls, tests, and ports without cost or delay.
Developers can define the infrastructure using
a programming language with Infrastructure as
Code. You need to do the same to bring security
up to DevOps speed [11].

All of the above allows us to assert the
relevance of the issue and calls for proposals
on its resolution. In this publication, we will
focus on the active security approach as a form
of security code that can be considered
preventive security control.

2. Challenges in Organizing
Security in Cloud Environments

2.1. Shared Responsibility Model,
Leading to Confusion over Security
Responsibilities

The problem of cloud providers following a
shared responsibility model, leading to
confusion over who is responsible for securing
what, is a crucial aspect of cloud security that
organizations must address. In cloud
computing, the shared responsibility model is
a widely accepted framework that defines the
division of security responsibilities between
the Cloud Service Provider (CSP) and the cloud
customer (organization using the cloud
services). The exact responsibilities assigned
to each party can vary depending on the type
of cloud service, such as Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), or
Software as a Service (SaaS).

Figure 1: AWS Shared Responsibility Model [12]

https://www.oreilly.com/library/view/devopssec/9781491971413/ch04.html

57

Cloud providers, like AWS, Azure, and Google
Cloud, are responsible for the security of the
underlying cloud infrastructure, including the
physical data centers, networking, and the
hypervisor layer. They also typically provide
security features and controls related to the
overall cloud platform’s integrity and availability.

On the other hand, cloud customers
(organizations) are responsible for securing
their data, applications, configurations, and
access controls within the cloud environment.
This includes securing virtual machines,
containers, databases, and any other resources
they deploy on the cloud platform. Customers
are also responsible for managing user access
and permissions, implementing encryption,
and configuring security settings specific to
their cloud resources.

The challenge arises when there is a lack of
clarity or understanding about where the CSP’s
responsibilities end and the customer’s
responsibilities begin.

2.2. Lack of Visibility—Inadequate
Insight into Cloud Environments

The cloud environment, by its nature, is
complex and consists of numerous services,
components, containers, and microservices
distributed across different regions. This
distributed multi-component structure creates
a vast attack surface, making it extremely
important to maintain complete visibility of all
assets within the cloud ecosystem.

Traditional security tools designed for on-
premises environments find it challenging to
adapt to the dynamic cloud landscape. The
traditional concept of a “perimeter” lacks clear
boundaries, complicating the monitoring and
protection of interactions between various
components.

The lack of visibility leads to “blind spots”
where security teams cannot effectively
monitor and detect events in cloud resources.
Configuration errors, anomalous behavior,
unauthorized access, and potential breaches
can go unnoticed, putting confidential data and
critical business services at risk.

Detecting incidents, indicators of
compromise, identifying the root cause of an
incident (the so-called “patient zero”), tracking
the spread, and containment become

challenging without comprehensive
monitoring of the entire cloud ecosystem.

Compliance with standards is a crucial
requirement for organizations. The absence of
visibility complicates the ability to
demonstrate compliance with standards to
auditors and regulatory bodies, potentially
resulting in fines and reputational damage.

2.3. Complex IAM—Ensuring
Comprehensive Identity and Access
Management Across Multiple Cloud
Services

Modern cloud environments encompass a wide
range of services, each with its own set of user
accounts, access control mechanisms, and
authorization systems. These services can
cover infrastructure resources, applications,
databases, and more, and are often provided by
various cloud providers.

Each cloud provider typically maintains its
repository of identity data, which stores user
information, account details, and access
policies. This diversity of identity data
repositories creates what is known as a user
identity data silo and complicates the task of
unified identity management across all
providers and services.

In multi-cloud environments, users and
applications often require interaction between
different services. Managing access and
permissions necessary for these interactions
can quickly become complex, leading to errors,
misconfigurations, and security gaps.

The vast number of permissions and roles that
need to be defined, managed, and reviewed
increases the likelihood of errors and oversight.

Complex access management scenarios
amplify security risks. Users may be granted
excessive permissions or incorrect
configurations may inadvertently provide
unauthorized access to confidential data. These
vulnerabilities can be exploited by malicious
actors to gain unauthorized access.

58

2.4. Security Configuration
Management—Navigating the
Complexity of Consistent Security
Configurations in Cloud Services

As organizations transition to cloud
environments, the management of security
configurations becomes a paramount concern.
Cloud services offer unprecedented flexibility
and agility, allowing resources to be
provisioned, modified, and decommissioned
rapidly. However, this dynamic nature
introduces a significant challenge: ensuring
consistent and robust security configurations
across the multitude of services, instances, and
platforms that constitute a modern cloud
ecosystem.

Cloud environments are designed for agility,
with resources being created, scaled, and
terminated dynamically. This dynamism
accelerates development and deployment but
complicates the task of maintaining consistent
security settings.

In the cloud, security misconfigurations are
a leading cause of data breaches and cyber
incidents. A single misconfigured security
group, firewall rule, or access policy can expose
sensitive resources to unauthorized access.

