
AdaEnsemble: Learning Adaptively Sparse Structured
Ensemble Network for Click-Through Rate Prediction
Yachen Yan1,∗, Liubo Li1

1Credit Karma, 760 Market Street, San Francisco, California, USA, 94012

Abstract
Learning feature interactions is crucial to success for large-scale CTR prediction in recommender systems and Ads ranking.
Researchers and practitioners extensively proposed various neural network architectures for searching and modeling feature
interactions. However, we observe that different datasets favor different neural network architectures and feature interaction
types, suggesting that different feature interaction learning methods may have their own unique advantages. Inspired by this
observation, we propose AdaEnsemble: a Sparsely-Gated Mixture-of-Experts (SparseMoE) architecture that can leverage
the strengths of heterogeneous feature interaction experts and adaptively learns the routing to a sparse combination of
experts for each example, allowing us to build a dynamic hierarchy of the feature interactions of different types and orders.
To further improve the prediction accuracy and inference efficiency, we incorporate the dynamic early exiting mechanism
for feature interaction depth selection. The AdaEnsemble can adaptively choose the feature interaction depth and find
the corresponding SparseMoE stacking layer to exit and compute prediction from. Therefore, our proposed architecture
inherits the advantages of the exponential combinations of sparsely gated experts within SparseMoE layers and further
dynamically selects the optimal feature interaction depth without executing deeper layers. We implement the proposed
AdaEnsemble and evaluate its performance on real-world datasets. Extensive experiment results demonstrate the efficiency and
effectiveness of AdaEnsemble over state-of-the-art models. We open-source the TensorFlow implementation of AdaEnsemble:
https://github.com/yanyachen/AdaEnsemble.

Keywords
CTR prediction, Recommendation System, Feature Interaction, Mixture of Experts, Dynamic Inference, Early Exiting, AutoML,
Deep Neural Network

1. Introduction
Click-through rate (CTR) predictionmodel [1] is an essen-
tial component for the large-scale search ranking, online
advertising and recommendation system [2, 3, 4, 5].

Many deep learning-based models have been proposed
for CTR prediction problems in the industry. They have
become dominant in learning the useful feature interac-
tions of the mixed-type input in an end-to-end fashion[5].
While every existing method focuses on automatically
modeling different types of feature interactions, there
have been very few attempts to model different types
of interactions jointly and dynamically, such that one
model architecture can be directly applied to different
types of datasets. We believe that the ensemble of various
interaction modules to generate heterogeneous feature
interactions can complement the non-overlapping knowl-
edge learned through each interaction learning approach.

With the aim of accomplishing the stated objective,
we propose AdaEnsemble: a Sparsely-Gated Mixture-of-

Woodstock’22: ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, AdKDD Workshop 2023, August 6–10, 2023, Long Beach,
CA
∗Corresponding author.
Envelope-Open yachen.yan@creditkarma.com (Y. Yan);
liubo.li@creditkarma.com (L. Li)
Orcid 0000-0002-1213-4343 (Y. Yan); 0009-0006-9933-2436 (L. Li)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Experts (SparseMoE) hierarchical architecture to ensem-
ble different interaction learning modules and dynami-
cally select optimal feature interaction depth. AdaEnsem-
ble encompasses SparseMoE layers and the Depth Se-
lecting Controller. Within each SparseMoE layer of
AdaEnsemble, there is a collection of interaction learn-
ing experts, and a trainable gating network determines a
sparse combination of these experts to use for each exam-
ple. Within the Depth Selecting Controller, a trainable
gating network will choose the feature interaction depth
for each example and recursively propagate feature in-
teraction representations through SparseMoE layers to
the corresponding depth for computing the prediction.
Through these conditional computation mechanisms, we
enlarged the model capacity exponentially maintaining
computational efficiency.

The main contributions of this paper can be summa-
rized as follows:

• We designed a novel model architecture called
AdaEnsemble to ensemble various types of feature in-
teraction learningmodules by Sparsely-GatedMixture-
of-Experts (SparseMoE). Through utilizing MoE layers
recursively with residual connections and normaliza-
tion, AdaEnsemble can model different types of inter-
actions jointly and dynamically.

