
Leveraging deep learning for Python version
identification
Marcus Gerhold1, Lola Solovyeva2 and Vadim Zaytsev1,2

2Technical Computer Science, University of Twente, Enschede, the Netherlands
1Formal Methods & Tools, University of Twente, Enschede, the Netherlands

Abstract
Python, recognized for its dynamic and adaptable nature, has found widespread application in a myriad of
projects. As the language evolves, determining the Python version employed in a project becomes pivotal
to ensure compatibility and facilitate maintenance. Deep learning (DL) has emerged as a promising
tool to automate this process. In this research, we assess various DL techniques in determining the
minimum Python version for a code snippet. We explore the complexities of handling Python data and
the DL techniques to achieve high classification accuracy. Our experimental results show, that LSTM
with CodeBERT embedding achives an accuracy of 92%. This success can be attributed to the LSTM’s
proficiency in capturing structural details of the hierarchical nature of a source code, complemented
by CodeBERT’s ability to discern contextual differences between keywords and variable names. This
research provides insights into the challenges associated with utilizing programming languages for deep
learning models and suggests potential solutions for addressing these issues. The envisioned applications
extend to predicting the minimum required version for individual files or an entire code base.

Keywords
Deep Learning, CodeBERT, Python, version identification

1. Introduction

Python continues to hold its position as one of the most widely used programming languages
of our generation. As indicated by JetBrains, Stack Overflow, and IEEE Spectrum, Python
consistently ranks among the top three programming languages preferred by developers and
claims the top spot when it comes to researchers’ preferences. Python has undergone a series
of significant evolutions and version updates since its inception [1]. The previous findings
have shown that during the breakthrough of Python 3 developers had not fully embraced the
transition to a newer version. Instead, they opted to maintain compatibility with both Python
2 and 3, limiting themselves to a subset of the language governed by the decreasing set of
shared features between Python 2 and 3 [1]. This closes the door for compatibility with other
projects that fully transitioned to newer versions since Python does not maintain backward
compatibility [2]. Exploiting projects with an older version can lead to software quality issues
such as increased complexity of the code, security vulnerabilities, and performance limitations.
As Python continues to adapt and progress, one critical aspect becomes increasingly pivotal for

BENEVOL’23:The 22nd Belgium-Netherlands Software Evolution Workshop Nijmegen, 27-28 November 2023
Envelope-Open m.gerhold@utwente.nl (M. Gerhold); o.solovyeva@student.utwente.nl (L. Solovyeva); v.zaytsev@utwente.nl
(V. Zaytsev)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

33

mailto:m.gerhold@utwente.nl
mailto:o.solovyeva@student.utwente.nl
mailto:v.zaytsev@utwente.nl
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


both compatibility and ongoing maintenance: the precise determination of the Python version.
While certain Python projects indicate the necessary version for their execution, this requirement
may not always represent the actual minimum version. In practice, developers do not always
utilize the functionalities of the version they use. There is a very limited number of existing
solutions for how to determine a minimum required version for a Python code. The prevailing
method is often a trial-and-error approach, where one relies on their prior experience and
familiarity with Python features to gauge the necessary version. Other existing solutions
involve parsing the code and then cross-referencing it with internal dictionaries.
The increased utilization of deep learning techniques has become more prominent in the realm
of software engineering and development. It has proven highly beneficial in tasks such as
identifying code smells [3], code summarization [4], and detecting code clones [5]. Deep
learning models have an edge over simpler machine learning classification methods in certain
tasks due to their ability to learn intricate patterns and representations from data. Their depth
allows them to automatically extract hierarchical features, capturing complex relationships that
may be challenging for simpler models. Source code often follows a hierarchical structure, with
functions, classes, and modules interacting in intricate ways. So, Deep Learning models can
understand not just individual lines of code but also the broader context in which they exist.
In this research, we investigate the ability of deep learning techniques to find subtle differences
between various versions of Python language. To find a minimal required Python version for the
codebase, we propose to train a deep learning model that distinguishes between Python minor
versions, amounting to a current count of 20 distinct classes. A research can be sumamrized by
the following research question:

• Which DL model provides the highest level of accuracy when classifying Python versions?