Modern cloud environments offer a bunch
of services, each with its security controls,
access mechanisms, and configuration options.
Securing virtual machines, databases,
serverless functions, and containers requires
mastering different configurations.

Multi-cloud and hybrid cloud strategies
often involve services spread across different
cloud providers, regions, and accounts.
Ensuring consistent security configurations
across this scale is a formidable task.

As cloud resources evolve, security
configurations can drift away from best
practices or organizational policies. Manual
interventions and updates can lead to
deviations from desired security settings.

Meeting regulatory requirements and
industry standards demands consistent
security configurations. Failing to maintain
these configurations can result in compliance
violations and legal consequences.

2.5. API Security—Safeguarding
Cloud Environments from
Vulnerabilities in APIs

Cloud services heavily rely on Application
Programming Interfaces (APIs), which can be
vulnerable to attacks. Very often, security
engineers underestimate this vector.

Application Programming Interfaces serve
as a crucial link facilitating interactions
between cloud services. This technology allows
developers to access cloud resources,
manipulate data, and execute functions
remotely. While this streamlined interaction
enhances efficiency, it also exposes APIs to
potential security risks.

Because APIs facilitate communication
between various components, they can become
entry points for attackers. Weaknesses in API
design, implementation, or authentication can
be exploited for unauthorized access, injection
attacks, or data breaches.

Common vulnerabilities that can harm APIs
in cloud environments include:

Injection Attacks: Insufficient input data
validation can lead to injection attacks where
malicious code or commands are inserted into
the input.

Broken Authentication: Weak
authentication mechanisms or improper
session management can allow unauthorized
access to APIs.

Insecure Deserialization: Mishandling
serialized data can result in remote code
execution.

Inadequate Authorization: Flaws in access
control mechanisms can permit users to
perform actions they are not authorized for.

Exposure of Sensitive Data: Mishandling
of data or improper encryption can lead to the
leakage of sensitive information.

In multi-cloud and hybrid cloud
environments, third-party developer APIs
further complicate the security landscape.
Organizations often rely on external APIs for
specialized services, expanding the attack
surface.

59

2.6. Data Protection and Compliance
Challenges Arising from Dispersed
Cloud Data

Cloud environments offer flexibility, allowing
organizations to distribute data among
different services, regions, and even multiple
cloud providers. Data can be stored in
databases, file systems, object stores, and more,
encompassing a wide spectrum of cloud
resources.

Effective data protection requires
encryption both at rest and during
transmission and processing. However,
different cloud services may employ various
encryption methods, key management
techniques, and security levels. Managing
encryption in these services can be complex.

Managing access control and permissions
for decentralized data is a challenging task.
Improperly configured access control can lead
to unauthorized access, data leaks, and
compliance violations.

In multi-cloud environments where data
can be stored on various cloud platforms,
compliance with regulatory standards
becomes even more challenging.

Compliance with data residency and
jurisdiction rules poses a complex challenge.
Ensuring data storage and processing within
the legal boundaries of relevant regulations can
be problematic when data is distributed across
cloud services with different geographical
locations.

2.7. Multi-Cloud and Hybrid
Environments—Navigating Complex
Security Management Across Diverse
Platforms

Multi-cloud and hybrid environments, where
multiple cloud providers are used, each with
different services, interfaces, and security
paradigms, multiply the complexity of security
management.

Each cloud platform can become a silo of
security practices, making it challenging to
maintain consistency in security policies,
access controls, and threat detection
mechanisms.

Effective security management often
requires specialized knowledge for each of the
cloud providers. Teams must understand the

nuances of security features and configurations
for each platform.

Consistent threat detection and response
processes in multi-cloud environments pose a
challenge for security teams. Different
monitoring tools and mechanisms complicate
the standardization of threat detection
procedures and incident response.

In hybrid environments, where data moves
between on-premises infrastructure and
multiple cloud platforms, data protection and
secure data transfer become even more
complex due to a lack of complete visibility.

2.8. Lack of Cloud Security Expertise—
Confronting the Challenge of Insufficient
Cloud Security Knowledge

The rapid evolution of cloud computing has
revolutionized the way organizations operate,
but it has also exposed a critical challenge: the
scarcity of cloud security expertise. As
businesses transition to cloud environments,
they often find themselves grappling with the
complexities of securing these dynamic and
distributed systems. The shortage of skilled
professionals who possess the necessary cloud
security knowledge presents a significant
obstacle to achieving robust cloud security
practices.

Cloud security is a specialized domain that
demands an understanding of both traditional
cybersecurity principles and the unique
intricacies of cloud platforms. Rapid
technological advancements continually
reshape the threat landscape, necessitating
constant learning and adaptation.

Cloud environments encompass an array of
services, each with its own security controls,
configurations, and best practices. Securing
virtual machines, containers, serverless
functions, and data stores requires expertise
that spans a wide spectrum of cloud services.