• We designed an efficient and effective Depth Selecting
Controller to adaptively choose the optimal feature

mailto:yachen.yan@creditkarma.com
mailto:liubo.li@creditkarma.com
https://orcid.org/0000-0002-1213-4343
https://orcid.org/0009-0006-9933-2436
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Embedding Layer

Categorical
Feature

Bucktized
 Numeric Feature

1st Sparse MoE Layer

2nd Sparse MoE Layer

l-th Sparse MoE Layer

Input Feature Map

Add & Normalize

Add & Normalize

Add & Normalize

Depth Selecting
Network

1st
Estimator

2nd
Estimator

l-th
Estimator

Figure 1: The Architecture of AdaEnsemble

In this example, the depth selecting network selects the 2nd
layer to exit and compute the final prediction, therefore the
deeper layers was not activated and plotted translucent in

the figure.

interaction depth. Through utilizing this controller,
AdaEnsemble can dynamically determine the layer
for early exiting to improve prediction accuracy and
inference efficiency.

• We applied a bi-level optimization algorithm for it-
eratively training the modeling network and gating
network.

2. Proposed Model: AdaEnsemble

2.1. Feature Interaction Experts
We considered several types of feature interaction ex-
perts in our model: Dense Layer, Convolution Layer,
Multi-Head Self-Attention Layer, Polynomial Interaction
Layer, and Cross Layer. Essentially, any feature interac-
tion learning layer can be included in our framework,
and the residual connection and normalization will be
applied to their ensembles. Now we introduce these fea-
ture interaction experts included in our framework. Note
that our proposed framework is general and can use arbi-
trary feature interaction modules. The potential feature
interaction experts can be used are not limited to the
aforementioned.

Sparse MoE Layer

Expert 1 Expert 2 Expert 3 Expert n-1 Expert n

Input
Embedding

Output
Embedding

Gating
Network

Sparse
Dispatcher

non-zero index

non-zero value

....

Figure 2: The architecture of Sparse Mixture-of-Experts Layer

Input
Embedding

Feed-Forward Network

e1 e2 e3 e4

Expert
Embedding

Cosine
Similarity

Learnable Temperature
Re-Scaling

Top-K

L2 Normalization

L2 Normalization

Routing Score

Softmax

Noise Injection

Figure 3: The Noisy Gating Network within Sparse Mixture-
of-Experts Layer

2.2. Sparse Mixture-of-Experts Layer
The Sparse Mixture-of-Experts layer ensembles afore-
mentioned heterogeneous feature interaction experts and
consists of several other essential parts to make the over-
all model can be stably trained.

2.2.1. Noisy Gating Network

The gating network essentially computes the gating
value for selecting experts for each input embedding
and weighting the output embedding of each expert.

For the input embedding of gating network 𝑋0, it
firstly processed by the gating network: a two-layer feed-

forward network, i.e. a dimension reduction layer with
reduction ratio 𝑟 [6], a non-linear activation function and
then a dense layer projecting to hidden state ℎ ∈ 𝑅𝑑.
Additionally, we applied multiplicative jitter noise for
introducing exploration and promoting load balancing
between different experts.

ℎ = FFN(𝑋0 ∘ RandomUniform(1.0 − eps, 1.0 + eps))
(1)

After projecting the input embedding to hidden state
ℎ ∈ 𝑅𝑑, we apply the 𝐿2 normalization to both hidden
state ℎ ∈ 𝑅𝑑 and learnable expert embeddings 𝑣𝑗 ∈ 𝑅𝑑,
where 𝑗 is the index of expert. Then, we compute the
cosine similarity between the hidden state and expert
embedding as the initial routing score. Here we encour-
age the uniformity of representations to avoid dominated
experts issue.

𝑠𝑗 =
ℎ ⋅ 𝑣𝑗
‖ℎ‖‖𝑣𝑗‖

(2)

Finally, we use a learnable temperature scalar 𝜏 to re-
scale the routing scores to the range [−1, +1].

