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Abstract
In the near future, it is likely that we will see companion social robots assisting humans in various
settings. To be effective assistants, these robots need to be able to adapt their interactions to be more
likable and engaging for humans. To explore this area of study, an interaction loop has been proposed
that includes a human participant, a social robot, and a gamified task. To maintain human engagement,
adjusting interactions through personalized social feedback, and task modulation are defined. So far
several evaluative experiments and piloting are conducted. In the first study, the presence of a social
robot (Furhat) was evaluated in comparison to two other conditions: the robot’s simulator and a control
group without any robot involvement. The second study focused on examining how different types
of feedback (performance-based feedback versus affective feedback) affected users’ perceptions and
engagement. Furthermore, in order to enable tailored feedback and task adjustment, an affective-based
engagement detection model was developed using Deep Learning methods. Preliminary findings from
the first study indicate that participants favored social robots over other conditions, as evidenced by
significantly lower arousal levels reported on the SAM scale in the robot condition. The analysis of
the second study for evaluating performance-based feedback vs affective feedback is still ongoing. For
forthcoming research, we aim to incorporate XAI technology to facilitate the explainability of AI-related
modules. This approach is beneficial for ensuring transparency in forthcoming applications, as it helps
maintain credibility and trustworthiness.
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1. Introduction

Over the past decade, there has been an increasing focus on developing autonomous social robots
with the ability to interact with humans. Socially Assistive Robots (SARs) have the potential to
be valuable tools in both education and healthcare domains, particularly for those suffering
from Alzheimer, Dementia, or Autism [1, 2, 3]. Using robots as a factor in human engagement in
games or tasks, including gamified tasks, has two main benefits: increasing motivation through
social presence effects, where people tend to increase effort or have increased motivation in the
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presence of others under certain conditions, and affective interaction. While socially interactive
robots may initially be engaging to humans as a result of the novelty that the human participant
experiences, it is possible for individuals to lose engagement during interactions. Nevertheless,
there are various strategies that can be employed to enhance user engagement, including the
incorporation of gamification elements like challenges, textual and verbal feedback, badges and
prizes, avatars, narratives, emotional agents, and interactive agents [4].

In order to explore users’ engagement in HRI, an interaction loop has been developed that has
three main components of a social robot, a human user, and a fast-paced game or task. Different
levels of interaction between these components are planned and require to be implemented
gradually. Alongside evaluating the interaction loop, the focus of the current study is on
developing an engagement function within the interaction loop for monitoring and evaluating
emotional, behavioral, and task-based engagement within the interaction loop and subsequently
adapting the interaction based on the engagement model. The approach is required to generalize
across related classes of tasks that is maintaining a focused and appropriate level of engagement
in the activity, i.e. cognitive therapy tasks. Some primary research questions to be investigated
in this study are:

1. What are the suitable modalities for modeling different dimensions of engagement in-
cluding social engagement, affective engagement, and performance engagement?

2. Which types of feedback, performance-based or affective-based, are preferred from the
users’ perspective?

3. How should interactions be adapted to deliver personalized feedback and adjust task
challenge levels effectively?

2. Related works

This paper adopts a specific definition of engagement in HRI, drawing from the works of O’Brien
and Toms [5]. According to them, engagement encompasses various component features and is
regarded as the quality of the user experience. Recently, many studies have been carried out
to examine the way in which humans and robots interact while working together, as well as
when robots provide aid to humans. Andriella and colleagues [1] proposed a platform for an
assistive robot to help Alzheimer’s patients with memory training exercises through the use of
verbal and non-verbal communication. [6] employed the Tega robot as an educational aid for
children learning a new language, utilizing reinforcement learning (RL) techniques to provide
personalized affective feedback. Rudovic and colleagues [7] developed a multi-modal active
learning approach to detect engagement of real-world child-robot interactions. [8] trained CNN
(Convolutional Neural Network) and LSTM (Long Short-Term Memory) models to detect three
classes of engagement/disengagement, mid-engagement, and high engagement on a dataset
they collected based on a TEGA robot interacting with Children. [9] established a CultureNet
based on CNN to personalize engagement detection for target subjects. Mollahosseini and
colleagues [10] used Deep Neural Networks for facial expression recognition. The trained model
was used to give empathetic responses by the Ryan companion bot based on the affective state
of the user.



While the existing literature has investigated the interaction loop between humans and
robots during tasks, there has been limited exploration of adaptive interactions. Moreover,
a standardized approach for detecting engagement in rapid immersive tasks is lacking. In
addition, there are variations in the feedback mechanisms used by different types of robots,
and a significant number of studies demonstrate limited adaptability for robots to give affective
feedback.