The demand for cloud security experts
outpaces the available talent pool.
Organizations struggle to find and retain
professionals with the necessary skills to
architect, implement, and manage robust cloud
security measures.

In the absence of cloud security expertise,
misconfigurations become a common risk.
Poorly configured security settings can
inadvertently expose sensitive data, increase

60

attack surfaces, and compromise the overall
security posture.

Effective threat detection and incident
response in cloud environments require
specialized knowledge. Identifying and
responding to cloud-specific threats and
vulnerabilities requires understanding the
nuances of cloud operations.

Different cloud providers offer distinct
security features, tools, and practices. Cloud
security experts must navigate these nuances
to implement consistent security measures
across diverse platforms.

3. “Security as a Code” Approach
for Cloud Environments

Considering all the problems mentioned above,
which can sometimes be a hindrance to
organizations migrating to the cloud,—
“Security as code” (SaC has been the most
effective approach to securing cloud workloads
with speed and agility. At this point, most cloud
leaders agree that Infrastructure as Code (IaC)
allows them to automate the building of
systems in the cloud without error-prone
manual configuration. SaC takes this one step
further by defining cybersecurity policies and
standards programmatically, so they can be
referenced automatically in the configuration
scripts used to provision cloud systems and
systems running in the cloud can be compared
with security policies to prevent “drift” [13]. To

successfully implement the “Security as Code”
approach, we need a comprehensive cloud
strategy that also works as code. The
fundamental idea is that we cannot secure
something using the “Security as Code”
approach if it’s not implemented as code.

Most consumers of cloud services agree that
“Infrastructure as Code” (IaC) allows for the
rapid deployment of services in the cloud
without manual configuration and,
consequently, errors. “Security as Code” takes
this approach further by defining security
policies, standards, and best practices
programmatically so that they can be used by
default in configuration scripts used to set up
cloud services and systems. IT departments can
transition from the eternal balance between
business flexibility and security to the
realization that these elements can be
combined to provide an adequate level of both
without sacrificing either.

Let’s consider a simplified example (Fig. 2):
organizational policies contain a list of
required security controls. Controls are broken
down into rules, which are transformed into
code that is understandable by a Centralized
Compliance Check service. Later, rules are
grouped into policies organized hierarchically
and defined by an inheritance structure. The
Centralized Compliance Check service serves,
as a conditional gate where infrastructure code
is checked for compliance with the resources
that are supposed to be deployed according to
the specified policies [14–15].

Figure 2: Simplified scheme of SaC concept

For example, if an organization sets a policy
that dictates personal data or payment card
data in storage must be encrypted, this policy
will be declared as one of the rules that are
automatically triggered when DevSecOps
deploys cloud resources. A code that violates

the policy is automatically rejected. Examples
of policies could also include requirements
such as container or virtual machine
deployment images must come from trusted
registries, mandatory database backup,
resource replication across two availability

61

zones, mandatory disk encryption for virtual
machines, tagging and naming conventions for
resources, and so on [15].

Policies can be sourced from standards,
regulations, best practices, and
recommendations, including external
institutions such as:

• Cloud Security Alliance (CSA)
• Center for Internet Security (CIS)
• NIST

• GDPR
• HIPAA
• PCI DSS
• SOC2
• Internal
• Others.

In most cases, these requirements and
recommendations can be described as code,
which can serve as preventive, detective, and
reactive controls.

Figure 3: Process of static and dynamic validation according to policy

IaC is a prerequisite preceding the static policy
compliance check. IaC can be implemented
using tools like CloudFormation for AWS,
Deployment management for GCP, or Resource
Manager for Azure, and for a more universal
solution, Terraform or Pulumi. Static policy
checks should be integrated into the
infrastructure code’s CI/CD pipeline and
adhere to GitOps best practices to avoid the
installation of erroneous configurations and to
correct inconsistencies at an early stage.

Detective control involves checking for
inconsistencies in resource changes caused by
uncontrolled factors such as manual changes or
the establishment of a process that does not
adhere to IaC standards. Dynamic policy
checking provides real-time scanning of
infrastructure to confirm its current state.
Reactive control is performed according to
detected non-compliance events and ensures
automatic correction using serverless
functions.

The component of the Centralized Policy
Compliance Verification Service can be
implemented using Open Policy Agent (OPA) or

Regula, both of which are open-source
software. In the Cloud Native Computing
Foundation (CNCF), OPA was adopted as an
incubating project in April 2019 and then
moved to the Graduated maturity level on
January 29, 2021. It provides a unified
framework for policy enforcement across the
stack. OPA allows you to decouple policy
decisions from your services, APIs, and
microservices and manage policies separately
from your application code. OPA can be used in
API management to declaratively define and
enforce policy at multiple layers [16–17].

OPA can work with JSON files and perform
static Infrastructure as Code checks, aligning
with preventive control practices.

