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Abstract
The interpretability of deep learning models has gained the attention of many researchers and organ-
isations in recent years. The doctoral research wilwill include the interpretability and explainability
of Recurrent Neural Networks (RNN) and its variant architectures.RNNs find extensive application in
speech recognition and healthcare, yet their complex architecture often renders them as "black box
models". FSA and RNN both handle sequential data, with FSA transitioning between states and RNN
updating hidden states at each step. This similarity enables comparing FSA’s transitions to RNN’s hidden
state updates. FSA’s graphical representation enhances human understanding. The findings of this
study will be used to lead the development of post hoc explanation methods (XAI) for time series data
employing deterministic finite state machines as an explainability method.
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1. Introduction and Motivation

With the rapid advancement of AI technologies, artificial intelligence (AI) has seamlessly in-
tegrated into our daily lives. The demand for transparent explanations in AI, deep learning,
and machine learning is growing. AI’s reach extends to healthcare, finance, computer vision,
cybersecurity, education, and the judiciary. In this landscape, recurrent neural networks (RNNs)
are essential, powering various applications across natural language processing, speech recog-
nition, and image analysis [1]. Despite their high accuracy, RNNs often remain "black boxes"
due to their complex internal processes, hindering comprehension of their predictions [2]. The
lack of interpretability is a significant barrier to RNN adoption in practical domains, aligning
with the growing need for transparency. The ’right to explanation’ concept was introduced in
the General Data Protection Regulation (GDPR) by the European Union in 2016 (effective in
2018). This provision grants individuals the right to seek explanations for decisions that impact
their lives. The primary goal of this right is to promote transparency in automated processes
[3, 4]. Interpretability methods vary by data type, global/local focus, and user expertise. To
enhance the interpretability and explainability of Neural Networks and generate something
that is indeed understandable to humans, some researchers have used the notion of ‘rule’ [5?
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] or the notion of ‘arguments’ and their conflictual nature [6] or a mix of them [7]. Other
researchers propose approaches like finite-state automata (FSA) to enhance RNN transparency,
while recent advances highlight limited attention on time series models compared to vision or
language domains [8, 9]. In my doctoral research, deterministic finite state automata (FSA) will
be employed as an XAI method for post hoc explanations of RNNs and their variants such as
LSTM, MGU, and GRU. This approach is especially valuable when applied to time series data
due to the inherent interpretability of automata and their enhanced comprehensibility through
graphical representations. A key goal of this research is to explore the evaluation of FSA as
an XAI technique. This proposed methodology employs the k-means clustering algorithm to
learn finite state automata from diverse RNN architectures. This paper is structured as follows.
Section 2 introduces the finite state automata as XAI methods and background study. The
proposed research plan, the approach used and the progress achieved to date are discussed in
Section 3. Future directions and identifying research gaps for this research project are discussed
in Section 4.

2. Related Work

State transition representations such as finite state automata have been studied in depth for a
long and are often seen as interpretable models [10, 11]. Authors in their study [12] discuss that
extracting knowledge from the network implies a representation form. These forms can be finite
state automata, fuzzy automata, Markov chains and differential equations. The relationship
between recurrent neural networks R and finite state machine M and its ability to mimic the
inner workings of RNNs have been under study since recent years [13, 14]. The study [15]
highlights the concept of rule extraction from RNNs (R), which refers to finding models of the
underlying RNN, typically in the form of the finite state machine, that mimics the network to a
satisfactory degree while having the advantage of being more transparent. A study by [16] states
that the activation’s of state units represent past histories, and clusters of these activation’s can
represent the states of the generating automaton. The aspects of automata that make them more
interpretable are discussed in the study [11], which states that automata can be easily represented
graphically as directed, cyclic, labelled graphs that provide a hierarchical view of sequential data.
Additionally, it is transparent to compute, and manual verification’s are also possible. Automata
are generative. Also, automata are well studied in theory and practice, including composition
and closure properties, sub-classes, and related equally expressive formalisms. This makes it
easy for humans to transfer their knowledge onto it. The model is frequently used in system
design to describe system logic and is accessible to a wide audience. In [17], binary classification
experiments on artificial and movie review datasets revealed FSA’s superiority over the learned
RNN for prediction explanations. The study emphasized the crucial role of RNN gates in FSA
learning, advocating FSA’s potential to enhance transparency and trust, an important and old
computational concept [18]. It was also discussed that the gates in RNN play an important role
in learning an FSA. The study by [19] investigates the link between first-order recurrent neural
networks and deterministic finite state automata. The authors introduce a neural network
architecture capable of approximating discrete-time, time-invariant dynamic systems. They
train these networks to classify strings based on grammar membership. The study reveals



