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Abstract  
The objective of this study is to define and investigate the families of square matrices of 
order 2 with a commutative multiplication operation to be used in cryptographic 
information transformation. The general linear group of order n over the prime field of 
integers modulo p has been investigated. Six families of matrices from the general linear 
group of order 2 for which the multiplication operation is commutative have been 
defined. The current study has found the cardinalities of these families. The study has also 
regarded the family of matrices from the general linear group of order 2 with a 
commutative multiplication operation, extended by an identity matrix. The research has 
revealed that this matrix family is a multiplicative abelian group. For this purpose, the 
authors have proved that the axioms of the group are fulfilled, confirmed that the 
multiplication is commutative, and demonstrated the order of the group. The results of 
this study create prerequisites for using the obtained multiplicative abelian groups of 
square matrices of order 2 while solving the tasks of constructing cryptographic key 
agreement protocols, asymmetric encryption algorithms, and three-pass cryptographic 
protocols. 
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1. Introduction 

Commutative operations play an essential role 
in cryptographic information transformation 
algorithms widely used in modern information 
and communication systems, smart 
technologies, and the Internet of Things. In 
particular, key agreement procedures, 
asymmetric encryption, and three-pass 
cryptographic protocols apply commutative 
cryptographic transformations [1–5]. Some of 
the classic cryptographic schemes that deploy 
commutative exponentiation in modular 
arithmetic (modular exponentiation) are the 
Diffie-Hellman key agreement protocol [6], RSA 
[7], SRA [8], Massey-Omura cryptosystem [9]. 

The scientific search for commutative 
cryptographic transformations is still relevant 
today. Algorithms whose strength relies on the 
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computational complexity of factorization and 
discrete logarithm procedures are not 
protected against attacks with quantum 
computers and can be broken over polynomial 
time [10]. 

Moldovyan et al. [11] refer to the literature 
[12] as one of the first attempts to solve the 
problem of building a post-quantum 
commutative cipher. The proposed approach is 
based on the hidden discrete logarithm 
problem, however, this approach does not 
achieve an increase in cryptographic strength 
[13]. Methods for applying forms of the hidden 
discrete logarithm problem have been 
developed in studies [14–16] and are based on 
operations in a multidimensional vector space. 
In the study [14], the authors propose a secure 
encryption method based on commutative 
transformations. The three basic components 

mailto:a.b.skutskyi.asp21@chdtu.edu.ua
mailto:o.kharin@chdtu.edu.ua


290 

of this method are the following cryptographic 
protocols: Diffie-Hellman key agreement 
protocol [6], Pohlig-Hellman commutative 
encryption algorithm [17], and Shamir three-
pass protocol [8]. An exponentiation cipher is 
used to perform commutative encryption. 

Kryvyi [18] has demonstrated a method for 
constructing a symmetric cryptosystem based 
on the properties of finite associative-
commutative rings with unity and discusses 
conditions for using discrete logarithm 
functions in the rings. 

The study [19] develops encryption using 
cryptography methods such as Diffie-Hellman, 
commutative supersingular isogeny, and 
group action inverse problems. 

Examples of using commutative encryption 
to protect secret key exchange are offered in 
the studies [20–21]. Research undertaken by 
Sihare [22] further develops the schemes and 
offers a dynamic multi-party quantum key 
agreement protocol. 

Studies [23–26] use permutations to 
represent data, and operations on permutations 
to construct key agreement protocol [27] and to 
improve three-pass cryptographic protocol, 
including for use in noisy channels [28–30]. 

A previous study [31] suggests using public-
key cryptography based on commutative 
semirings of tropical circular matrices, where 
multiplication is the ordinary addition of 
numbers and there is no ordinary 
multiplication of numbers in the tropical 
semiring. 

Shamir’s three-pass random matrix 
ciphering mechanism [32] uses a three-pass 
protocol with encryption operators that are 
random commutative matrices. 

The current study focuses on identifying 
and researching families of square matrices 
with commutative multiplication. The matrices 
will be limited by 2×2 dimension, and their 
elements will belong to the prime field of 
integers modulo p. 

2. Families of Commutative 2×2 
Matrices 

We first introduce a definition. 
Definition 1 [33–34]. A general linear 

group of order n  over any field F  or ring R  is 
a group of invertible matrices n n  containing 
elements from F  (or R ) with ordinary matrix 

multiplication as the group multiplication 
operation. 

( ),GL n F  will denote the general linear 

group of order n  over the field F . 
Note that the square matrix A is invertible if 

and only if its determinant 0A   [35]. 

Here, we consider the group 

, , , , , 0p

a b
A a b c d Z A

c d

   
 = =    

   
, where 

pZ  is the prime field of integers modulo p . 

Then, ( )2, pGL Z = . 