𝑔𝑗 = 𝑠𝑗/𝜏 (3)

For the computed routing score 𝑔, we only keep the
top k values and set the rest to −∞, resulting in the corre-
sponding softmax gating values equal 0. The 𝑗-th element
of the output vector of the gating network is

𝐸𝑥𝑝𝑒𝑟 𝑡𝐺(𝑋0)𝑗 =
exp (TopK(𝑔, 𝑘)𝑗)

∑𝑁
𝑗=1 exp (TopK(𝑔, 𝑘)𝑗)

, (4)

where

TopK(𝑔, 𝑘)𝑗 = {
𝑔𝑗 if 𝑔𝑗 is in the top 𝑘 elements of 𝑔
−∞ otherwise.

(5)
These gating values will be used by the sparse dis-

patcher for routing examples to different experts. This
is the essential step for achieving sparsity of our Sparse
Mixture-of-Experts layer. Note that the 𝐸𝑥𝑝𝑒𝑟 𝑡𝐺(𝑋0) is
differentiable regardless the value of 𝑘[7].

2.2.2. Annealing Top-K Gating

We also introduce annealing mechanism to the Top-K
operation. We starts with 𝑘 value equal to the number of
experts, which means that we starts as a fully dense gate
that routes examples to all experts. Then we gradually
decrease the 𝑘 and route examples to fewer experts, to
adaptively make the structure sparser and continuously
improving the computation efficiency.

By annealing of the 𝑘 value, we start to train our archi-
tecture with a dense structure which allows us to thor-
oughly learn all experts and adjust the gating network in
the correct direction at the beginning. Therefore, we can
control the sparsity of our architecture while training to
not only accelerate the convergence of the gating net-
work but also benefit the experts’ specialty for learning
particular types of feature interactions.

2.2.3. Sparse Dispatcher

The sparse dispatcher [8, 7, 9] takes the examples gating
values and experts as input. It firstly dispatches the exam-
ples to the experts corresponding to the non-zero gating
values, and lets experts generate the output embeddings.
The output 𝑦 of the Sparse Mixture-of-Experts layer is
the linearly weighted combination of expert output em-
beddings by the non-zero gating values.

𝑦 = ∑
𝑗∈𝜙

𝐸𝑥𝑝𝑒𝑟 𝑡𝐺𝑗(𝑋0)𝐸𝑗(𝑋0, 𝑋𝑙) (6)

Where 𝜙 denotes the selected non-zero indices. We
save computation based on the sparsity of 𝐸𝑥𝑝𝑒𝑟 𝑡𝐺(𝑋0).
Wherever 𝐸𝑥𝑝𝑒𝑟 𝑡𝐺(𝑋0)𝑗 = 0, we don’t pass the expert to
the corresponding expert and do not need to compute
expert output embedding 𝐸𝑗(𝑋0, 𝑋𝑙).

2.2.4. Load Distribution Regularization

As stated in the previous research [8, 7, 9, 10], the gating
network tends to select only a few experts if no regu-
larization is applied, especially when certain experts are
easier to train than other experts. This phenomenon is
self-reinforcing, since the selected experts are trained
more and will be selected more frequently by the gating
network. Therefore, the load balancing loss is applied to
enforce the uniform expert routing.

𝐿balance = 𝜆 ⋅ 𝑁 ⋅
𝑁
∑
𝑗=1

𝑓𝑗 ⋅ 𝑃𝑗 (7)

where 𝐵 is the batch size, 𝑁 is the number of experts,
𝑓𝑗 is the fraction of examples dispatched to expert j, 𝑃𝑗 is
the average of the router probability allocated for expert
j, and 𝜆 is the coefficient for the regularization term.

𝑓𝑗 =
1
𝐵

∑
𝑥∈ℬ

1{argmax 𝑝(𝑥) = 𝑗} (8)

𝑃𝑗 =
1
𝐵

∑
𝑥∈ℬ

𝑝𝑗(𝑥) (9)

While the default load balancing loss is applicable and
effectivewhen experts are of the same type, AdaEnsemble
is using heterogeneous feature interaction experts, and
the optimal load for each expert is not uniform. There-
fore, we apply the below load distribution regularization

to encourage the expected load distribution of heteroge-
neous experts.