3. Proposed setup

Figure 1 illustrates the proposed interaction loop, showcasing various planned modules. Users
can interact with the game and receive visual or audio feedback from both the robot and the
game. There are six components to this interaction loop, which are briefly described as follows:

Figure 1: Interaction Loop: User, robot, and the game board are three main components of the proposed
setup.

1. Challenge Modulation: Adjusting the challenge level of the game or task based on
user’s expressed state of engagement or disengagement.

2. Game State Feedback: This component involves providing information on the human
performance considering the current state of the game.

3. Reward Feedback: This component provides users with direct feedback on their perfor-
mance and the outcome of a specific action.

4. Action Selection: This component involves the use of touchscreen-based or verbalized
inputs for selecting actions.

5. Affective Engagement Feedback: Possible inputs that may determine the user’s affec-
tive engagement.



3.1. Study I

In the initial study, the robot was placed behind the laptop (Figure 2.a) to minimize disturbance
while users played the game. The experimental design of the study centered on two independent
variables: set up (physical robot, simulated robot, or control group), and challenge level (easy,
medium, and hard). The sample for this study consisted of 78 adults, aged 19 to 46 (M = 25.59, SD
= 4.86). Prior to initiating the game, the participants received instructions from the experimenter.
During the interaction, audio-visual feedback from both robot and the game was provided.
Participants were instructed to fill out a SAM scale questionnaire after finishing each level of the
game, in addition to recording the eye tracker, audio, and video data. The SAM questionnaire
aimed to gather information about users’ emotional state, encompassing valence, arousal, and
dominance dimensions, concerning both the game itself and the experimental setup.

The first experiment provided valuable information regarding how users perceive and perform
on various challenge levels when interacting with both physical and simulator robots. In general,
participants had a favorable impression of their interactions with the robot. Task performance
was not significantly affected by the presence of either the physical or simulator robot compared
to the control group (which had no robot). The results showed that the physical robot group
achieved a task performance rate of 71.22%, the simulator group achieved 67.88%, and the control
group achieved 66.46%. Statistical analysis (F(2, 74) = .856, p = .429, 𝜂2 = .023) indicated that
there were no significant differences among the groups. In terms of the SAM scales comparison,
participants in the robot group reported lower arousal ratings (2.72) compared to both the
control group (3.17, p = .044) and the simulated robot group (3.20, p = .032), with the statistical
analysis, F(2, 71) = 3.01, p = .056, 𝜂2 = .078. However, it remains unclear whether these positive
outcomes will endure with repeated use or if they were primarily influenced by the novelty of
the experience.

3.2. Study II

The focus of the second study was on the examination of the effects of different forms of
feedback (affective-based vs performance-based) on users’ performance and perception of
the robot during a two-way interaction on the game. Affective feedback includes feedback
that expresses emotions, acknowledges enjoyment, and asks about the individual’s feelings.
While performance feedback provides information about the number of correct responses,
improvement, and overall performance. As shown in figure 2.b, the robot was placed beside
the human participant, allowing for a tilted view angle of both the game and the participant
to increase the interaction between the human and the robot. During the game (within the
block at the end of each trial) the robot provided feedback similar to the first study (figure 2.a),
with the added feature of randomly moving its head toward the participant. At the end of each
block, there was a brief interval during which the robot provided personalized feedback based
on the participant’s performance or affective state, or both. In order to facilitate the two-way
communication, questions were asked by the robot and participants were given the opportunity
to respond. The study was designed using two independent variables: challenge level (easy
and medium) and feedback type. A sample of 58 subjects aged 18 to 24 (M = 20, SD = 1.87) was
recruited for the purpose of participating in the second experiment. Participants were instructed



Figure 2: The configuration scheme of two experimental setups, the first study (a) and the second study
(b). In both experimental setups, the robot provided audiovisual feedback related to the task at hand,
along with expressive audiovisual feedback.

to fill out a SAM scale questionnaire after finishing each block of the game, in addition to
recording the eye tracker, audio, and video data. The participants were also interviewed at
the end of the game. Furthermore, an affective engagement model was developed to estimate
the positive and negative engagement of participants in order to give personalized affective
feedback. A CNN architecture was employed to train the affective-based engagement model.
The FER2013 dataset [11] was utilized to train the model. The model predicts the probability
of a video frame being classified within the seven emotion categories provided in the dataset
(Anger, Disgust, Fear, Happy, Sad, Neutral, and Surprise). The probability of the frame being
classified as "happy" is employed as a measure of the user’s positive engagement. At present,
the data that has been gathered is undergoing analysis.