Theorem 1. Multiplication is commutative 
for the following families of matrices  : 

1

1 0
, , , 0, 0

0
pt t a Z t a

a

   
 =      

   
, 

2

1 0 , , , 0,
,

1 1 0

pt a k Z t
t

a ak ak

    
 =   

+ +    
, k  is 

fixed, 

3

1 , , , 0,
,

0 1 1 0

pa t a k Z t
t

ak ak

    
 =   

+ +    
, k  is 

fixed, 

4

1 , , ,
,

0 0, 0

pa t a b Z
t

b t b

   
 =   

    
, a , b  are fixed, 

5

0 1 , , ,
,

0, 0

pt a b Z
t

b a t b

   
 =   

    
, a , b  are fixed, 

( )6

, , , , 0, 0,1
,

0

pt a b k Z t ba
t

a a k bb a k

     
 =   

+ − +   

, b , k  are fixed. 
Proof. 
Note that in the general case,   is non-

abelian. 
Consider the following cases: 

0b c= = , 0ad   
0b =  or 0c = , 0ad   
0bc  , 0ad =  
0ad  , 0bc  . 

Case 1: 0b c= = , 0ad  . 
In this case, 

0 1 0

0 0

a b a
A a

c d d d a

     
= = =     
     

. The set of 

such diagonal non-degenerate matrices is 
equivalent to the set 

1

1 0
, , , 0, 0

0
pt t a Z t a

a

   
 =      

   
, which 
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forms an abelian group [36]: for 1,A B  , 

AB BA=  is true. 
Case 2: 0b =  or 0c = , 0ad  . 
Let 0b =  and 0ad  . Then, matrix 

0 1 0a b a
A a

c d c d c a d a

     
= = =     
     

. The set of 

such matrices is a family of non-
degenerate lower triangular matrices 

1 0 , , ,
, .

0, 0

pt a b Z
t

a b t b

   
 =   

    
 According to [36], 

  forms a group by multiplication. 

Let ,A B  and 
1 0

A
a b

 
=  
 

, 
1 0

B
x y

 
=  
 

. 

The product 
1 0

.A B
a bx by

 
 =  

+ 
The product 

1 0
B A

x ay by

 
 =  

+ 
. 

Value A B B A =  , if a bx x ay+ = +  or 

( ) ( )1 1x b a y− = − . If 0a x= = ,   degenerates 

into 1 , which is abelian. If , 0a x  , we assume 

that 
1 1b y

k
a x

− −
= = , pk Z . Then 

1,

1;

b ak

y xk

= +


= +
 

and matrices 
1 0

1
A

a ak

 
=  

+ 
, 

1 0

1
B

x xk

 
=  

+ 
, 

where 0a  , 0x  , 1 0ak +  , 1 0xk +  , 

pk Z  . 

Then 2

1 0 , , , 0,
,

1 1 0

pt a k Z t
t

a ak ak

    
 =   

+ +    
 

is an abelian group, where a  and t  values may 
be arbitrary, while k  value is a fixed 

parameter of group 2 . 

Adopting that 0c = , 0ad  , and reasoning 
by analogy, we can prove that a group of non-
degenerate upper triangular matrices of 

0

a b
A

d

 
=  
 

 type is abelian if it forms the group 

3

1 , , , 0,
,

0 1 1 0

pa t a k Z t
t

ak ak

    
 =   

+ +    
. 

Case 3: 0bc  , 0ad = . 
Let 0bc   and 0d = . Then 

1

0 0

a b a b a b
A a

c d c c b

     
= = =     
     

. Such 

matrices define the set 

1 , , ,
,

0 0, 0

pa t a b Z
t

b t b

   
 =   

    
. 

Let ,A B  and 
1

0

a
A t

b

 
=  

 
, 

1

0

x
B s

y

 
=  

 

. An equality A B B A =   means 

ax y a ax b x

bx b ay y

+ +   
=   

   
 or 

,

.

x a

y b

=


=
 

Therefore, if 0bc   and 0d =  the commutative 

family is the set 4

1 , , ,
,

0 0, 0

pa t a b Z
t

b t b

   
 =   

    
, 

where a  and b  are fixed. 
Taking 0bc  , 0a = , it can be shown by 

analogy that the commutative family is the set 

5

0 1 , , ,
,

0, 0

pt a b Z
t

b a t b

   
 =   

    
, where a  and b  

are fixed. 
Note that the families 4 , 5  are not closed 

under multiplication, so they do not form a 
group. 

Case 4: 0ad  , 0bc  . 

Since 0b  , 
1a b a b

A b
c d a c a d

   
= =   
   

. 

The set of such matrices forms the set of non-
degenerate matrices 

1 , , , , 0,
,

0, 0

pa t a b c Z t
t

b c b ac b

    
 =   

 −    
. 