𝐿distribution = 𝜆 ⋅
𝑁
∑
𝑗=1

𝑓𝑗 ⋅ 𝑃𝑗
𝑤𝑗

(10)

where hyper-parameter 𝑤𝑗 is the expected load frac-
tion of examples dispatched to expert j, and naturally
∑𝑁

𝑗=1 𝑤𝑗 = 1. In practice, the 𝜆 should be sufficiently large
to prevent expert selection self-reinforcing phenomenon
at the initial training stage while not overwhelming the
primary LogLoss objective.

2.3. Depth Selecting Controller
2.3.1. Depth Selecting Network

The Depth Selecting Network is essentially the same con-
figuration as the aforementioned Noisy Gating Network
for SparseMoE layer. We denote it by 𝐷𝑒𝑝𝑡ℎ𝐺(𝑋0). The
outputs of 𝐷𝑒𝑝𝑡ℎ𝐺(𝑋0) are [𝑔

𝑑𝑒𝑝𝑡ℎ
1 , 𝑔𝑑𝑒𝑝𝑡ℎ2 , ⋯ , 𝑔𝑑𝑒𝑝𝑡ℎ𝐿], in-

dicating each example’s optimal forward propagation
depth. The 𝑙-th unit denotes the probability of selecting
the 𝑙-th MoE layer to exit. The optimal depth is automat-
ically selected as the one corresponding to the largest
probability. In contrast to the expert selection, when
choosing the optimal depth of each example for the dy-
namic inference, we only keep the top-1 depth index
from the output units of the Depth Selecting Network.
Note that we can also apply the load distribution regu-
larization to encourage the examples’ propagation depth
distribution.

2.3.2. Dynamic Propagation Mechanism

With the depth gates 𝑔𝑑𝑒𝑝𝑡ℎ𝑙 ∈ [0, 1] computed by Depth
Selecting Network, we obtain the optimal depth for each
example. If 𝑔𝑑𝑒𝑝𝑡ℎ𝑙 = 0, we recursively forward propagate
examples through MoE layers and compute deeper rep-
resentation until 𝑔𝑑𝑒𝑝𝑡ℎ𝑙 = 1 or reaching the final layer.

If 𝑔𝑑𝑒𝑝𝑡ℎ𝑙 = 1, the forward propagation will be stopped
and the corresponding 𝑙-th estimator will compute the
prediction. To efficiently process a batch of examples
with different optimal propagation depths, we utilize al-
gorithm 1 for dynamic forward propagation.

2.4. Training
2.4.1. Training Objective

The loss function we use a linearly weighted combina-
tion of the Log Loss and the auxiliary load distribution
regularization,

𝐿𝑜𝑠𝑠 = 𝐿LogLoss + 𝜆1𝐿
expert
distribution + 𝜆2𝐿

depth
distribution (11)

where 𝜆1 and 𝜆2 are the coefficients for weighting the
load distribution regularization of experts and depth.

2.4.2. Bi-Level Optimization

The optimization task for training the AdaEnsemble is
to jointly optimize the parameters 𝑊, which stands for
the expert layers and estimator layers, and 𝛼, which rep-
resents the expert gating network and depth selecting
network. Inspired by the DARTS [11], we apply bi-level
optimization algorithm for training our model, where 𝛼
is the upper-level parameters and 𝑊 is the lower-level
parameters. We apply algorithm 2 to optimize 𝑊 and 𝛼
alternatively and iteratively.

2.5. Discussion on AdaEnsemble
The combination of sparse experts routing within each
SparseMoE layer and the early exiting by depth selecting
controller brings two merits to the proposed model. On
one hand, the stacked SparseMoE layers allow the pro-
posed model to leverage the exponential combinations
of sparsely gated experts, which brings in more predict-
ing power. On the other hand, both the experts routing
mechanism and the depth selecting mechanism enables
the proposed model to learn the instance-ware expert
combination and instance-ware model depth. These two
conditional computation mechanisms improve the effi-
ciency during model serving. In the next section, we
will illustrate the effectiveness of the proposed model
through some experimental studies.

