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Abstract 
The aim of this short paper is to present the connection between the cognitive framework of predictive 
processing and active inference and existing implementation in AI tools, in order to investigate whether these 
models of cognition can be used to design explainable and sustainable AI architectures. 
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1. Introduction 

The aim of this short paper is to trace the connection between the cognitive framework of predictive 
processing (PP) and the existing implementation in AI tools. PP is related to some formal models of 
mind, i.e., Karl Friston’s free energy principle (FEP) and active inference (AIF), which share their 
mathematical foundations with generative AI. Therefore, it is worth exploring this relationship to enrich 
the debate about whether current AI architectures can benefit from frameworks established in 
neuroscience and philosophy of mind. 

For this reason, this paper is organized as follows: section 2 first introduces PP and explains how 
it is related to AIF and FEP. Section 3 shows the impact of these frameworks on generative AI, and 
section 4 presents some directions for future research. Finally, some conclusions are drawn.  

 

2. Predictive Processing, Free Energy Principle, Active Inference 

By PP, or predictive coding, is meant the hierarchical model theorized by neuroscientist Karl Friston. PP 

is considered a unified explanation for perception, action and cognition, and sees the brain as a 

predictive machine that tries to predict its next states based on information gained through the previous 

interactions with the environment [1]. This means that the brain always tries to minimize the 

probability of prediction errors and avoid states with a high degree of surprise. This is also the concept 

of Bayesian inference, which reappears in the context of FEP. FEP, of which Friston is again the father, 

has been used in different contexts and with different objectives, and has been regarded as a more or 

less mysterious unification principle, that can be applied to almost any field of knowledge: from 

thermodynamics, to biology, to the study of the mind. Friston emphasizes that FEP is not a framework, 
or a theory, but should be understood as a tool or, in other words, a methodology. In its original 

formulation, FEP is a mathematical formula that states that agents exist because they can persist, 

maintaining their equilibrium by minimizing free energy. This minimization of energy is achieved by 

AIF, which – again – means changes in state and the suppression of prediction errors by information 

gained from the history of previous interactions with the environment [2][3]. AIF can be intuitively 

described as «feeling our way in darkness: we anticipate what we might touch next and then try to 

confirm those expectations» [1]. More generally, AIF provides a comprehensive framework to describe, 
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explain, simulate and understand the mechanisms underlying decision-making, perception, and action 

[4][5]. 

AIF modeling is very attractive for several reasons. For example, it has been used in the context of 
scientific research on introspection, self-modeling and self-access, which has led to several theories of 
consciousness [6]: introspection, i.e., the ability to access and evaluate one’s own mental states, thoughts 
and experiences, plays a critical role in self-awareness, learning and decision-making, and is a pillar of 
human consciousness [7]. Mahault Albarracin and colleagues state that self-modeling and self-access 
can be defined as «interconnected processes that contribute to the development of self-awareness and 
to the capacity for introspection» [8]. Moreover, «self-modeling involves the creation of internal 
representations of oneself, while self-access refers to the ability to access and engage with these 
representations for self-improvement and learning […] These processes, in conjunction with 
introspection, form a complex dynamic system that enriches our understanding of consciousness and 
the self – and indeed, may arguably form the causal basis of our capacity to understand ourselves and 
others» [8]. The starting idea for a model of consciousness based on AIF is that for a system to be able 
to report and evaluate its own conclusions, it must be able to implement some form of self-access, i.e., 
some parts of the system can use the output of other parts as their own input, for further processing. 
This is related to the idea that some cognitive processes are “transparent”. Like a clean window, they 
allow us to access other things without being perceptible themselves. Other cognitive processes are 
“opaque”, meaning that they can be evaluated per se, such as introspective self-awareness (e.g., being 
aware that you are looking at a tree rather than seeing a tree). The idea, then, is that introspective 
processes make other cognitive processes accessible to the system as such, thus rendering them opaque. 
AIF has been used by Albarracin and colleagues to develop a three-level generative model that models 
self-access and introspective abilities in terms processes that govern transparency and opacity at the 
phenomenal level of description and attentional selection at the psychological level, respectively [8][9].  

AIF, FEP and PP are not only used for modelling consciousness in the science of mind, but are also 
of interest in many other fields such as thermodynamics and biology, as they provide a very general and 
comprehensive framework for optimizing resources: FEP and AIF can be applied to almost all types of 
organisms and organizations that are able to sustain themselves with the least waste of resources and 
through the strategy of minimizing prediction errors. As mentioned earlier, this is the same concept of 
Bayesian inference, and Bayesian structures are also used in the field of generative AI.  

On these grounds, the next section addresses the connection between AIF and AI models based on 
Bayesian networks. 
 