Let ,A B  and 
1a

A
b c

 
=  
 

, 
1x

B
y z

 
=  
 

. 

The product 
ax y a z

A B
bx cy b cz

+ + 
 =  

+ + 
. The 

product 
ax b x c

B A
ay bz y cz

+ + 
 =  

+ + 
. 

Equality A B B A =   is achieved if 

;

;

;

.

ax y ax b

a z x c

bx cy ay bz

b cz y cz

+ = +


+ = +


+ = +
 + = +

 It follows that 
;

.

y b

c a z x

=


− = −
 

Let c a z x k− = − = , pk Z . Then 

1a
A

b a k

 
=  

+ 
, 

1x
B

b x k

 
=  

+ 
, and 

( )6

, , , , 0, 0,1
,

0

pt a b k Z t ba
t

a a k bb a k

     
 =   

+ − +   
 is 
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a commutative family, wherein a  and t  values 

may be arbitrary, while b  and k  values are 6  

fixed parameters. 
Now, we have got all 1 6 −   families of 

matrices from ( )2, pGL Z = , which 

multiplication is commutative. 
The theorem is proved. 
The cardinality of each 1 3 −   family is 

equal to ( )
2

1p − , and the cardinality of each 

4 5 −   family is equal to 1p − , while the 

cardinality of 6  family is ( )( )1p p l− − , where 

 0;1;2l =  is the number of integer roots of the 

equation ( )2 0 moda ka b p+ − =  concerning 

the variable a . The l  value is defined by b  and 
k  parameters. 

3. Commutative Family of 2×2 
Matrices with Identity Matrix 

Consider the matrix family 6  supplemented by 

an identity matrix, as well as the case when 0b =

, since it does not affect the commutativity of the 
matrices from 6 . We will denote this family by 

( )

( )

,

1 1 0
, ,

0 1
2, .

, , , , , , 0,

0

b k p

p

a
t s

b a k
CGL

t s a b k Z t s

a a k b

    
     

+    
=  

  
 + −  

 

Theorem 2. The matrix family 

( ), 2,b k pCGL Z  is a commutative (abelian) 

group under multiplication. 
Proof. 
We will prove that the group axioms are 

fulfilled for ( ), 2,b k pCGL Z  and demonstrate 

that the multiplication operation in 

( ), 2,b k pCGL Z  is commutative. 

1. ( ), 2,b k pCGL Z  has a single identity 

element: 
1 0

0 1
E

 
=  
 

. 

2. The operation of multiplying elements in 

( ), 2,b k pCGL Z  is associative since this is a 

general property for matrices. 

3. For each matrix ( ), 2,b k pA CGL Z , there 

is an inverse matrix ( )1

, 2,b k pA CGL Z−  : 

1 1A A A A E− − =  = . 

Thus, if 
1 0

0 1
A s

 
=  

 
, then 

1

1 1
1 0 1 0

0 1 0 1
A s s

−

− −
    

=  =     
    

. In pZ , for 

each ps Z , there is an inverse element 1s− : 

1 1 1s s s s e− − =  = = , that is unique. Further, 
while proving this theorem, we will neglect 
multipliers s  and t  without limiting the 
generality of the foregoing. 

Let 
1a

A
b a k

 
=  

+ 
. 

Then 

( )

1

1
1 11a a k

A
b a k b aa a k b

−

−
+ −   

= =   
+ −+ −   

. 

Let us assume that 
( )

1
' 0t

a a k b

−
= 

+ −
, 

'a a k= − − . Then, 

( )1

,

' 1
' 2,

'
b k p

a
A t CGL Z

b a k

−  
=   

+ 
. 

Moreover, it follows therefrom that 
1

1 1a c
E

b a k b c k

−

  
=  

+ +  
 if and only if a c= . 

4. ( ), 2,b k pCGL Z  is closed under 

multiplication. 

Let ( ),, 2,b k pA B CGL Z . If A E=  or B E= , 

this property is obvious. 

Consider the situation when 
1a

A
b a k

 
=  

+ 
 

and 
1x

B
b x k

 
=  

+ 
 for arbitrary , pa x Z . 

Product 
1 1a x

A B
b a k b x k

  
 = =  

+ +  
 

( ) ( )( )

ax b a x k

b a x k b a k x k

+ + + 
=  

+ + + + + 
. 

If 0a x k+ + = , then 

( )
0 1 0

0 0 1

ax b
A B ax b

ax b

+   
 = = +    

+   
. 

Since 0A   and 0B  , then 
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0A B A B =    and 0ax b+   

correspondingly. From whence it follows that 

( ), 2,b k pA B CGL Z  . 