Regarding the tool for dynamically checking
the current state’s policy compliance for
already running cloud resources, Cloud
Custodian can be used. It is an open-source
product that serves as both a detective and, if
needed, a reactive control. This tool is built in
Python, agentless, and can be deployed as a
serverless function, with rules described in
YAML format [18].

62

4. Policy examples based on CIS
Amazon Web Services
Foundations Benchmark v2.0.0

All CIS Benchmarks focus on technical
configuration settings used to maintain and/or
increase the security of the addressed
technology, and they should be used in
conjunction with other essential cyber hygiene
tasks like:

• Monitoring the base operating
system for vulnerabilities and quickly
updating with the latest security
patches.

• Monitoring applications and libraries
for vulnerabilities and quickly
updating with the latest security
patches.

In the end, the CIS Benchmarks are designed
as a key component of a comprehensive
cybersecurity program.

This document provides prescriptive
guidance for configuring security options for a
subset of Amazon Web Services with an
emphasis on foundational, testable, and
architecture-agnostic settings [19].

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 1.16. Ensure
IAM policies that allow full “*:*” administrative
privileges are not attached

package

terraform.aws_iam_admin_policies

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] ==

"aws_iam_policy" # Adjust the resource

type as per your Terraform

configuration.

hasFullAdminPrivileges(resource["values

"]["name"]["new"])

 msg = sprintf("IAM policy '%v'

allows full administrative privileges

and should not be attached.",

[resource["values"]["name"]["new"]])

}

hasFullAdminPrivileges(policyName) {

 # Define a list of administrative

privileges you want to deny.

 administrativePrivileges := ["*:*"]

 resource_policy :=

data.aws_iam_policy_document[resource["v

alues"]["policy"]["new"]]

 statements :=

resource_policy["Statement"]

 some i, statement := statements {

 statement.Action ==

administrativePrivileges[_]

 statement.Effect == "Allow"

 policyName ==

resource["values"]["name"]["new"]

 }

}

default allow = true

The policy imports the input.tfplan input,

which represents the Terraform plan.
It uses a deny rule to check each IAM policy

resource in the Terraform plan. If the policy
contains any statements that allow full
administrative privileges (specified as “*:*”), it
generates a denial message.

The hasFullAdminPrivileges function
checks if the IAM policy document contains any
statements that allow *:* (full administrative
privileges).

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 -2.1.1. Ensure
S3 Bucket Policy is set to deny HTTP requests

package

terraform.aws_s3_bucket_policy_validatio

n

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] ==

"aws_s3_bucket_policy"

 not

hasDenyHttpStatement(resource["values"][

"policy"]["new"])

 msg = sprintf("S3 Bucket policy '%v'

does not deny HTTP requests and should

be denied.",

[resource["values"]["bucket"]])

}

hasDenyHttpStatement(policyDoc) {

 statements := policyDoc["Statement"]

 some i, statement := statements {

 statement.Effect == "Deny"

 statement.Action ==

"s3:GetObject"

containsHttpCondition(statement.Conditio

n)

 }

}

containsHttpCondition(condition) {

 keys := keys(condition)

 "IpAddress" in keys

 condition["IpAddress"] ==

{"aws:SourceIp": "HTTP request IP

address"}

}

default allow = true

63

It checks each S3 Bucket Policy resource in the
Terraform plan. If the policy does not contain a
Deny statement that denies HTTP requests, it
generates a denial message.

The hasDenyHttpStatement function checks
if the policy document contains a Deny
statement that specifically denies HTTP
requests for s3:GetObject actions.

The containsHttpCondition function checks
if the Deny statement contains a condition that
involves an HTTP request IP address.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 2.2.1. Ensure
EBS Volume Encryption is Enabled in all
Regions

package

terraform.aws_ebs_volume_encryption

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] == "aws_ebs_volume"

Adjust the resource type as per your

Terraform configuration.

 not isEBSEncrypted(resource)

 msg = sprintf("EBS volume encryption

is not enabled in all regions in the

Terraform configuration.")

}

isEBSEncrypted(resource) {

 encryption_enabled :=

resource["values"]["encrypted"]["new"]

 encryption_enabled == true

}

default allow = true

The policy imports the input.tfplan input,

which represents the Terraform plan.
It uses a deny rule to check each AWS EBS
volume resource in the Terraform plan. If the
encrypted attribute is not set to true (i.e., EBS
volume encryption is not enabled), it generates
a denial message.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 2.3.1. Ensure
that encryption-at-rest is enabled for RDS
Instances

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] ==

"aws_db_instance"

 not isEncryptionEnabled(resource)

 msg = sprintf("RDS instance %s is

not configured with encryption at

rest.", [resource["name"]])

}

isEncryptionEnabled(resource) {

 # Modify this rule to match the

naming convention of your encryption

attribute.

 attribute_exists :=

resource["values"]["storage_encrypted"]

 attribute_value :=

resource["values"]["storage_encrypted"][

"new"]

 attribute_value == true

}

default allow = false

The policy imports the input.tfplan input,

which represents the Terraform plan.
It uses a deny rule to check each AWS RDS

instance resource in the Terraform plan. If the
storage_encrypted attribute is not set to true
(i.e., encryption at rest is not enabled), it
generates a denial message.

