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Abstract 
The basis of transfer learning methods is the ability of deep neural networks to use knowledge from one 
domain to learn in another domain. However, another important task is the analysis and explanation of 
the internal representations of deep neural networks models in the process of transfer learning. Some 
deep models are known to be better at transferring knowledge than others. In this re-search, we apply 
the Centered Kernel Alignment (CKA) method to analyze the in-ternal representations of deep neural 
networks and propose a method to evaluate the ability of a neural network architecture to transfer 
knowledge based on the quantitative change in representations during the learning process. We 
introduce the Transfer Ability Score (TAs) measure to assess the ability of an architecture to effectively 
transfer learning. We test our approach using Vision Transformer (ViT-B/16) and CNN (ResNet, 
DenseNet) architectures in computer vision tasks in several datasets, including medical images. Our 
work is a contribution to the field of explainable AI and an attempt to explain the learning transfer 
process. 
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1. Introduction 

Excellent results of deep learning models are mainly achieved by fine-tuning models that are pre-
trained on Big Data. Knowledge transfer is one of key approaches to achieving high performance. 
Models learn to transfer and generalize knowledge in one data field (target domain) using 
information obtained in another one (source domain). In our work, we consider the process of 
knowledge transfer from the point of view of the similarity of feature representations. The 
contribution of this research can be divided into several points. First, we propose a method for 
evaluating the ability of a particular deep neural network (DNN) architecture to transfer 
knowledge to a new domain. We also compare different DNN architectures (ViT and CNNs) on 
different tasks in terms of the ability to transfer knowledge and explore the dynamics of the 
similarities of internal features representations in the process of fine tuning. 

2. Related work 

Various methods are used to evaluate the similarity of neural representations: Linear-Reg [1], 
SVCCA[2], PWCCA[3], HSIC[4], but the most common is the Central Kernel Alignment (CKA) 
method. The CKA analysis in [5] shows the block structure of CNN. The paper [6] notes the 
fundamental differences between ViT and CNN in terms of the similarity of representation. There 
are many works that explore the problem of knowledge transfer [7–11]. In [12–14] it is argued 
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that ViT has better transfer learning performance than CNN in the medical imaging task. LEEP, 
NCE, LogMe, OTCE [15–19] have been proposed to assess the transfer knowledge ability of a DNN. 
 

3. First level heading 

The deep neural network 𝐷𝑁𝑁𝜃(𝑥𝑖) =  𝑦𝑖 is mapping from the example 𝑥𝑖 space to the class labels 
𝑦𝑖 space. DNN=fL○…○f1. where functions fi, 1 ≤ 𝑖 ≤ 𝐿, are called layer functions, θ is a set of 
parameters. The design paradigms of modern DNN model architectures are divided into 
architectures based on the convolution (CNN) [20] and self-attention (ViT) [21]. Due to the large 
number of existing DNN architectures, the question arises as to whether each one is suitable for 
efficient transfer learning.  Let 𝑋, 𝑌 ∈  𝑅𝑛×𝑑 denote the 2 sets of neural activations of layer i and 
j of the DNN model with d = d1 and d2 neurons respectively in response to a batch of n examples. 
The measure CKA ∈ [0,1] shows how sets 𝑋 and 𝑌 are similar to each other. The CKA is based on 
the principle of the Hilbert-Schmidt Independence Criterion (HSIC) [22, 23]: 

𝐻𝑆𝐼𝐶(𝑋, 𝑌)  =  
1

(𝑛−1)2 𝑡𝑟(𝑋𝑋𝑇𝑌𝑌𝑇) = |𝑐𝑜𝑣(𝑋𝑇𝑌𝑇)|𝐹
2 , (1) 

where tr is the trace matrix, cov is the covariance matrix, F is the Frobenius norm, n – the 
number of examples in a batch. Linear CKA can be calculated as follows: 

𝐶𝐾𝐴(𝑋, 𝑌) =
𝐻𝑆𝐼𝐶(𝑋,𝑌)

√𝐻𝑆𝐼𝐶(𝑋,𝑋)𝐻𝑆𝐼𝐶(𝑌,𝑌)
, (2) 

We propose a Transferability score (TAs) – a measure of the ability of a DNN to transfer 
knowledge to a new domain. Consider the problem of transferring knowledge by the model with 
architecture 𝐴𝑘 from source domain 𝐷𝑆  to target domain 𝐷𝑡 . The adaptation to the 𝐷𝑡  can be 
interpreted via evolving of the feature space on different layers. A slight change in feature 
representations on different layers during finetuning on domain 𝐷𝑡  indicates that the DNN has a 
high ability to transfer knowledge to a new domain. In contrast significantly change shows that 
the information extracted from 𝐷𝑠  is not enough to generalize knowledge to a new domain 𝐷𝑡 , or 
the domains are very different and a substantial change in the learned features representation is 
required. A low TAs value is an indication of less parameter change during DNN training. 