If 0a x k+ +  , then 

1
1

ax b

a x k
A B

ax ba x k
b k

a x k

+ 
 + +

 =  
++ +  + 

+ + 

. Let 

1
0t

a x k
= 

+ +
 and 

ax b
y

a x k

+
=

+ +
. Then 

( ),

1
2,b k p

y
A B t CGL Z

b y k

 
 =  

+ 
. 

5. ( ), 2,b k pCGL Z  is an abelian group. 

If A E= , then A B E B B B E B A =  = =  = 
. 

Let 
1a

A
b a k

 
=  

+ 
 and 

1x
B

b x k

 
=  

+ 
. 

Then 
( ) ( )( )

ax b a x k
A B

b a x k b a k x k

+ + + 
 =  

+ + + + + 
 

and 
( ) ( )( )

ax b a x k
B A

b a x k b x k a k

+ + + 
 =  

+ + + + + 
, 

from where it follows that A B B A =  . 
The theorem is proved. 
To exponentiate the square matrix 

a b
A

c d

 
=  
 

, we will use the following 

expression from [37]: 

1

1

n n nn

n n n

u du bu
A

cu u au

+

+

− 
=  

− 
, (1) 

where 

( ) ( )1 1 1n n n n nu a d u A u tr A u A u+ − −= + − = − , 

( )tr A  is a trace of the matrix A  [38]; 

0 0u = , 1 1u = . 

For a matrix group element 

( ),

1
2,b k p

a
A CGL Z

b a k

 
=  

+ 
, we obtain 

( ) 2tr A a k= + , ( ) 0A a a k b= + −  . Then 

( ) ( )( )1 12n n nu a k u a a k b u+ −= + − + −  and 

( )1

1

n n nn

n n n

u a k u u
A

bu u au

+

+

 − + 
=  

− 
. 

Note that 0
nnA A=  . 

Since ( ), 2,b k pCGL Z  is a commutative group 

under multiplication, ( ), 2,n

b k pA CGL Z . 

According to (1): 
If 0nu = , then 

( )1

1 ,

1

0 1 0
2,

0 0 1

nn

n b k p

n

u
A u CGL Z

u

+

+

+

   
= =    

  
. 

If 0nu  , then 

( )

1

,

1

1

2,

n

nn

n b k p

n

n

u
a k

u
A u CGL Z

u
b a

u

+

+

 
− − 

 = 
 

− 
 

. 

Theorem 3. The order of the matrix group 

( ), 2,b k pCGL Z  for 2 24 pD k b u Z= +    is 

2 1p − . 

Proof. 
It is appropriate at this point to recall that 

( )

( )

,

1 1 0
, ,

0 1
2, .

, , , , , , 0,

0

b k p

p

a
t s

b a k
CGL

t s a b k Z t s

a a k b

    
     

+    
=  

  
 + −  

 

Values b  and k  are fixed for the group, then 

, , pt a s Z , , 0t s   are variable. Then, the 

number of different values that matrices 

1a
t

b a k

 
  

+ 
 may take on is equal to the 

number of different possible pairs  ,t a  with 

the given restraints. The value t  may take on 

1p −  different values from p  ( )0t  . Value a  

is restricted by the condition ( ) 0a a k b+ −  . 

For 2 24 pD k b u Z= +   , this equation does 

not have integer roots concerning the variable 
a , therefore, it can take on p  different values 

with pZ . 

The number of different values that matrices 

1 0

0 1
s
 
  
 

 may take on is equal to the number 

1p −  of different possible values ps Z , 0s  . 

Therefore, the order of the matrix group 

( ), 2,b k pCGL Z  is ( ) 21 1 1p p p p− + − = − . 

The theorem is proved. 
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Thus, for 2 24 pD k b u Z= +   . 

( ), 2,b k pCGL Z  is a multiplicative abelian group 

of order 2 1p − . 

Remark 1 [39]. For prime 3p  , the 

number of nonzero values pD Z : 
2

pD u Z=   

and the number of pD Z : 
2

pD u Z   values 

coincide and are equal to 
1

2

p −
. 

4. Conclusion 

The paper defines six families of matrices from 

the general linear group ( )2, pGL Z  with order 

2 over the prime field of integers modulo p  

with commutative multiplication operation. 
The set cardinality for the defined families has 
been determined. 

The research results indicate that the matrix 

set 

( )

1
,

, , , , 0,

0

p

a
t

b a k

t a b k Z t

a a k b

  
  

+  
 

  
 + −  

 supplemented by the 

matrix set 
1 0

, , 0
0 1

ps s Z s
   
    

   
 forms an 

abelian group under multiplication. The order of 

this group is 2 1p − . 

Further studies of square matrix groups 
commutative under multiplication, may 
involve the selection of matrix parameters, as 
well as their application in cryptographic 
transformation operations. 
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