3. Predictive Processing, Active Inference, AI 

In the field of AI, the AIF framework, which is essentially Bayesian inference, is used in a wide variety of 
ways. One of the most popular applications concerns generative models, which are used for neural 
networks to generate images and text. The idea behind generative models is the same as for predictive 
perception based on Bayesian inference, namely minimization through errors. Indeed, these algorithms 
can generate sensory signals that match predicted causes, as they learn from small data sets and 
generalize to new situations [10]. Bayesian networks are a type of generative models where all 
processes can be easily tracked and understood: namely the propagation of events evolves through 
multiple ambiguous points, where the event diverges probabilistically between paths, and at any given 
point in the network, the probability of that node being visited depends on the joint probability of that 
node being visited is dependent on the joint probability of the preceding nodes. Therefore, Bayesian 
networks resemble explicit reasoning, although they are probabilistic. For this reason, they are more 
reliable in terms of explainability, than other models, such as neural models based on feedforward 
architectures trained with backpropagation: these models are very powerful in producing fast results, 
but they often lead to black box situations that are difficult to explain, since the inputs are known, but 
the path to the outputs is less clear [11].  

As mentioned earlier, generative models based on Bayesian networks are used in AI for generating 
images and text. The most popular AI for images (e.g., Dall-E and Midjourney) are deep generative 
networks, which are a combination of a generative model and a deep neural network. This means it is a 
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basic neural network that has been augmented in both size and training data, both of which are required 
for good performance [12]. The whole is combined with a generative language model, whose task is to 
process the user’s text input to generate the images, i.e., a Generative Pretrained Transformer network 
(GPT). A transformer network is a deep learning model that applies the mechanism of self-attention, 
differentially weighting the importance of each part of the input data [13]. These AI algorithms have 
access to billions of images on the Internet tagged with words. GPT can read this image data and extract 
some basic features (e.g., the style of a particular artist, or facial shapes), and hence, GPT manages to 
understand how much the images are coherent with the inputs submitted by the user. It means that 
during the process of producing new images, the generative networks act gradually adding new features 
built on the features that they have already seen. 

As for a more direct connection between PP, AIF and AI, these cognitive systems are also 
interesting for robotics. In particular, for robotics applications where the dynamic of the robot or the 
task are uncertain: for estimation, adaptive control, fault-tolerant control, prospective planning and 
complex cognition skills (human-robot collaboration, discrimination between self and others) [14]. 
Pablo Lanillos and Gordon Cheng [15] have developed a computational model that allows a robot to 
determine its own body configuration by basing it on PP. More in detail, PP is used for a computational 
perception model that makes any multisensory humanoid robot able to learn, infer and update its body 
configuration. This model enables generic multisensory integration, by integrating different sources of 
information (tactile, visual and proprioceptive): the robot estimates its body configuration and adjusts 
it based on sensory information alone. Prior to Lanillos and Cheng, also Jun Tani [16] and Leo Pio Lopez 
and colleagues [17] also studied similar AIF-based models for real robots. Similar approaches have also 
been used for industrial manipulators [18], and for implementing active vision in robots in simulation 
environments [19]. Toon Van de Maele and his team proved in a simulation environment that a robot 
agent, moving without knowledge of the workspace, chooses the next visual position by evaluating the 
expected free energy. This means that it is possible to use the active inference paradigm as a «natural 
solution for active vision in complex tasks in which the distribution over the environment is not defined 
upfront» [19]. With the appropriate amount of GPU memory, a more complex generative model could 
also be trained to compute the expected free energy for all potential viewpoints of an agent, and not just 
for a limited set of considered ones: this would allow extending the use of the neural network for a real-
time control of physical robot manipulators.  

All the generative model based on Bayesian networks, which rely on FEP and AIF too, are worth 
to be investigated also because they could be considered more sustainable than more complex models 
(e.g., neural models based on feedforward architectures) in terms of fairness and explainability [20], 
since Bayesian networks, as already anticipated, imply processes that can be tracked and understood. 
They also refer to FEP, which provides a very general framework for resource optimisation. On the other 
hand, it may be risky to consider this type of algorithms as models for building AI cognition, since they 
rely on basic decision theory that assumes an optimal decision maker who is able to calculate and choose 
the move that maximizes the utility function at each stage of problem solving. These theories of 
maximising expected utility have been criticised as being computationally intractable [21][22], since 
they are computationally demanding for systems with a large number of random variables, and 
therefore lead to an exponential increase in computational effort and energy consumption, as the 
number of states increases. 

Hence, the take-away message from this section is that AIF, PP and FEP are not only abstract 
models for cognition, mind or resource optimization, but they also have very concrete applications in 
AI. For this reason, research should delve more into this relationship’s implications. On these grounds, 
the next section discusses what has been done on this path until now and what might be investigated in 
the future. 
 