2. Related Work

There has been limited attention and research dedicated to the problem of identifying required
Python versions for the file or a project. An existing tool, known as Vermin1, has the capability
to determine the minimum required Python version. Vermin accomplishes this by parsing code
into an abstract syntax tree and subsequently traversing it while comparing against internal
dictionaries with 3676 rules. Nevertheless, it may still produce erroneous results and is not
scalable for major projects [6]. Additionally, there is a Chrome extension named PyVerDetector,
which empowers users to select a specific Python version and validate the compatibility of
code snippets on Stack Overflow [2]. It generates error messages for any inconsistencies found,
parsing the code snippets and highlighting versioning issues, while also suggesting a list of
Python versions that can execute each code snippet. Nonetheless, PyVerDetector is limited to
recognizing major Python versions and does not possess the capability to differentiate between
minor version variations. Another tool that was developed with the same limitation is PyComply,
which is a Python compliance analyzer [1]. It was developed to assess and quantify the extent
to which Python 3 features are utilized, including their adoption rate and the context in which
they are applied. At the heart of PyComply lies the foundation of its grammar formalism,

1https://github.com/netromdk/vermin#vermin

34



which serves to define the Python syntax. Additionally, parser actions have been seamlessly
incorporated into this grammar to aid in recognizing the distinctive features of Python 3.
Previously deep learning techniques were applied to Python data for various reasons. Akimova
et al. [7] created a dataset PyTraceBugs that serves the purpose of training, validating, and
assessing large-scale deep learning models with the specific objective of identifying a distinct
category of low-level bugs present in source code snippets. Furthermore, Alhefdhi et al. [8]
applied Neural Machine Translation to Python data for pseudo-code generation. Nonetheless,
there is no dataset that has pairs of Python code with their corresponding versions.

3. Corpus construction and pre-processing

There is no existing corpus that would contain pairs of Python code snippets and their corre-
sponding version. Thus, there is a need to create a dataset, that would consist of code examples
for each of the Python versions. We use Vermin for labeling the snippets since the version
provided on PyPI is set for the entire project. So, for some files of the project, the version listed
on PyPI is not necessarily a minimal one.
We collected Python code samples by downloading popular top 50 Python projects from PyPI,
considering each project’s multiple releases. We focused on Python files, excluding those in
other languages, and removed comments. Using a dedicated Python ast module 2, we generated
Abstract Syntax Trees (ASTs) for each file, discarding unparsable ones. Given that the module
relies on abstract grammar for text parsing, it is noteworthy that certain files associated with ear-
lier versions of Python may remain unprocessable. This is attributed to their lack of alignment
with the presently specified abstract grammar encapsulated within the package. The Vermin tool
helped us determine the minimal version required for the successful compilation of individual
AST nodes, aiming to find distinctive version features. Terminal nodes, typically representing
variables or numeric values, were excluded as they lack substantial version-differentiating
information. So, the resulting dataset is the mapping between code snippets, which represent
distinctive features according to Vermin, and its corresponding version.
Table 1 presents the number of instances for each class. The dataset is imbalanced since some
Python versions are more commonly used than others. This can drastically impact a training
process and classification results. Oversampling is more beneficial in our case, since some of the
classes have a minuscule number of instances. Deep learning methods require a large corpus for
their numerous parameters to effectively learn diverse patterns and variations within the data.
The abundance of examples facilitates generalization to new instances and mitigates overfitting,
enhancing the model’s adaptability and robustness in real-world scenarios.
To deal with the mentioned issue, we apply a widely-used approach to synthesizing new class
instances called Synthetic Minority Oversampling TEchnique (SMOTE) [9]. The SMOTE al-
gorithm operates by calculating the difference between a sample and its nearest neighbor,
multiplying this difference by a random number between 0 and 1, and then adding the result to
the sample to generate a new synthetic example in feature space. This process is iteratively
applied to the next nearest neighbor until a user-defined number of synthetic examples is
generated. Ensuring sufficient data representation in each class, we balanced the dataset by

2https://docs.python.org/3/library/ast.html

35



Version 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7
Number of Instances 1,200,199 192 13,985 4,719 16,831 14,151 26,685 7,166

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11
20,741 74 514 2,317 425 6,538 25,146 184 722 63 1,792 36

Table 1
Number of instances per class.

LSTM[10] TCN[11] TextCNN[12] BERT [13] CodeBERT[14] XLNet[15]
Word2Vec[16]
CodeBERT[14]
XLNet[15]

Table 2
Combination of word embeddings and classifiers. Green indicates the combination was used, whereas
red indicates that it was not.

undersampling classes with more than 4000 instances and generating additional observations
using SMOTE for classes with fewer than 4000 instances.