4. Conclusion and Discussion

This paper introduces an established framework aimed at investigating the interaction loop
between humans and a social robot on a gamified task. The main objective is to develop
a model that can accurately capture user engagement, enabling adaptive and personalized
interactions by adjusting tasks and offering feedback based on users’ internal state. A sequence
of pilot, evaluative, and experimental studies were conducted. The first study indicated that
participants had a positive view of the social robot (Furhat) and that the robot (both physical
and simulator) did not negatively impact users’ performance. The second study’s data analysis
process is currently ongoing. Moreover, an engagement detection function was developed
using a facial expressions-based dataset (FER2013) to provide personalized affective feedback.



However, it’s important to acknowledge its limitations because facial expressions may not
always accurately depict one’s level of engagement, as not everyone displays their engagement
through expressions. To overcome this, alternative methods such as physiological measures
(e.g. GSR, infrared cameras, and EEG) could be utilized to capture additional factors such as
valence and arousal.

In future studies, in order to achieve effective user engagement, it is imperative to modify
the difficulty level of the task based on the user’s engagement and performance. To minimize
any disruptions and maintain the stability of the task or game state, a separate framework
like a role-based state machine may be utilized to modify game difficulty at specific intervals.
Additionally, the research aims to expand the developed positive affective engagement model by
incorporating more modalities. Moreover, considering the fact that repeated phrasal feedback
could be unrealistic and unnatural, using a language model to generate feedback would be
beneficial. However, ethical considerations regarding the model’s outputs need to be taken into
account.

Furthermore, the integration of self-explaining social robots holds promise in enhancing the
quality of interactions between humans and robots, leading to more effective and satisfying
experiences for users [12]. Social robots can achieve this by actively seeking clarifications from
users or engaging in dialogues to better comprehend their preferences and concerns. While
this approach enhances the trustworthiness of the model, a crucial aspect of establishing trust
in autonomous systems, such as robots, is providing users with a clear understanding of the
decision-making processes [13]. This can be challenging when trying to detect emotions and
engagement, as well as in generating phrasal feedback, particularly if using Large Language
Models (LLM) instead of pre-programmed feedback. Techniques such as rule extraction for
explaining task modification in case of using a learned policy (for e.g., using Multi-Armed
Bandit RL) [14] and differentiating between self-learned features for detecting different facial
expressions using methods such as LIME [15] can help to achieve more explainability. Therefore,
a potential future research direction is using XAI technology for AI-related modules in the
setup such as task modulation, and engagement detection to present the framework in a way
that users can understand.

5. Acknowledgments

I would like to express my sincere gratitude to Ana B. Vivas and Sofia Sjöberg for their out-
standing dedication in the first study. Additionally, I am profoundly thankful to Imran Khan for
his essential contributions to the second study. Moreover, I extend my deepest appreciation to
Robert Lowe, Alva Markelius, and Martin Bergström for their invaluable and active involvement
in both main studies.



References

[1] A. Andriella, G. Alenyà, J. Hernández-Farigola, C. Torras, Deciding the different robot
roles for patient cognitive training, International Journal of Human-Computer Studies 117
(2018) 20–29. URL: https://www.sciencedirect.com/science/article/pii/S1071581918300958.
doi:https://doi.org/10.1016/j.ijhcs.2018.03.004, cognitive Assistants.

[2] L. Cuffaro, F. Lorenzo, S. Bonavita, G. Tedeschi, L. Leocani, L. Lavorgna, Dementia care
and covid-19 pandemic: a necessary digital revolution, Neurological Sciences 41 (2020)
1977–1979.

[3] J. Goris, M. Brass, C. Cambier, J. Delplanque, J. R. Wiersema, S. Braem,
The relation between preference for predictability and autistic traits,
Autism Research 13 (2020) 1144–1154. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1002/aur.2244. doi:https://doi.org/10.1002/aur.2244.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/aur.2244.

[4] T. W. Malone, What makes things fun to learn? heuristics for designing instructional
computer games, SIGSMALL ’80, Association for Computing Machinery, New York, NY,
USA, 1980, p. 162–169. URL: https://doi.org/10.1145/800088.802839. doi:10.1145/800088.
802839.

[5] H. L. O’Brien, E. G. Toms, What is user engagement? a conceptual framework for
defining user engagement with technology, Journal of the American Society for
Information Science and Technology 59 (2008) 938–955. URL: https://onlinelibrary.
wiley.com/doi/abs/10.1002/asi.20801. doi:https://doi.org/10.1002/asi.20801.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20801.