In AWS, storage_encrypted is typically used
to enable encryption at rest.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 3.1. Ensure
CloudTrail is enabled in all regions

package terraform.aws_cloudtrail

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] == "aws_cloudtrail"

 not isCloudTrailEnabled(resource)

 msg = sprintf("AWS CloudTrail is not

enabled in all regions in the Terraform

configuration.")

}

isCloudTrailEnabled(resource) {

 # Modify this rule to match the

naming convention of your CloudTrail

attributes.

 attribute_exists :=

resource["values"]["is_multi_region_trai

l"]

 attribute_value :=

resource["values"]["is_multi_region_trai

l"]["new"]

 attribute_value == true

}

default allow = true

The policy imports the input.tfplan input,

which represents the Terraform plan.
It uses a deny rule to check each AWS

CloudTrail resource in the Terraform plan. If

64

the is_multi_region_trail attribute is not set to
true (i.e., CloudTrail is not configured to be
enabled in all regions), it generates a denial
message.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 5.2. Ensure
no security groups allow ingress from 0.0.0.0/0
to remote server administration ports.

package

terraform.aws_security_group_validation

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["type"] ==

"aws_security_group_rule"

isRemoteAdminPort(resource["values"]["fr

om_port"])

isEverywhereAllowed(resource["values"]["

cidr_blocks"])

 msg = sprintf("Security group rule

allows ingress from 0.0.0.0/0 to remote

server administration ports: %v",

[resource["values"]["from_port"]])

}

isRemoteAdminPort(port) {

 port == 22 // Add more remote server

administration ports as needed (e.g.,

3389 for RDP)

}

isEverywhereAllowed(blocks) {

 "0.0.0.0/0" in blocks

}

default allow = true

This policy uses the input.tfplan input,

which represents the Terraform plan.
It checks each AWS Security Group Rule

resource in the Terraform plan. If the rule
allows ingress from 0.0.0.0/0 (anywhere) to
remote server administration ports (e.g., SSH
on port 22), it generates a denial message.

The isRemoteAdminPort function checks if
the rule’s from_port matches a remote server
administration port (e.g., 22 for SSH). You can
add more ports as needed.

The isEverywhereAllowed function checks
if 0.0.0.0/0 is present in the cidr_blocks of the
rule, indicating that it allows ingress from
anywhere.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

CIS Amazon Web Services Foundations
Benchmark v2.0.0 - 06-28-2023 - 4.9. Ensure

AWS Config configuration changes are
monitored.

package terraform.aws_config_monitoring

import input.tfplan

deny[msg] {

 resource = tfplan.resources[_]

 resource["provider"] ==

"provider[\"aws\"]"

 resource["type"] ==

"aws_config_configuration_recorder"

 not hasConfigMonitoring(resource)

 msg = sprintf("AWS Config

configuration changes must be

monitored.")

}

hasConfigMonitoring(recorder) {

recorder["values"]["recording_group"][0]

["all_supported"] == true

}

default allow = true

It checks each AWS Config Configuration

Recorder resource in the Terraform plan. If the
recorder is not monitoring all supported
resource types (all_supported set to true), it
generates a denial message.

The hasConfigMonitoring function checks if
the Configuration Recorder has all_supported
set to true, indicating that it’s monitoring all
supported resource types.

The default allow = true statement at the
end of the policy allows all other resources not
matched by the deny rule.

Rego, however, is a language that works
very differently than most and can be quite
unintuitive at first glance. It’s more similar to
SQL than to common imperative languages like
Python. This means that the learning curve can
be quite steep. Moreover, copy-paste
development will very often not help you
understand Rego—and authoring complicated
policies—better [20].

5. DevSecOps role in Implemen-
tation of “Security as a Code”
Approach

DevSecOps is the evolution of the DevOps
philosophy, which integrates security into the
software development and deployment
process from its early stages. The role of
DevSecOps in the “Security as Code” paradigm
is pivotal, as it ensures that security concerns
are embedded throughout the entire software

65

development lifecycle, providing a proactive
and holistic approach to cloud security.

Let’s consider the fundamental principles of
DevSecOps methodologies and how they

intersect with the “Security as Code” approach.
To aid in understanding, we’ll use a graphical
representation of the software development
lifecycle with security controls highlighted.

