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Abstract
EEG microstates have distinct scalp potential topographies, often captured by four microstate maps
explaining 64-84% of brain dynamics variance using clustering methods. Recent research suggests 5-15
cluster maps are needed to account for 80% of the variance. The clustering algorithms employed are
typically chosen arbitrarily, with tools like Cartool and EEGLAB only supporting a limited range of
shallow clustering methods. Such methods can be suboptimal for complex, high-dimensional data.
While deep clustering has shown promise in fields like computer vision and NLP, its potential for
EEG microstates remains underexplored. This study examines the efficacy of deep clustering on EEG
microstates, proposing a unified framework that combines representation learning and clustering for
improved microstate analysis.
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1. Introduction

Microstates are pivotal in revealing the intricate temporal and spatial nuances of multichannel,
fluctuating EEG signals [1, 2]. These EEG microstates are semi-stable phases enduring between
60 to 120 ms [3]. While early microstate analyses were centered on alpha-filtered EEG
signals [4, 5, 6], contemporary methods have evolved to focus on a broader range of signals,
including both broadband and select narrowband signals [7, 8]. This broadening scope enables
a deeper understanding of varying spectral profiles during rest, tasks, and specific activities.
Furthermore, EEG microstates have the unique ability to depict global brain patterns that
change dynamically over time [9]. Microstate computation involves a series of well-defined
steps, as illustrated in Figure 1 [10, 11]. The process begins by preprocessing raw EEG signals
to derive the Global Field Power (GFP), essentially representing the standard deviation of all
electrodes at a specific time point, as indicated in part B of the figure. The next step involves
identifying the local maxima in the GFP over time. These maxima’s corresponding electrode
values then serve as input for clustering algorithms, such as k-means and hierarchical clustering
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Figure 1: Illustration of the current state-of-the-art microstate architecture pipeline.

[12]. These algorithms yield several distinct cluster maps, highlighted in part C of the figure.
The process culminates with back fitting, where each time point from the original signal is
labelled based on spatial similarity to the identified cluster maps. This generates microstates,
offering a dimensionally reduced sequence of topographies for the initial EEG signal [9].

Microstates offer distinct scalp potential mappings that encapsulate the spatial and temporal
dimensions of EEG brain signals[13]. Typically, clustering methods produce four key microstate
maps, accounting for 64-84% of the variance in brain dynamics. Each map corresponds to
specific brain regions [14, 15]. For instance, Microstates A and B are linked to the brain’s
temporal and occipital areas. Microstate C represents areas like the anterior cingulate cortex
(ACC), dorsolateral prefrontal cortex (DLPFC), and insula. In contrast, Microstate D pertains to
the right dorsal and ventral brain regions. Although EEG microstates are widely recognized
tools, several ambiguities persist in their computation [16]. Many studies suggest that the four
principal cluster maps account for up to 80% of the global variance. Yet, research by Seitzman
indicates that these maps only explain between 62% and 69% of this variance [10]. Recent
findings also suggest that between five to fifteen cluster maps may be necessary to capture 80%
of the variance. Additionally, selecting clustering algorithms for generating these maps often
seems arbitrary. While traditional choices like modified k-means and agglomerative hierarchical
clustering are prevalent [12], the broader clustering research field has unveiled hundreds of
specialized algorithms [17]. And while deep clustering techniques have demonstrated superior
performance in contemporary image datasets [18, 19, 20], their integration into the microstate



computation process remains uncharted territory. There’s also a pressing need for a comprehen-
sive framework in the microstate domain that allows for interactive and iterative representation
learning and clustering.

2. Problem Statement

The assumption of microstate theory is the existence of a finite number of non-overlapping,
quasi-stable brain activation states leading to microstates. However, the problem within
microstate theory is the lack of stability in the number of cluster maps learnt from shallow
clustering (modified k-means, hierarchical clustering) and the resulting EEG microstates, which
can explain up to 80% of the variance from the input EEG signal. To the aforementioned
problem statement, the Research Question (RQ) is formulated as follows:

(RQ)- To what extent do deep clustering methods improve the identification and stability of
cluster maps and enhance the efficiency of microstate sequences across multiple resting and
cognitive states over shallow clustering?

The remaining sections of the report are devoted to articulating the precise research hy-
pothesis and the experimental details necessary to address the previously defined research
question.

3. Design and Methods

A secondary experiment is designed using quantitative research methods with deductive
reasoning to test the following research hypothesis.

Hypothesis - IF deep clustering methods (autoencoder-based) are used to form cluster
maps across person and activity-specific and agnostic experimental configurations for high-
dimensional EEG signals acquired with multiple resting and cognitive conditions, THEN the
stability of these cluster maps and the efficiency of microstates will be significantly higher than
those cluster maps and microstates obtained by applying shallow clustering methods (modified
k-means clustering).

3.1. Research Objectives

A comprehensive set of general and specific research objectives is meticulously crafted to test
the research hypothesis and realise the research aim.

1. To select a distinct EEG dataset.

• To identify an EEG dataset with multiple resting and cognitive state activities [21].

2. To prepare and pre-process EEG data

• To pre-process EEG signals from the selected dataset in accordance with Makoto’s
pre-processing pipeline.



3. To implement microstate generation pipeline using pre-processed EEG signals involving
multiple resting and cognitive conditions [22].

• To implement person-specific and activity-specific microstate generation pipeline.
• To implement person-agnostic and activity-agnostic microstate generation pipeline.
• To implement person-specific and activity-agnostic microstate generation pipeline.
• To execute person-agnostic and activity-agnostic microstate generation pipeline.