[6] G. Gordon, C. Breazeal, S. Engel, Can children catch curiosity from a social robot?, HRI
’15, Association for Computing Machinery, New York, NY, USA, 2015, p. 91–98. URL:
https://doi.org/10.1145/2696454.2696469. doi:10.1145/2696454.2696469.

[7] O. Rudovic, M. Zhang, B. W. Schuller, R. W. Picard, Multi-modal active learning from
human data: A deep reinforcement learning approach, volume abs/1906.03098, 2019. URL:
http://arxiv.org/abs/1906.03098. arXiv:1906.03098.

[8] O. Rudovic, H. W. Park, J. Busche, B. Schuller, C. Breazeal, R. W. Picard, Personalized
estimation of engagement from videos using active learning with deep reinforcement
learning, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), 2019, pp. 217–226. doi:10.1109/CVPRW.2019.00031.

[9] O. Rudovic, Y. Utsumi, J. Lee, J. Hernandez, E. C. Ferrer, B. Schuller, R. W. Picard, Culturenet:
A deep learning approach for engagement intensity estimation from face images of children
with autism, in: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 339–346. doi:10.1109/IROS.2018.8594177.

[10] A. Mollahosseini, H. Abdollahi, M. H. Mahoor, Studying effects of incorporating automated
affect perception with spoken dialog in social robots, in: 2018 27th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), 2018, pp. 783–
789. doi:10.1109/ROMAN.2018.8525777.

[11] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Hamner, W. Cukierski,
Y. Tang, D. Thaler, D.-H. Lee, Y. Zhou, C. Ramaiah, F. Feng, R. Li, X. Wang, D. Athanasakis,
J. Shawe-Taylor, M. Milakov, J. Park, R. Ionescu, M. Popescu, C. Grozea, J. Bergstra, J. Xie,

https://www.sciencedirect.com/science/article/pii/S1071581918300958
http://dx.doi.org/https://doi.org/10.1016/j.ijhcs.2018.03.004
https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2244
https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2244
http://dx.doi.org/https://doi.org/10.1002/aur.2244
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/aur.2244
https://doi.org/10.1145/800088.802839
http://dx.doi.org/10.1145/800088.802839
http://dx.doi.org/10.1145/800088.802839
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20801
https://onlinelibrary.wiley.com/doi/abs/10.1002/asi.20801
http://dx.doi.org/https://doi.org/10.1002/asi.20801
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.20801
https://doi.org/10.1145/2696454.2696469
http://dx.doi.org/10.1145/2696454.2696469
http://arxiv.org/abs/1906.03098
http://arxiv.org/abs/1906.03098
http://dx.doi.org/10.1109/CVPRW.2019.00031
http://dx.doi.org/10.1109/IROS.2018.8594177
http://dx.doi.org/10.1109/ROMAN.2018.8525777


L. Romaszko, B. Xu, Z. Chuang, Y. Bengio, Challenges in representation learning: A report
on three machine learning contests, 2013. arXiv:1307.0414.

[12] A. Di Nuovo, D. Conti, G. Trubia, S. Buono, S. Di Nuovo, Deep learning systems for
estimating visual attention in robot-assisted therapy of children with autism and in-
tellectual disability, Robotics 7 (2018). URL: https://www.mdpi.com/2218-6581/7/2/25.
doi:10.3390/robotics7020025.

[13] N. Wang, D. V. Pynadath, S. G. Hill, The impact of pomdp-generated explanations on trust
and performance in human-robot teams (2016) 997–1005.

[14] R. C. Engelhardt, M. Lange, L. Wiskott, W. Konen, Sample-based rule extraction for
explainable reinforcement learning (2023) 330–345.

[15] G. del Castillo Torres, M. F. Roig-Maimó, M. Mascaró-Oliver, E. Amengual-Alcover, R. Mas-
Sansó, Understanding how cnns recognize facial expressions: A case study with lime and
cem, Sensors 23 (2023). URL: https://www.mdpi.com/1424-8220/23/1/131. doi:10.3390/
s23010131.

http://arxiv.org/abs/1307.0414
https://www.mdpi.com/2218-6581/7/2/25
http://dx.doi.org/10.3390/robotics7020025
https://www.mdpi.com/1424-8220/23/1/131
http://dx.doi.org/10.3390/s23010131
http://dx.doi.org/10.3390/s23010131

	1 Introduction
	2 Related works
	3 Proposed setup
	3.1 Study I
	3.2 Study II

	4 Conclusion and Discussion
	5 Acknowledgments