Figure 4: A software development cycle with security controls, some of which can be
implemented using the “Security as Code” approach

Let’s review the popular DevSecOps
methodology Shift-Left principle. The principle
of Shift-Left in DevSecOps practices means that
security integration should occur at the early
stages of development. “Security as Code”
precisely facilitates such inclusion of controls,
reducing the risk of deploying unprotected
configurations [21]

Let’s dive deeper, and answer on question—
why Shift-Left security, before the advent of
agile development practices and cloud
computing, developers would request
infrastructure from IT and receive a server
weeks or months later. Over the past two
decades, IT has shifted left. Today development
infrastructure is fully automated and operates
on a self service basis:

Developers can provision resources to
public clouds such as AWS, GCP, or Azure
without involving operations or IT staff:

• Continuous integration and continuous
deployment (CI/CD) processes
automatically set up testing, staging, and
production environments in the cloud or
on-premises and tear them down when
they are no longer needed.

• Infrastructure-as-Code (IaC) is widely
used to deploy environments
declaratively, using tools like Amazon
CloudFormation and Terraform.

• Kubernetes is everywhere, enabling
organizations to provision containerized
workloads dynamically using
automated, adaptive processes.

This shift has tremendously improved
development productivity and velocity, but
also raises serious security concerns. In this
fast paced environment, there is little time for
post-development security reviews of new
software versions or analysis of cloud
infrastructure configurations. Even when
problems are discovered, there is little time for
remediation before the next development
sprint begins.

DevOps organizations realized that they
must also shift security left to avoid
introducing more security risks than security
and operations teams can manage. This
movement is known as DevSecOps, and uses a
variety of tools and technologies to close the
gap and enable rapid, automated security
assessment as part of the CI/CD pipeline [22].

https://www.aquasec.com/cloud-native-academy/cspm/cloud-security-assessment/
https://www.aquasec.com/cloud-native-academy/cspm/cloud-security-assessment/

66

Automated compliance checks in DevSecOps
imply maximum automation and the
elimination of manual components in
configurations, aligning well with the “Security
as Code” approach. Automated security checks
and scanning can be easily integrated into
continuous integration and continuous
deployment (CI/CD) pipelines (Fig. 4). This
ensures that code and infrastructure are
evaluated for security compliance at each stage
of development.

A collaborative approach in DevSecOps
involves cooperation between development,
operations, and security teams. In the context
of “Security as Code”, this collaboration
ensures that all teams understand and adhere
to security requirements. Security experts
guide defining policies, while developers
implement these policies in code.

Code review and analysis are continuous
processes in DevSecOps. In the “Security as
Code” paradigm, this process extends beyond
functional code and encompasses security-
related code. Automated code analysis tools
can help identify security vulnerabilities and
compliance violations.

Continuous monitoring is a fundamental
aspect of DevSecOps, involving ongoing
monitoring of applications and infrastructure.
Using the “Security as Code” approach, you can
monitor the cloud environment for security
policy and configuration deviations.
Automated monitoring tools can rapidly
identify deviations from established security
standards and remediate them to the
appropriate level.

DevSecOps should have incident response
tools for rapid security incident response.
Implementing the “Security as Code” approach
allows for the automation of incident response
concerning deviations from established
practices and policies. The ability to react
quickly is critically important.

The synergy between DevSecOps
methodologies and the “Security as Code”
approach creates a reliable security foundation
for cloud environments. It aligns security with
the principles of automation, collaboration, and
continuous improvement, enabling
organizations to actively address security
challenges in a dynamic cloud landscape [23].

6. Fundamental principles of the
"Security as Code" approach

We can highlight the following fundamental
technological principles for SaC:

• Automation
“Security as Code” relies on automation for

the consistent and scalable implementation of
security policies. This includes automating the
deployment of security controls, vulnerability
detection, and issue remediation.

• Version Control
“Security as Code” should be treated as

software code and managed within a version
control system. This ensures a clear history of
changes, facilitates collaboration among teams,
and allows for testing changes in a controlled
environment before production.

• Reusability
“Security as Code” should be modular and

designed for reusability. This enables different
teams to use and share standardized security
control components and configurations,
reducing the time and effort required for
security implementation.

• Open Standards
“Security as Code” should be built upon

open standards. This provides a more flexible
and vendor-agnostic approach, reducing
dependence on specific providers and allowing
teams to choose the best solutions for various
use cases [24].

Also, there are key organizational principles
for achieving success in the implementation of
SaC:

• Establishing Clear Ownership and
Accountability

The initial principle underscores the
importance of emphasizing ownership and
accountability within an organization. This
involves creating an internal framework to
govern roles, responsibilities, and permissions.
For example, determining who can author
policies and for which aspects of the cloud
infrastructure is vital.

• Develop and Administer Codified
Controls

The second principle revolves around the
creation and management of control objectives
tailored to address specific, identified use
cases. Crafting policy content that is detailed
enough to meet established cloud control
standards is essential. Additionally, it involves

67

efficiently managing an ever-expanding
inventory of codified security assets.