4. Training details

Table 2 presents all the combinations of word embeddings with classifiers, which resulted in 9
models trained for the experiments. Red combinations were excluded due to potential conflicts
between word embedding methods and models. For instance, the static nature of Word2Vec may
clash with BERT’s contextualized embeddings, limiting the latter’s effectiveness. Mismatched
training objectives and data sources can introduce inconsistencies, leading to larger, more
complex models that may impact computational efficiency. Fine-tuning challenges necessitate
careful parameter tuning, and the fusion of BERT’s task-specific embeddings with Word2Vec
may dilute the former after fine-tuning.
We used the gensim library forWord2Vec implementation, training the model on a dataset. After
experimenting with various embedding sizes, we found 100 to be optimal. Hyperparameters
were fine-tuned, setting the window size to 5 and the minimal frequency to 1. For CodeBERT, a
pretrained model from CodeSearchNet was used. BERT, CodeBERT, and XLNet had a token
limit of 512, so longer files were divided into batches. A batch size of 128 was chosen for a
balance between speed and accuracy. XLNet’s word embeddings, pretrained on English text,
had a parameter set to 128 tokens. The models shared common configurations, including a
learning rate of 2e-5 with the Adam optimizer, sparse categorical cross-entropy loss, 768-unit
hidden representation, batch size of 64, 100 training epochs, and a final dense layer with sigmoid
activation. Attention masks and dropout layers were applied for BERT and CodeBERT, while
XLNet used a 0.1 dropout probability. Early stopping, monitoring loss and halting training after
3 epochs without improvement, was implemented to manage computational cost. LSTM, TCN,
and TextCNN shared a similar setup with the Adam optimizer, default learning rate, sparse
categorical cross-entropy loss, batch size of 64, 100 training epochs, and a final dense layer with
softmax activation. They also utilized the same early stopping criteria. The dataset was split

36



Model Accuracy Balanced Accuracy Precision Recall F1-score
CodeBERT+LSTM 0.93 0.92 0.93 0.93 0.93
CodeBERT+TextCNN 0.92 0.90 0.92 0.92 0.92
CodeBERT+BERT 0.92 0.90 0.92 0.91 0.91
CodeBERT 0.92 0.89 0.92 0.92 0.92
XLNet 0.92 0.89 0.92 0.92 0.92
CodeBERT+TCN 0.90 0.89 0.91 0.90 0.90
Word2Vec+LSTM 0.62 0.55 0.65 0.62 0.63
Word2Vec+TextCNN 0.56 0.46 0.59 0.56 0.57
Word2Vec+TCN 0.51 0.42 0.55 0.55 0.55

Table 3
Results of each model for accuracy, balanced accuracy, precision, recall, and f1-score on the test set of
short code snippets.

into a training set and a test set with a 60:40 ratio. Additionally, 20% of the training set was
allocated for validation purposes during the training phase to monitor the model’s learning
progress.

5. Performance evaluation

As a final step of the experiment, our objective is to assess the performance of the models
employed in this study. Our primary goal is to identify a model, that is capable of effectively
categorizing a code snippet with its associated minimum required version. This step holds
paramount importance, as it is crucial for a model to exhibit a high classification accuracy on a
per-code snippet basis. This significance arises from the future application of the model, where
it can be used to predict the minimal Python version for the file or an entire code base, since
a single file, technically, is a combination of a code snippets. So, an incorrect classification of
just one instance could result in the misclassification of the entire file. We use some of the
most common metrics to evaluate the performance of text classifiers: accuracy, recall, precision,
F1-score. We also employed balanced accuracy, which is a variation of the standard accuracy
but it takes into account the class distribution in the dataset. For a multiclass problem, it is an
average of recalls per class.

6. Discussion

Nine models underwent training and evaluation on two datasets to showcase their ability to
distinguish among 20 Python versions, with the aim of identifying the minimum version needed
for a given project.
Table 3 presents the results from the evaluation, demonstrating the superiority of the LSTM
model with CodeBERT embedding, achieving 93% for each metric. Figure 1 illustrates the
F1-scores for individual classes attained by four models, two of which were top performers
while the other two performed poorly to show the contrast of results. The findings clearly
indicate that replacingWord2Vec with CodeBERT embeddings leads to noticeable improvements