3. Experiments
In this section, we focus on evaluating the effectiveness
of our proposed models and seeking answers to the fol-
lowing research questions::

• Q1: How does our proposed AdaEnsemble perform
compared to each baseline in the CTR prediction prob-
lem?

• Q2: How does the SparseMoE layer perform compared
to DenseMoE, which utilizes all feature interaction
experts? Does the cascade of SparseMoE layers effec-
tively capture different types of feature interactions?

• Q3: How does the depth selecting controller perform
compared to a full-depth network? Does the early
exiting mechanism achieve both effectiveness and ef-
ficiency?

Algorithm 1 Dynamic Propagation
1: DepthGates ← DepthSelectingNetwork(X0))
2: ̂𝑦 ← DynamicPropagation(X0, DepthGates, depth=0)
3: return ̂𝑦
4:
5: function DynamicPropagation(Inputs, Gates, Depth)
6: Outputs = MoEDepth(Inputs)
7: Depth += 1
8: if Depth == Number of Layer then
9: ̂𝑦 = EstimatorDepth(Outputs)

10: else
11: g = Gates[:, Depth]
12: Outputskeep, Outputsexit = Dispatch(Outputs, g)
13: Gateskeep, _ = Dispatch(Gates, g)
14:
15: ̂𝑦keep = DynamicPropagation(Outputskeep, Gateskeep, Depth)
16: ̂𝑦 exit = EstimatorDepth(Outputsexit)
17: ̂𝑦 = Combine(̂𝑦keep, ̂𝑦 exit)
18: end if
19: return ̂𝑦
20: end function

Algorithm 2 Bi-Level Optimization for AdaEnsemble
Input: training examples with labels, step size 𝑡
Output: well-learned parameters W∗ and ∗

1: while not converged do
2: Sample a mini-batch of validation data
3: Updating by descending

∇ ℒ𝑣𝑎𝑙(W − 𝜉∇Wℒ𝑡𝑟𝑎𝑖𝑛(W,),)
4: (𝜉 = 0 for first-order approximation)
5: for 𝑖 ← 1, 𝑡 do
6: Sample a mini-batch of training data
7: Update W by descending ∇Wℒ𝑡𝑟𝑎𝑖𝑛(W,)
8: end for
9: end while

3.1. Experiment Setup
3.1.1. Datasets

We evaluate our proposed model on three public real-
world datasets widely used for research.

1. Criteo.1 Criteo dataset is from Kaggle competition
in 2014. Criteo AI Lab officially released this dataset after,
for academic use.

2. Avazu.2 Avazu dataset is from Kaggle competition
in 2015. Avazu provided 10 days of click-through data.
3. iPinYou.3 iPinYou dataset is from iPinYou Global

RTB(Real-Time Bidding) Bidding Algorithm Competition
in 2013. We follow the data processing steps of [12].

1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://www.kaggle.com/c/avazu-ctr-prediction
3http://contest.ipinyou.com/

Table 1
Performance Comparison of Different Algorithms on Criteo,
Avazu and iPinYou Dataset.

Criteo Avazu iPinYou
Model AUC LogLoss AUC LogLoss AUC LogLoss
LR 0.7924 0.4577 0.7533 0.3952 0.7692 0.005605
FM 0.8030 0.4487 0.7652 0.3889 0.7737 0.005576
DNN 0.8051 0.4461 0.7627 0.3895 0.7732 0.005749

Wide&Deep 0.8062 0.4451 0.7637 0.3889 0.7763 0.005589
DeepFM 0.8069 0.4445 0.7665 0.3879 0.7749 0.005609

DeepCrossing 0.8068 0.4456 0.7628 0.3891 0.7706 0.005657
DCN 0.8056 0.4457 0.7661 0.3880 0.7758 0.005682
PNN 0.8083 0.4433 0.7663 0.3882 0.7783 0.005584

xDeepFM 0.8077 0.4439 0.7668 0.3878 0.7772 0.005664
AutoInt 0.8053 0.4462 0.7650 0.3883 0.7732 0.005758
FiBiNET 0.8082 0.4439 0.7652 0.3886 0.7756 0.005679
xDeepInt 0.8111 0.4408 0.7672 0.3876 0.7790 0.005567
DCN V2 0.8086 0.4433 0.7662 0.3882 0.7765 0.005593