• Implement Cloud Security Controls
Thoroughly

The third and final principle encompasses
the widespread application of security
measures and safeguards wherever feasible.
Employ APIs to embed security mechanisms
into source code management tools, CI/CD
pipelines, and runtime environments.
Continuously perform audits on cloud services
and workloads to assess their security,
resilience, and adherence to regulatory
requirements. Furthermore, establish a unified
framework to enhance visibility, control, and
collaboration across multi-cloud environments.

All the principles mentioned above,
technological and organizational, can help
avoid mistakes in the initial phases of SaC
implementation and are indispensable for
establishing a strong, adaptable, and agile
Security-as-Code program to address the ever-
evolving demands of public clouds [25].

7. Advantages of the “Security as
Code” Approach

The first advantage is speed. To fully realize the
business benefits of the cloud, security teams
must move at a pace they are not accustomed
to in on-premises environments. Manual
security control configurations create friction
that slows down progress and questions the
overall value of the cloud for the business.

The second advantage is risk reduction.
Local security control tools simply do not
account for the nuances of the cloud. Cloud
security requires its components to evolve
throughout the entire development lifecycle.
The only way to achieve this level of
integration is through “Security as Code”.

This approach fosters business growth.
Security and compliance requirements are
becoming increasingly important for company
products and services. In this regard, “Security
as Code” not only accelerates time-to-market
but also expands opportunities for product
innovation and creativity without
compromising security.

Improved collaboration and morale—as
development teams transitioned to more agile
workflows more quickly, it created a certain
gap with security teams that often operated

under older methodologies. When this
approach is applied, teams work in sync and
have a shared understanding because they
essentially speak the same language of code.

Increased visibility and transparency—
with the “Security as Code” approach, security
teams clearly understand which policies are
applied and actively work with them.

8. Summary

In the ever-evolving world of cloud computing,
where flexibility and innovation are
paramount, the importance of robust security
practices cannot be overstated. As
organizations embark on digital
transformation journeys and migrate their
infrastructures to the cloud, the significance of
a dynamic and adaptable approach to security
becomes critical. The concept of ‘Security as
Code” is introduced, a revolutionary concept
that not only aligns with the requirements of
modern cloud environments but also
transforms the fundamentals of cybersecurity.
This publication has shown that “Security as
Code” is more than just a trendy term; it is a
transformational strategy that blends security
principles with software development
practices. By treating security policies,
controls, and best practices as code,
organizations gain the ability to automate,
integrate, and enforce security measures
throughout the entire lifecycle of cloud
resources. One of the key findings of our
research may be that “Security as Code” is
more than just a technological shift; it
represents an evolutionary leap. Teams
comprising developers, operators, and
security experts come together with a shared
goal of safeguarding digital assets. Through
automated testing, continuous monitoring, and
iterative improvements, these teams not only
close vulnerabilities but also promote a culture
of transparent security. Organizations across
various sectors have experienced
improvements in security, streamlined
compliance adherence, and accelerated
incident response times. The concept has
proven effective in various cloud
environments, from startups to enterprises,
providing a standardized environment that
aligns with the dynamics of cloud
infrastructure. “Security as Code” is a resilient

68

strategy capable of adapting to new threats
and technologies.

9. Conclusion

As a result of this research, it can be concluded
that the “Security as Code” approach, when
implemented correctly, can significantly
mitigate the risks posed by the aforementioned
challenges, which represent the most
significant threat to valuable information
assets and resources.

This publication provides us with a
direction for further research aimed at
enhancing the effectiveness of this method. It
also explores the expansion of its application to
a wider range of services offered by cloud
providers and investigates the feasibility and
practicality of its application in environments
such as multi-cloud or hybrid setups.

References

[1] S. Yevseiev, et al., Modeling of Security
Systems for Critical Infrastructure
Facilities, Technology Center (2022).
doi: 10.15587/978-617-7319-57-2.

[2] S. Vasylyshyn, et al., A Model of Decoy
System Based on Dynamic Attributes for
Cybercrime Investigation, Eastern-
European J. Enterp. Technol. 1(9) (121)
(2023) 6–20. doi:10.15587/1729-
4061.2023.273363.

[3] V. Grechaninov, et al., Decentralized
Access Demarcation System
Construction in Situational Center
Network, in: Workshop on Cybersecurity
Providing in Information and
Telecommunication Systems II, vol.
3188, no. 2 (2022) 197–206.

[4] P. Anakhov, et al., Increasing the
Functional Network Stability in the
Depression Zone of the Hydroelectric
Power Station Reservoir, in: Workshop
on Emerging Technology Trends on the
Smart Industry and the Internet of
Things, vol. 3149 (2022) 169–176.

[5] V. Grechaninov, et al., Formation of
Dependability and Cyber Protection
Model in Information Systems of
Situational Center, in: Workshop on
Emerging Technology Trends on the

Smart Industry and the Internet of
Things, vol. 3149 (2022) 107–117.

[6] Z. Xin, et al., Revisit Security in the Era of
DevOps: An Evidence Based Inquiy Into
DevSecOps Industry, IET Softw. 17(4)
(2023) 435–454. doi: 10.1049/sfw2.
12132.