4. A few steps forward  

The previous sections have dealt with the description of the cognitive frameworks of PP and AIF and 
have shown how they are employed for AI implementation. The relevance of this link has been noted by 
neuroscientists, who are studying the implications of these tools to draw new kinds of AI, characterized 
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by top-down systems which prioritize high-level planning and decision-making, rather than bottom-up 
systems, driven by masses of training data [23]. 

Moreover, Albarracin and colleagues [8] have argued that incorporating the design principles of 
AIF into AI systems can lead to better explainability for two reasons: the first is that «by deploying an 
explicit generative model, AI systems premised on AIF are designed to be interpreted by a user or a 
stakeholder, that can be fluent in the operation of such models». The second is that an architecture 
inspired by AIF models of introspection is useful to «build systems that are able to access and report on 
the reasons for their decisions, and their state of mind when reaching these decisions». Specifically, they 
propose an architecture including components that update and maintain an internal model of its own 
state, beliefs and goals: this capacity of self-access, enables the AI system to optimize and report in its 
decision-making processes, fostering introspection and enhanced explainability. This is done by a soft 
attention mechanism, which uses a weighted combination of hierarchical generative model components 
to focus on relevant information: the attention weights are computed based on the input data and the 
AI system’s internal state, allowing the system to adaptively focus on different aspects of the hierarchical 
generative model [8]. 

All that considered, Albarracin and colleagues indicate different research paths for future 
development. It is worth exploring, among other things, more advanced data fusion techniques, such as 
deep learning-based fusion or probabilistic fusion, to improve the AI system’s ability to combine and 
process multimodal data effectively. The explanation and transparency of these kind of algorithms has 
been a significant topic in recent years, especially in decision-making scenarios. 

In this sense, an interesting path might be found in the research about Bayesian networks for 
decision-making, specifically exploring a specific subset of a Bayesian network, i.e., a Markov blanket 
(MB): «the Markov blanket of a variable X is the set consisting of the parents of X, the children of X, and 
the variables sharing a child with X» [24]. This is, in a Bayesian network, the nodes forming the MB of X 
simplify a lot the computation of the value of a variable, since «if X is embedded in a graph with a 
hundred variables, but its MB consists of five variables, one can safely ignore ninety-five variables in the 
computation» [25]. Hence, in the framework of FEP and AIF, Friston introduced the statistical concept 
of MB, by advocating it as a tool to describe a specific form of conditional independence between a 
dynamical system and its environment, and by addressing it as real boundaries of living organisms 
[2][3]. Indeed, they are associated with the physical boundaries surrounding cells (i.e., their membrane), 
through which all influences between the intracellular and extracellular spaces are mediated. More 
broadly, MBs represent a separation of the world into different sets of states, which interact only via 
MB. Hence, although living systems need to interact with the environment, since they are open systems, 
they also need to distinguish themselves from the external environment: in this context, conditional 
independence occurs: when the state on the organism/environment boundary, i.e., the MB, is fixed, what 
happens on one side of the boundary does not influence what happens on the other side. This means 
that all the necessary information for explaining the behaviour of the internal system is given by the 
state of the blanket [26][27].  

Besides the theoretical framework, MBs are employed in AI implementation, joint with AIF, for 
instance, in music generation [28] and in robotics. If we consider again one of the examples seen in the 
previous section, i.e., Van de Maele’s simulation of the robotic agent moving in a space AIF based, also 
MBs structures occur. Indeed, in that context the robotic agent was designed as separated from the 
world state through a MB, meaning that the agent can only update its knowledge about the surrounding 
space by interacting with the world through its chosen actions and its observed sensory information 
[19].    

Hence, when establishing research on MBs, one should be very careful about the basic 
assumptions to be made: this is, on the one hand, MB can be used instrumentally in their original 
statistical form, i.e., as a formal mathematical construct for inference on a generative model, e.g., a 
Bayesian network. On the other hand, this usage cannot come only from the theoretical framework 
established by Friston and cannot be justified with traditional statistics. However, grasping the potential 
of this tool and delving into its possible implications might be worth for further research on using AIF 
for AI architecture. 
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5. Conclusion 

So far, this short paper has described the theoretical frameworks of PP and AIF, showing their linkages 
to FEP, and how all of them are employed in the field of AI. The paper has reported the research 
conducted by Mahault Albarracin and colleagues on the possibility of using AIF for implementing 
explainable and transparent AI architecture. Specifically, this work’s final proposal is to follow this path 
by focusing on the potential of the statistical structures of MBs, which might be helpful for the 
development of more sustainable and transparent decision-making processes.  This follows from the 
observation that the investigation of the relationship between AI and the cognitive frameworks 
provided by the philosophy of mind and neuroscience still has not yet received sufficient attention by 
literature and should be taken into account for future AI development, and, vice versa, delving into AI 
implementation might be helpful to shed some light on these cognitive frameworks.  
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