AdaEnsemble 0.8132 0.4394 0.7687 0.3865 0.7807 0.005550

3.1.2. Competing Models

We compare AdaEnsemble with following models: LR
(Logistic Regression) [13, 2], FM (Factorization Ma-
chine) [14], DNN (Multilayer Perceptron), Wide &
Deep [4], DeepCrossing [15], DCN (Deep & Cross Net-
work) [16], PNN (with both inner product layer and outer
product layer) [17, 18], DeepFM [19], xDeepFM [20], Au-
toInt [21], FiBiNET [22], xDeepInt[23] and DCN V2 [24].
Some of the models are state-of-the-art models for CTR
prediction problem and are widely used in the industry.

3.2. Model Performance Comparison (Q1)
The overall performance of different model architectures
is listed in Table 1. We have the following observations
in terms of model effectiveness:

• Models with more than two feature interaction mod-

ules generally perform better than models with only a
single feature interaction module, indicating the im-
portance of jointly learned feature interaction repre-
sentation.

• The optimal feature interaction depth varies by feature
interaction module type and when combined with
different module types, indicating the necessity for
dynamically combining different feature interactions
on different interaction depths.

• AdaEnsemble achieves the best prediction perfor-
mance among all models. Our model’s superior perfor-
mance could be attributed to the fact that AdaEnsem-
ble jointly model various types of feature interactions
by adaptively selecting the feature interaction experts
combination and determining the optimal feature in-
teraction depth by the controller.

3.3. Feature Interaction Expert Selection
Analysis (Q2)

We compare the model performance and FLOPs between
the DenseMoE and SparseMoE layers in AdaEnsemble ar-
chitecture. We also include the performance of different
multi-layer single expert models and their ensemble. All
the performance of above methods are listed in Table 2.
We also draw the alluvial diagram Figure 4 to illustrate
the dependency of each SparseMoE layer’s expert selec-
tion. The color of the flow is clustered by the frequency of
the expert combination. Based on the above observations,
we developed following understandings:

• Utilizing different feature interaction experts result
in better performance than single expert models in
general. SparseMoE layer achieves a better tradeoff
between accuracy and computation efficiency.

• Only utilizing one expert per SparseMoE layer gener-
ally hurts the model performance as the model cannot
ensemble different types of feature interactions.

• When utilizing more than one expert per SparseMoE
layer, even though only a subset of feature interaction
experts are selected, SparseMoE can still effectively
capture the most significant feature interactions of
different depths and maintain similar performance
as the DenseMoE layer and superior performance to
ensemble, while including more experts can also result
in more computational cost.

• Figure 4 shows that the SparseMoE layers dynamically
utilize a different combination of experts across differ-
ent layers to capture the complex feature interactions
effectively. That also explains why fusing different
feature interactions is crucial for prediction accuracy.

Table 2
Performance Comparison of SparseMoE and DenseMoE on
Criteo Dataset.

AUC LogLoss FLOPs
SparseMoE(k=1) 0.8096 0.4423 2.26M
SparseMoE(k=2) 0.8121 0.4400 4.14M
SparseMoE(k=3) 0.8132 0.4394 6.02M
SparseMoE(k=4) 0.8133 0.4393 7.09M
DenseMoE 0.8133 0.4392 9.78M
Ensemble 0.8120 0.4401 12.15M
Dense Expert Only 0.8050 0.4463 3.71M
Cross Expert Only 0.8086 0.4433 3.36M
Polynomial Expert Only 0.8111 0.4408 3.32M
CNN Expert Only 0.8022 0.4501 1.11M
MHSA Expert Only 0.8051 0.4465 2.17M

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

CNN

Cross

Dense

MHSA

Poly

Layer1 Layer2 Layer3 Layer4

Figure 4: The Alluvial diagram for illustrating the dependency
of each SparseMoE layer’s expert selection

Each vertical axis represents a SparseMoE layer and the
proportion of an expert being used. The horizontal flows

indicate the dependency and relation of different SparseMoE
layer’s expert selection. The proportion of the expert

combination was represented by the width of the flows and
further clustered to different colors.