[7] V. Buriachok, V. Sokolov, P. Skladannyi,
Security Rating Metrics for Distributed
Wireless Systems, in: Workshop of the
8th International Conference on
"Mathematics. Information
Technologies. Education": Modern
Machine Learning Technologies and
Data Science, vol. 2386 (2019) 222–233.

[8] V. Buhas, et al., Using Machine Learning
Techniques to Increase the Effectiveness
of Cybersecurity, in: Workshop on
Cybersecurity Providing in Information
and Telecommunication Systems, vol.
3188, no. 2 (2021) 273–281.

[9] R. Kumar, R. Goyal, Modeling Continuous
Security: A Conceptual Model for
Automated DevSecOps Using Open-
Source Software Over Cloud (ADOC),
Comput. Secur. 97 (2020). doi:
10.1016/j.cose.2020.101967.

[10] K. Carter, Francois Raynaud on
DevSecOps, IEEE Software 34(5) (2017)
93–96. doi: 10.1109/ms.2017.3571578.

[11] S. Das, Security as Code, 1st Edition,
O'Reilly Media (2023).

[12] Amazon Web Service Documentation,
Shared Responsibility Model. URL:
https://aws.amazon.com/compliance/s
hared-responsibility-model/?nc1=h_ls

[13] C. Adtani, et al., Security as Code: The
Best (and Maybe Only) Path to Securing
Cloud Applications and Systems (2022).
URL: https://www.mckinsey.com/
capabilities/mckinsey-digital/our-insigh
ts/security-as-code-the-best-and-maybe
-only-path-to-securing-cloud-applicatio
ns-and-systems

[14] R. Ferreira, Policy Design in the Age of
Digital Adoption: Explore how PolicyOps
can drive Policy as Code adoption in an
organization’s digital transformation, 1st
Edition (2022).

[15] X. Zhang (2021). Cloud Governance and
Compliance on AWS With Policy as Code
(2011). URL: https://aws.amazon.com/
ru/blogs/opensource/cloud-governance -

https://doi.org/10.15587/978-617-7319-57-2
https://doi.org/10.1049/sfw2.12132
https://doi.org/10.1049/sfw2.12132
https://doi.org/10.1016/j.cose.2020.101967
https://doi.org/10.1109/MS.2017.3571578
https://www.mckinsey.com/
https://aws.amazon.com/

69

and-compliance-on-aws-with-policy-as-
code/

[16] S. Chevre, A. Soormally, 6 Open Source
Projects to Boost Your Cloud-Native API
Management Game (2023). URL:
https://www.cncf.io/blog/2023/05/24
/6-open-source-projects-to-boost-your-
cloud-native-api-management-game/

[17] T. Sandall, Open Policy Agent Graduates
in the Cloud Native Computing
Foundation (2021). URL: https://blog.
openpolicyagent.org/open-policy-agent
-graduates-in-the-cloud-native-computi
ng-foundation-f00145202a99

[18] X. Zhang, Compliance as Code and Auto-
Remediation with Cloud Custodian
(2020). URL: https://aws.amazon.com/
blogs/opensource/compliance-as-code-
and-auto-remediation-with-cloud-custo
dian/

[19] C. Spiess, et al., CIS Amazon Web
Services Foundations Benchmark v2.0.0
(2023). URL: https://www.scribd.com/d
ocument/664903767/CIS-Amazon-Web-
Services-Foundations-Benchmark-v2-0-0

[20] J. Martin, Introduction ro Open Policy
Agent (OPA) Rego Language (2022).
URL: https://spacelift.io/blog/open-poli
cy-agent-rego

[21] B. Lee, Using Open Policy Agent (OPA) to
Apply Policy-as-Code to Infrastructure-
as-Code (2022). URL: https://cloudse
curityalliance.org/blog/2020/04/02/us
ing-open-policy-agent-opa-to-apply-poli
cy-as-code-to-infrastructure-as-code/

[22] S. Gunja, Shift Left vs Shift Right: A
DevOps Mystery Solved (2023). URL:
https://www.dynatrace.com/news/blog/
what-is-shift-left-and-what-is-shift-right

[23] G. Wilson, DevSecOps A Leasder’s Guide
to Producing Secure Software Without
Compromising Flow Feedback and
Continuous Improvement (2020).

[24] Written by Mike Tyson of the Cloud
Security as Code(SaC): How to
Implement and Why Use it? (2023). URL:
https://blog.brainboard.co/security-as-
code-3d06e0d4cd80

[25] T. Karam, Securing DevOps: The ABCs of
Security-as-Code (2022). URL:
https://cloudsecurityalliance.org/blog/
2022/01/19/securing-devops-the-abcs-
of-security-as-code/

https://blog/
https://aws.amazon.com/
https://www.scribd.com/d
https://spacelift.io/blog/open-poli
https://cloudse/