37



Figure 1: F1 score of four models per each Python version

in all metrics. This demonstrates that using domain-specific embeddings like CodeBERT greatly
enhances the model’s ability to classify instances accurately across all categories. CodeBERT’s
strength in understanding contextual nuances and capturing distant token relationships is key in
structured text like source code [17]. Coupled with LSTM, this model excels in handling sequen-
tial data, enabling it to retain tokens in memory over extended periods, particularly beneficial
for programming languages with dependencies throughout the code [18]. An interesting finding
reveals lower validation accuracy for transformers compared to LSTM and TCN, consistent
with previous research [19]. BERT, in particular, exhibits reduced performance on smaller
datasets, due to its original training on extensive corpora. This limitation is emphasized by the
scarcity of certain Python versions in PyPI projects, resulting in a limited number of instances
for specific classes, rendering the dataset insufficient for precise transformer model training.
Nevertheless, the transformer models still achieve high test accuracy. The same observation
has been reported previously, suggesting that it may be attributed to the inadequacy of the
testing data [20]. Since the model was trained on samples with distinctive version features,
test set may contain instances that share structural and lexical similarities with the training
data. Similarity arises from consistent function and library names across versions. Despite not
being identical, training and test instances exhibit similarity due to the constrained source code
vocabulary [21].
One of the many challenges is an infinite vocabulary span, signifying endless possibilities
of potential names for identifiers[18, 21]. The corpus must be big enough to cover all the
possibilities of the variable name. Nevertheless, even in such circumstances, the model might
encounter an unfamiliar token, which can significantly undermine its overall performance.
Incorporating natural language within source code, whether in variable names, strings, print
statements, or error messages, can significantly impact the model’s performance. This aligns
with a study on code summarization, where the presence of natural language improved summa-
rization accuracy [17]. However, in our case, it introduces unwanted noise, negatively affecting
performance. Our goal is to distinguish between Python versions by identifying unique charac-
teristics, so it’s crucial to isolate these features from any noise to ensure accurate classification.

38



Another Python-related challenge involves the potential use of function names introduced in
newer versions as variable names in older versions, or even introducing a variable with the
same name as a function. For instance, consider the match 3 function introduced in Python
3.10. In all versions prior to 3.10, it’s possible to have any identifier with the name match. This
scenario can create the misconception that the occurrence of match is equally probable across
all versions, resulting in no informational gain for the model. This surely can be prevented if
the model captures the structural difference between the introduction of the variable match and
the use of pattern matching.

7. Conclusion

We examined nine deep-learning models for Python version classification. LSTM with Code-
BERT embedding yielded the highest balanced accuracy of 92% when applied to a dataset
containing Python code snippets. This is achieved due to the LSTM’s ability to capture struc-
tural details within the data, which is beneficial since the source code follows a hierarchical
structure. Furthermore, we benefited from the CodeBERT’s ability to understant contextual dif-
ferences between tokens. This is particularly advantageous in Python, where certain keywords
can be used as variable names, and the difference depends on the context. Future improvements
on the accuracy of the classification can be made via masking the natural language in the code,
which will reduce the noise in the data, and identifying suitable alternatives for unseen variable
names, so the model can make more accurate predictions based on the data it has seen. In future
applications, the model could serve to predict the minimum required version for an individual
file or the entire code base.

References

[1] B. A. Malloy, J. F. Power, Quantifying the Transition from Python 2 to 3: An Empirical
Study of Python Applications, in: 2017 ACM/IEEE Int. Symposium on ESEM, 2017, pp.
314–323. doi:10.1109/ESEM.2017.45.

[2] S. Yang, T. Kanda, D. Pizzolotto, D. M. German, Y. Higo, PyVerDetector: A Chrome
Extension Detecting the Python Version of Stack Overflow Code Snippets, in: 2023
IEEE/ACM 31st ICPC, 2023, pp. 25–29. doi:10.1109/ICPC58990.2023.00013.

[3] S. Tarwani, A. Chug, Application of Deep Learning models for Code Smell Prediction, in:
2022 10th ICRITO, 2022, pp. 1–5. doi:10.1109/ICRITO56286.2022.9965048.

[4] T. Zhu, Z. Li, M. Pan, C. Shi, T. Zhang, Y. Pei, X. Li, Revisiting Information Retrieval
and Deep Learning Approaches for Code Summarization, in: 2023 IEEE/ACM 45th ICSE-
Companion, 2023, pp. 328–329. doi:10.1109/ICSE-Companion58688.2023.00091.

[5] G. Li, Y. Tang, X. Zhang, B. Yi, A Deep Learning Based Approach to Detect Code Clones,
in: 2020 ICHCI, 2020, pp. 337–340. doi:10.1109/ICHCI51889.2020.00078.

[6] C. Admiraal, W. van den Brink, M. Gerhold, V. Zaytsev, C. Zubcu, Deriving Modernity
Signatures of Codebases with Static Analysis, in: Journal of Systems and Software, 2023.
doi:http://dx.doi.org/10.2139/ssrn.4536605.