the alignment between finite state automata and neural networks, highlighting two important
learning stages. It also notes that, given extended training, neural networks can emulate finite
state automata. Upon conducting a literature review, it appears that research predominantly
focuses on binary classification tasks involving text, numeric, image, and tabular datasets. Little
attention has been given to multi-class classification for time series data [9, 20, 21].

3. Research Objective and Research Questions

This section outlines our research objectives, research questions, and proposed approach. Our
goal is to explore the utility of finite state automata (FSA) as a post hoc explainability technique
for recurrent neural networks (RNNs) and their variants (LSTM, GRU, MGU) in multi-class time
series classification. Our study assesses explanation effectiveness, interpretability, and user
trust through diverse clustering algorithms, evaluation criteria, and human perception [22].
Given the above, the following key research questions have been identified:

• RQ 1 How do RNNs and different variants of RNN architectures impact the extraction
and learning of finite state automata as a post hoc explainability method?

• RQ 2 How do different clustering algorithms used to cluster the activated hidden states
of RNNs impact the learning and extraction of finite state automata from the RNNs and
their different architectures?

• RQ 3 What evaluation parameters can be used to evaluate the quality of clusters formed
which represent the states of finite state automata (FSA), and what standard methods can
be used to evaluate the explanations created by FSA for RNNs for time series data?

3.1. Proposed Approach

This section will discuss the proposed approach to address the research questions identified.
This study aims to provide a general method to learn deterministic finite state automata from
RNN and its variant architectures, such as LSTM, GRU and MGU, on time series data. The
method of extraction and learning deterministic finite state automata proposed in this work is
based on clustering the activated hidden states of RNNs and their variant architectures using
k-means clustering and uses the algorithm developed by [17] for RNN, LSTM, MGU and GRU.
The proposed approach is divided into the following phases:

• Intuitive approach Intuitively, the RNN model (R) is trained on training and validation
data. Employing early stopping enhances generalization by preventing overfitting. The
test dataset validates model performance. Each hidden state is regarded as a vector or a
point. Thus, many hidden states accumulate when several sequences are input to RNNs. In
a study [17], authors observed that activated hidden states in neural networks, including
gated RNNs, tend to cluster. It is assumed that the different clusters represent the different
states of the finite state automata. State transitions occur when input sequence symbols
are read. Thus, it can inferred that the network behaves like a state automaton machine.
Additionally, it is assumed that the states obtained are finite, allowing the learning of
deterministic finite state automata from the RNNs and their variant gated architectures,
including LSTM, MGU, and GRU.



• Hidden states clustering It is contemplated to employ a k-means clustering algorithm
to cluster the activated hidden states (hi) generated by the RNN when processing symbols
from the input sequence during network training.

• Extraction and learning of FSA FSA M is a 5-tuple 𝑀 = ⟨Σ, 𝑄, 𝑆, 𝐹, 𝛿⟩ where Σ is
the alphabet, meaning the set of the elements appearing in the input sequences, Q is a set
of states, 𝑆 ∈ 𝑄 is the start state, 𝐹 ⊆ 𝑄 is a set of accepting states and 𝛿 : 𝑄× Σ → 𝑄
defines state transitions in M [17]. Two matrices are generated to learn the transitions
between the states: the neighbouring matrix (Ns) and the transition matrix(Ts). The
neighbouring matrix provides a way to visualize the relationships between different states
of FSA. Each state is represented by a row and column in the matrix, and the elements
in the matrix indicate the strength of the connection between different pairs of states.
By analyzing the neighbouring matrix, one can identify patterns and clusters of related
states. Matrix 𝑁𝑠 captures state transitions’ frequency (𝑖 to 𝑘) with the symbol 𝑠. The
transition matrix 𝑇 is formed by identifying the most frequent transitions (𝑖 to 𝑘) for each
row 𝑖, given input symbol 𝑗. In matrix 𝑇 , each row 𝑖 corresponds to the state 𝑘 with the
highest 𝑁𝑠(𝑖, 𝑘) value, representing the most frequent transition from state 𝑖 for input
symbol 𝑗.