 
Table 1 
Empirical comparison of DNN architectures on CIFAR-10 Dt. 

Architecture Test accuracy Number of layers TA score 

ResNet-50 86.7 151 0.1737 
ViT-B/16 95.2 140 0.1528 
DenseNet-121 84.3 433 0.2574 

 
Let {𝑋𝑚}𝑚=1

𝑛 = {𝑋1, 𝑋2. . 𝑋𝑛} is a set of representations for model DNNX with n1 layers trained 
on Ds and {𝑌𝑚}𝑚=1

𝑛 = {𝑌1, 𝑌2. . 𝑌𝑛} is a set of representations for model DNNY with n2 layers fine-
tuned on Dt. Let’s define CKA matrix M1, where 𝑚1𝑖𝑗  is the value of the 𝐶𝐾𝐴(𝑋𝑖 , 𝑋𝑗) between the 𝑋 

representations on layers i and j. And CKA matrix M2, where 𝑚2𝑖𝑗  is the value of the 𝐶𝐾𝐴(𝑋𝑖 , 𝑌𝑗) 

between the 𝑋 and 𝑌 representations on layers i and j, respectively. Let’s denote 𝑀′ = 𝑀1 − 𝑀2, 
𝑀′ shows how much the representations on different layers have changed after fine-tuned on the 
target domain. 𝑚′𝑖𝑗  – i,j-th element of matrix 𝑀′. We estimate the ability of a model with 𝐴𝑘 

architecture to transfer knowledge (Transferability score – TAs) from the 𝐷𝑠  domain to the 𝐷𝑡  
domain via a quantitative change in the feature space after fine-tuning and define it as 𝑇𝐴𝑠 =
∑ |𝑚′𝑖𝑗| /𝑛2𝑛

𝑖,𝑗=1 . The 𝑚′𝑖𝑗  values show the absolute change in the similarities of representations. 

The lower the Transferability score, the greater the DNN model's ability to transfer knowledge. 
In addition, the 𝑀′ matrix provides a visual understanding of how much the similarity of 
representations on different layers of the DNN has changed after fine tuning on data in the 𝐷𝑡 . 



4. Experiments 

We test ResNet-50 [24], ResNet-101, DenseNet-121[25] and ViT-B/16 architecture models pre-
trained on ImageNet-1k [26]. We analyze the ability of various DNN models to transfer knowledge 
to a new target domain on several datasets: Eurosat (ESAT) [27], PatchCamelyon (PCAM) [28], 
The Cars dataset [29], DTD [30], CIFAR-10 [31]. For DNN training we used Adam [32] stochastic 
optimizer, lr = 5∙10-5, batch size = 32. 
 

The success of transfer learning depends on the similarity between the 𝐷𝑠  and 𝐷𝑡 : the more 
similar the data, the more effective the transfer of knowledge [8,33]. Difference between the CKA 
matrices showing the difference between the source and fine-tuned models for different 𝐷𝑡  
(Figure 1). ImageNet's 𝐷𝑠  partially includes information contained in DTD, CIFAR-10, and 
Stanford cars, so the representations do not change as much as for PCAM and ESAT, which are 
very different from ImageNet. To adapt to the PCAM and ESAT domains, the DNN model needs to 
learn new feature representations, which is strongly reflected in the 𝑀′ matrices. It can also be 
seen that the ViT-B/16 architecture changes representations less significantly than ResNet-50, 
which indicates that ViT-B/16 are able to extract more information from 𝐷𝑠  and it is easier for 
ViT to adapt to 𝐷𝑡 . This is consistent with the greater accuracy of ViT models in knowledge 
transfer than CNN models (Table 1).  

 
The dynamics of TAs during fine-tuning to a new dataset shows that when the accuracy of the 

test stabilizes, the values of the TA score also stabilize (Figure 2). In ViT, we observe a slight 
change in representations, because when trained on 𝐷𝑠 , the ViT model extracts more complete 
information from a large dataset and generalizes better, and when adapted to 𝐷𝑡 , the adaptation 
of the feature space is not so significant [34], which is consistent with the lower value of TAs.  

 
 

 
Figure 1: Differences in the representations of the 𝑀′ matrices for different target domains. 

 



 
Figure 2: Dynamics of TAs in the fine-tuning process, ResNet-50 and ViT-B/16. 

 

5. Discussion 

In this paper, we touch upon the issue of interpreting the change in the similarity of internal 
features representations in the transfer learning process. We have proposed a method to evaluate 
the ability of a DNN architecture to transfer knowledge from the source domain to target domain 
based on similarity of feature representations. Experiments were performed for several 
architectures on different datasets. Based on TAs we can conclude the ViT architecture has a 
better ability to transfer knowledge than CNN models, which is consistent with previous research 
[7-9]. 
 

Improving our approach may be useful for choosing the optimal architecture. For future 
research, we propose to pay attention to the transfer of knowledge not only within the modality 
of images, but also cross-modality, for example, the use of features extracted from an image for 
an audio or text classification task. 
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