3https://docs.python.org/3/whatsnew/3.10.html

39

http://dx.doi.org/10.1109/ESEM.2017.45
http://dx.doi.org/10.1109/ICPC58990.2023.00013
http://dx.doi.org/10.1109/ICRITO56286.2022.9965048
http://dx.doi.org/10.1109/ICSE-Companion58688.2023.00091
http://dx.doi.org/10.1109/ICHCI51889.2020.00078
http://dx.doi.org/http://dx.doi.org/10.2139/ssrn.4536605


[7] E. N. Akimova, A. Y. Bersenev, A. A. Deikov, K. S. Kobylkin, A. V. Konygin, I. P. Mezentsev,
V. E. Misilov, PyTraceBugs: A Large Python Code Dataset for Supervised Machine Learning
in Software Defect Prediction, in: 2021 28th APSEC, 2021, pp. 141–151. doi:10.1109/
APSEC53868.2021.00022.

[8] A. Alhefdhi, H. K. Dam, H. Hata, A. Ghose, Generating Pseudo-Code from Source Code
Using Deep Learning, in: 2018 25th ASWEC, 2018, pp. 21–25. doi:10.1109/ASWEC.2018.
00011.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, SMOTE: Synthetic Minority
over-Sampling Technique, J. Artif. Int. Res. 16 (2002) 321–357.

[10] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9 (1997)
1735–1780.

[11] S. Bai, J. Z. Kolter, V. Koltun, An Empirical Evaluation of Generic Convolutional and
Recurrent Networks for Sequence Modeling., CoRR abs/1803.01271 (2018). URL: http:
//arxiv.org/abs/1803.01271. arXiv:1803.01271.

[12] Y. Kim, Convolutional neural networks for sentence classification, in: Proceedings of
the 2014 Conference on EMNLP, Association for Computational Linguistics, Doha, Qatar,
2014, pp. 1746–1751. URL: https://aclanthology.org/D14-1181. doi:10.3115/v1/D14-1181.

[13] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, 2018. URL: http://arxiv.org/abs/1810.04805,
cite arxiv:1810.04805Comment: 13 pages.

[14] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T. Liu, D. Jiang,
M. Zhou, CodeBERT: A Pre-Trained Model for Programming and Natural Languages, 2020.
URL: http://arxiv.org/abs/2002.08155, cite arxiv:2002.08155Comment: Accepted to Findings
of EMNLP 2020. 12 pages.

[15] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, Q. V. Le, XLNet: Generalized
Autoregressive Pretraining for Language Understanding, in: H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Information
Processing Systems, volume 32, Curran Associates, Inc., 2019. URL: https://proceedings.
neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. Dean, Distributed Representations of
Words and Phrases and their Compositionality, Advances in Neural Information Processing
Systems 26 (2013).

[17] C. Ferretti, M. Saletta, Naturalness in Source Code Summarization. How Significant is it?,
in: 2023 IEEE/ACM 31st ICPC, 2023, pp. 125–134. doi:10.1109/ICPC58990.2023.00027.

[18] A. A. Sawant, P. Devanbu, Naturally!: How Breakthroughs in Natural Language Process-
ing Can Dramatically Help Developers, IEEE Software 38 (2021). doi:10.1109/MS.2021.
3086338.

[19] A. Ezen-Can, A comparison of LSTM and BERT for small corpus, CoRR abs/2009.05451
(2020). URL: https://arxiv.org/abs/2009.05451. arXiv:2009.05451.

[20] H. Yoon, Finding Unexpected Test Accuracy by Cross Validation in Machine, IJCSNS 21
(2021) 549–555. doi:https://doi.org/10.22937/IJCSNS.2021.21.12.76.

[21] N. Amit, D. G. Feitelson, The Language of Programming: On the Vocabulary of Names, in:
2022 29th APSEC, 2022, pp. 21–30. doi:10.1109/APSEC57359.2022.00014.

40

http://dx.doi.org/10.1109/APSEC53868.2021.00022
http://dx.doi.org/10.1109/APSEC53868.2021.00022
http://dx.doi.org/10.1109/ASWEC.2018.00011
http://dx.doi.org/10.1109/ASWEC.2018.00011
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://aclanthology.org/D14-1181
http://dx.doi.org/10.3115/v1/D14-1181
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2002.08155
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
http://dx.doi.org/10.1109/ICPC58990.2023.00027
http://dx.doi.org/10.1109/MS.2021.3086338
http://dx.doi.org/10.1109/MS.2021.3086338
https://arxiv.org/abs/2009.05451
http://arxiv.org/abs/2009.05451
http://dx.doi.org/https://doi.org/10.22937/IJCSNS.2021.21.12.76
http://dx.doi.org/10.1109/APSEC57359.2022.00014

	1 Introduction
	2 Related Work
	3 Corpus construction and pre-processing
	4 Training details
	5 Performance evaluation
	6 Discussion
	7 Conclusion