3.4. Depth Selection Analysis (Q3)
We compare the model performance between the
AdaEnsemble with andwithout depth selecting controller
to investigate whether the model achieves the harmony
between prediction accuracy and inference efficiency
with respect to depth selection. The performance of the
different types of MoE layers and ensemble result is listed
in Table 3.

With the incorporation of the depth selecting con-
troller, we can observe that our model can significantly
improve training complexity and inference efficiency
(measured in FLOPs) while achieving slightly better per-
formance than the full-depth model. We think the full-
depth model is easier to overfit compared to AdaEnsem-
ble, thus resulting in slightly worse accuracy perfor-

Table 3
Performance Comparison of AdaEnsemble with and without
controller on Criteo Dataset.

AUC LogLoss FLOPs
w/ controller 0.8132 0.4394 6.02M
w/o controller 0.8128 0.4396 8.58M

Table 4
AdaEnsemble Propagation Depth on Criteo Dataset.

Layer 1 Layer 2 Layer 3 Layer 4
Fraction 6.53% 19.36% 66.43% 7.68%

mance. The AdaEnsemble with depth selecting controller
adaptively selects feature interaction depth per example
basis, thus achieving better trade-offs between prediction
accuracy and inference efficiency. The distribution of per
example forward propagation depth is listed in Table 4.

4. Conclusion
In this paper, we present a novel model architecture to
click-through rate (CTR) modeling by introducing the
Sparse-Gated Mixture-of-Experts (SparseMoE) hierarchi-
cal architecture for ensemble learning of heterogeneous
feature interactions experts. A Depth Selecting Con-
troller component was integrated into the model to dy-
namically select the optimal feature interaction depth for
each instance. The utilization of these two conditional
computation mechanisms results in a model architecture
that can select a subset of feature interactions experts
and the optimal interaction depth for each instance simul-
taneously, leading to an exponential increase in model
capacity without incurring a corresponding increase in
inference cost. Our extensive experiment demonstrate
the superiority of our approach in terms of effectiveness
and efficiency.

Future work will be dedicated to exploring the poten-
tial for extending our method to the modeling of user
behavior sequences. By learning a sparse ensemble of
models, we anticipate that our approach can dynamically
select the optimal expert for different behaviors in the
context of user behavior sequence data.

References
[1] M. Richardson, E. Dominowska, R. Ragno, Predict-

ing clicks: estimating the click-through rate for
new ads, in: Proceedings of the 16th international
conference on World Wide Web, ACM, 2007, pp.
521–530.

[2] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,

D. Golovin, et al., Ad click prediction: a view
from the trenches, in: Proceedings of the 19th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, ACM, 2013, pp.
1222–1230.

[3] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, et al., Practical
lessons from predicting clicks on ads at facebook, in:
Proceedings of the Eighth International Workshop
on Data Mining for Online Advertising, ACM, 2014,
pp. 1–9.

[4] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chan-
dra, H. Aradhye, G. Anderson, G. Corrado, W. Chai,
M. Ispir, et al., Wide & deep learning for recom-
mender systems, in: Proceedings of the 1st work-
shop on deep learning for recommender systems,
ACM, 2016, pp. 7–10.

[5] S. Zhang, L. Yao, A. Sun, Y. Tay, Deep learning
based recommender system: A survey and new
perspectives, ACM Computing Surveys (CSUR) 52
(2019) 5.

[6] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation net-
works, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp.
7132–7141.

[7] W. Fedus, B. Zoph, N. Shazeer, Switch transformers:
Scaling to trillion parameter models with simple
and efficient sparsity, 2021.

[8] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis,
Q. Le, G. Hinton, J. Dean, Outrageously large neural
networks: The sparsely-gated mixture-of-experts
layer, arXiv preprint arXiv:1701.06538 (2017).

[9] B. Zoph, I. Bello, S. Kumar, N. Du, Y. Huang, J. Dean,
N. Shazeer, W. Fedus, Designing effective sparse
expert models, arXiv preprint arXiv:2202.08906
(2022).