4. To formulate microstate cluster maps.

• To generate cluster maps using shallow clustering methods (modified k-means and
agglomerative hierarchical clustering).

• To generate cluster maps using deep clustering methods (autoencoder-based).

5. To perform hyperparameter tuning

• To optimise hyperparameters, including the number of layers and kernels for convo-
lutional autoencoders, optimisation, regularisation and dropout rates by performing
tuning.

6. To measure the microstate’s efficiency

• To evaluate the microstate’s efficiency using microstate parameters: Global Ex-
plained Variance(GEV), mean duration, and time coverage.

7. To evaluate the outcome of distribution comparison and test the research hypothesis

• To run Friedman Fr test between clustering techniques.

3.2. To measure the microstate’s efficiency

The efficiency of the generated microstate formed using multiple shallow and deep clustering
methods can be evaluated from the microstate’s temporal parameters

1. Global Explained Variance (GEV): is the global variance accounted for by each microstate,
which is the ratio of the summation of variances to the GFPs for all time points.

2. Duration (ms): provides the stable microstate period in milliseconds, which is the mean
time when a label is present without interruption.

3. Coverage (%): is the contribution of a microstate expressed in percentage, representing
the fraction of recording time that a label is present.

3.3. Explainability in 2D Topographic Maps and Deep Clustering for EEG
Microstates

EEG microstates provide stable configurations of scalp electric fields and are thought to be the
atoms of thought of human information processing [4]. As such, any methodology targeting
the identification and analysis of microstates requires not just precision but also a high degree
of transparency and interpretability. Our novel approach of applying deep clustering to 2D
topographic maps for microstate generation brings unique challenges and opportunities in this
domain.



Figure 2: Illustration of EEG microstate sequence generation architectural pipeline for shallow and
deep clustering. A) Dataset consisting of multiple resting and cognitive states. B) Raw EEG signal with
64 channels. C) Generate Global Field Power (GFP) peaks for shallow clustering. In contrast, interpolate
EEG signals to generate topographic input maps for deep clustering. D) Identify the local maxima of
GFP and provide it as an input to shallow clustering, while topographic input maps are fed to deep
clustering. E) Compute cluster maps using multiple shallow and deep clustering methods. F) Backfitting
to assign cluster labels for non-GFP points for shallow clustering.

1. 2D Topographic Maps as Inputs: Traditional methods using 1D vector representations
of EEG data for clustering abstracted the spatial intricacies of brain activity. Using 2D
topographic maps, we preserve the spatial domain knowledge crucial for understanding
neural source activations and their topological distributions. This spatial resolution
becomes a source of explainability:

a) Spatial Activation Patterns: by analysing which regions of the 2D map the autoen-
coder focuses on, we can infer the most salient spatial features that define specific
microstates [23].

b) Comparison with Known Electrode Activations: by juxtaposing our activation patterns
with traditionally known electrode activations for specific cognitive tasks, we can
validate and interpret the spatial significance of our findings [24].

2. Deep Clustering vs. K-means: Transitioning from traditional k-means clustering to deep
clustering introduces additional layers of complexity. However, the hierarchical nature of
deep neural networks allows us to understand EEG data at multiple levels of abstraction:

a) Hierarchical Feature Learning: As the data progresses through the autoencoder
layers, the network learns increasingly abstract features. By examining activations



at different layers, we can understand granular and high-level patterns that define
microstates [25].

b) Cluster Activation Analysis: Post clustering, analysing which nodes or features
activate for specific clusters can provide insights into the defining characteristics
of each microstate cluster. This is a more nuanced approach than the often binary
partitioning seen in k-means [26].

4. Concluding remarks and expected contributions

Microstate analysis provides a finite number of whole-brain representative maps with distinct
topographies that capture the spatiotemporal characteristics of EEG brain signals with varying
degrees of explained variance. However, there are uncertainties with the number of dominant
cluster maps representing the coverage of the global explained variance. Moreover, the choice
of algorithms to compute cluster maps is limited, primarily using shallow clustering methods.
Deep clustering has produced substantially better results than shallow clustering for image data
with self-supervision. The research conducted in the context of this doctoral project is one of
the earlier studies to assess the effectiveness of deep clustering techniques on EEG microstates
without supervision. Deep clustering methods are incorporated to enhance the stability of
microstates for intra and inter-person and task-conditioned resting and cognitive data. The
efficiency of the proposed method is compared against the existing pipeline using microstate
parameters. Friedman Fr test is performed to evaluate the significance of the proposed method.

The primary contribution anticipated from this doctoral research is the demonstration of
the suitability of deep clustering methods incorporated into the microstate generation pipeline,
which performs representation learning and clustering interactively and iteratively. The pro-
posed pipeline with deep clustering is expected to improve the stability of microstates, which
are demonstrated across four distinct cases, namely person-specific activity-specific, person-
agnostic activity-specific, person-specific activity-agnostic, person-agnostic activity-agnostic
using multiple resting and cognitive conditions. Moreover, testing the pipeline with data from
multiple resting and cognitive conditions is expected to validate the robustness of the microstate
generation pipeline across varied natural and dynamic conditions. In addition, the proposed
pipeline might be offered to the microstate community for performing microstate analysis with
alternative input modalities, such as 2D topographic input maps, as opposed to the trivial 1D
vector, which fails to capture the spatial characteristics of the input EEG data.
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