3.2. Results and Contribution till date

Our research is in its early stages, focusing on comprehensively reviewing key research papers
to validate our objectives. Most progress has been made in establishing a conceptual foundation
and creating initial prototype feeder experiments. These experiments aim to learn deterministic
finite state automata from RNN and LSTM, aligning with our stated objectives. Understanding
state transitions within finite state automata, formed by clustering-activated hidden states of
RNN and LSTM during sequence symbol reading, is crucial for concept clarity. A prototype
experiment was created for multi-class classification, predicting the next sequence of finite
lengths from multiple classes. The details are discussed as follows. A synthetic temporal dataset
of 100 sine waves of 100 points each was chosen to perform this experiment.his dataset was
chosen due to its shared properties with time series data, such as temporal nature, sequential
dependence, cyclic patterns, and potential noise. The process was initiated with exploratory
data analysis and prepossessing. Following that, the numerical signals underwent symbolic
abstraction for state machine learning, utilizing Symbolic Aggregate Approximation (SAX). 1 to
discretize the data. Employing this approach, time series data is transformed into sTheancing
interpr exploredtability. Through the SAX algorithm, various strategies and bin sizes were
explored for symbol transformation. Subsequently, the obtained symbols were encoded as part
of the process. Various encoding methods were investigated while experimenting, and it was
observed that integer encoding was suitable for our proposed approach. Further, the dataset
was split into training, testing, and validation datasets. Our task is to predict the next in the
sequence from multiple classes of symbols as generated above. The number of classes depends
on the bin size while applying the SAX algorithm. The experiments were conducted for bin sizes
3, 4, and 5 during the prediction of the next item in the sequence using multi-class classification.

1https://www.cs.ucr.edu/ eamonn/SAX.htmd



For example, if bin size=3, an input sequence would look like aabbbca, formed from 3 symbols (a,
b, c). Our task for this experiment is to predict the next symbol in the sequence aabbbca from a
class set of a, b, c. Subsequently, RNN and LSTM models were employed, implementing an early
stopping technique and optimizing hyper parameters. Furthermore, clustering was performed
on the activated hidden states of the models using the k-means algorithm. One can observe
which states tend to activate together and which transitions are more frequent by clustering
the hidden states. This analysis provides insights into how the LSTM processes information
over time. For instance, if specific clusters frequently activate together and certain transitions
dominate, it suggests the LSTM’s detection of distinctive data patterns. These clusters represent
the finite states of the FSA. From these clusters, the Transition matrix Ts and the neighbouring
matrix Ns were constructed. These matrices define the frequency count of transitions between
the different states for each symbol. The deterministic finite state automata obtained can be
visualized using the open-source graph visualization software Graphviz. In summary, clustering
hidden states simplifies transition matrix creation and enhances interpretability. By grouping
similar feature representations, clustering aids in understanding. Once states are clustered and
assigned to FSA, the neighbouring matrix Ns showcases relationships and transitions. Various
methods for optimal k-value in k-means clustering for activated RNN and LSTM hidden states
were explored while experimenting Neighboring (Ns) and transition (Ts) matrices are generated
and used to visualize deterministic finite state automata. Visual representations can elucidate the
intricate relationships between different components of the model, aiding in the identification
of influential factors that drive the predictions. Graphical explanations empower experts and
users, fostering transparency and trust in decision-making process.

4. Expected next steps and final contribution to knowledge

Our upcoming phase involves assessing cluster quality, evaluating FSA states using machine
learning-based criteria, and testing RNN and LSTM-extracted FSA accuracy. In parallel, this
approach is also being applied to real-world datasets, including an electroencephalogram dataset
from the AI and Cognitive Load Research Lab (Technological University Dublin). Our future
focus is understanding how well finite state automata capture RNN inner workings for varied
sequence lengths, including infinite ones for time series data. Different clustering algorithms
and additional parameters to enhance cluster quality evaluation will also be explored. This
study will also address the lack of evaluation parameters for assessing DFA quality from RNNs,
exploring FSA limitations for post hoc explanations and user trust. The primary contribution
will be understanding RNN behaviour on time series data, enhancing their interpretability,
explainability, and trustworthiness in various domains.
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