[10] Z. Chi, L. Dong, S. Huang, D. Dai, S. Ma, B. Patra,
S. Singhal, P. Bajaj, X. Song, F. Wei, On the rep-
resentation collapse of sparse mixture of experts,
arXiv preprint arXiv:2204.09179 (2022).

[11] H. Liu, K. Simonyan, Y. Yang, Darts: Dif-
ferentiable architecture search, arXiv preprint
arXiv:1806.09055 (2018).

[12] W. Zhang, S. Yuan, J. Wang, X. Shen, Real-time
bidding benchmarking with ipinyou dataset, arXiv
preprint arXiv:1407.7073 (2014).

[13] H. B. McMahan, Follow-the-regularized-leader and
mirror descent: Equivalence theorems and l1 regu-
larization (2011).

[14] S. Rendle, Factorization machines, in: 2010 IEEE
International Conference on Data Mining, IEEE,
2010, pp. 995–1000.

[15] Y. Shan, T. R. Hoens, J. Jiao, H. Wang, D. Yu, J. Mao,
Deep crossing: Web-scale modeling without manu-
ally crafted combinatorial features, in: Proceedings

of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining,
ACM, 2016, pp. 255–262.

[16] R. Wang, B. Fu, G. Fu, M. Wang, Deep & cross
network for ad click predictions, in: Proceedings
of the ADKDD’17, ACM, 2017, p. 12.

[17] Y. Qu, H. Cai, K. Ren, W. Zhang, Y. Yu, Y. Wen,
J. Wang, Product-based neural networks for user
response prediction, in: 2016 IEEE 16th Interna-
tional Conference on Data Mining (ICDM), IEEE,
2016, pp. 1149–1154.

[18] Y. Qu, B. Fang, W. Zhang, R. Tang, M. Niu, H. Guo,
Y. Yu, X. He, Product-based neural networks for
user response prediction over multi-field categor-
ical data, ACM Transactions on Information Sys-
tems (TOIS) 37 (2018) 5.

[19] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a
factorization-machine based neural network for ctr
prediction, arXiv preprint arXiv:1703.04247 (2017).

[20] J. Lian, X. Zhou, F. Zhang, Z. Chen, X. Xie, G. Sun,
xdeepfm: Combining explicit and implicit feature
interactions for recommender systems, in: Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Min-
ing, ACM, 2018, pp. 1754–1763.

[21] W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang,
J. Tang, Autoint: Automatic feature interaction
learning via self-attentive neural networks, arXiv
preprint arXiv:1810.11921 (2018).

[22] T. Huang, Z. Zhang, J. Zhang, Fibinet: Combining
feature importance and bilinear feature interaction
for click-through rate prediction, arXiv preprint
arXiv:1905.09433 (2019).

[23] Y. Yan, L. Li, xdeepint: a hybrid architecture for
modeling the vector-wise and bit-wise feature in-
teractions (2020).

[24] R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin,
L. Hong, E. Chi, Dcn v2: Improved deep & cross
network and practical lessons for web-scale learn-
ing to rank systems, in: Proceedings of the Web
Conference 2021, 2021, pp. 1785–1797.

	1 Introduction
	2 Proposed Model: AdaEnsemble
	2.1 Feature Interaction Experts
	2.2 Sparse Mixture-of-Experts Layer
	2.2.1 Noisy Gating Network
	2.2.2 Annealing Top-K Gating
	2.2.3 Sparse Dispatcher
	2.2.4 Load Distribution Regularization

	2.3 Depth Selecting Controller
	2.3.1 Depth Selecting Network
	2.3.2 Dynamic Propagation Mechanism

	2.4 Training
	2.4.1 Training Objective
	2.4.2 Bi-Level Optimization

	2.5 Discussion on AdaEnsemble

	3 Experiments
	3.1 Experiment Setup
	3.1.1 Datasets
	3.1.2 Competing Models

	3.2 Model Performance Comparison (Q1)
	3.3 Feature Interaction Expert Selection Analysis (Q2)
	3.4 Depth Selection Analysis (Q3)

	4 Conclusion

