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Abstract 
Blind people encounter great difficulties in dealing with Mathematics. Based on an analysis of these 
problems, we shall outline possible strategies to overcome them through software support. These 
strategies are currently being implemented in prototypes developed for a new Mathematical Working 
Environment dedicated to blind pupils and students. 

1. Introduction 
The study of Mathematics has always been particularly difficult for blind individuals. Indeed we can 
observe that a large majority of blind pupils do not succeed in Maths studies, while the average 
mainstream pupil succeeds more easily. As Maths is crucial in most science disciplines, this limits study 
options and future job opportunities for blind people. 

We assert that there is no reason that Mathematical semantics can not be understood because of 
blindness; rather the biggest barrier is access to Mathematical content, which can only be through 
speech or Braille. 

Most Mathematical concepts are best explained using drawings and notes which illustrate the main 
content (1).  

 
(1) 

 



In addition, the Mathematical notation itself uses 2 dimensions in order to convey the general structure 
of the formula rapidly, making the semantics easier to understand. One "pictures" the basic Mathematical 
content at a glance, which helps reading the details more efficiently, since the role of every part of the 
expression is already assimilated. 

 (2) 

When visual modalities are not available, the situation is different. Other communication channels that 
are available to convey Mathematical contents (audio and tactile) do not allow a person to get a rapid 
overview. Indeed the representations used in both cases (Speech and Braille) are intrinsically linear, 
which means that formulas need to be linearised (3). In most cases this linearisation generates a much 
longer representation, which is more difficult to understand than the graphical one. For instance in this 
very simple example the linear version (3) necessitates 11 symbols while the graphical one (2) requires 
only 7. 

�x+ 1�/�x − 1�(3) 

The number of Braille symbols is also fairly limited: there are 6 dots available which can be combined 
into a maximum of 64 different patterns. Multiple Braille characters are therefore needed to code most 
Mathematical symbols. For instance, digits 1 to 9 are usually coded with the same Braille patterns as the 
first 9 letters. Prefixes then indicate whether it should be read as a digit, a lowercase Roman letter, an 
uppercase Roman letter, a Greek letter, etc...  

To reduce the length of formulas, that is to reduce the number of characters and so facilitate 
understanding, Braille Mathematical notations use complex strategies. For instance, in the British code, 
the prefix is omitted in the case of a symbol which cannot be a number (after “j”), and lowercase Roman 
is assumed. In Marburg (German code), the prefix is used only the first time, like a switch, indicating that 
any other instance of the same pattern will be of the same type. In French and Nemeth (American code) 
the most frequent case is always assumed (lowercase Roman), and there is a prefix before each other 
(upper case, Greek, etc.). There is also a special way to represent digits: adding the dot ’6’ to the 
corresponding letter in French, or, in Nemeth, writing the same pattern on the lower part of the Braille cell 
(since those symbols do not use the 2 lower dots). 

In the case of fractions, block markers identify the numerator and the denominator, making it 
necessary to reach the fraction symbol to determine that the expression is in fact a fraction. In Italian, the 
numerator and the denominator markers are not the same and there is no fraction symbol. Then when 
the first block marker is read, the user immediately knows it is a fraction. In the same kind of idea, 
Nemeth uses 3 Braille characters: the beginning of fraction, the fraction bar and the end of fraction. 

To further complicate things, these Braille Mathematical notations have been developed in different 
countries, according to the linguistic and cultural history of these countries. Therefore, while the 
mainstream (visual) representation of formulas is identical in every language, the same is not true for 
Braille notations. Indeed each Braille Mathematical notation is widely used in its zone of linguistic 
influence, while it is completely unknown in other countries. In other words, a Braille formula written using 
the British notation is not understandable by a German speaking reader. This problem is quite important 
since the number of available Braille documents is very small compared to the number of ordinary Maths 
books.  

2. State of the Art 
During the last 2 decades a number of research projects proposed some partial solutions to this problem. 
First a list of projects focusing on access to Mathematical literature and preparation of Mathematical 
information have been developed. Most of these projects aim at converting mainstream formats to 
Mathematical Braille. These converters are used for different purposes. The main is to facilitate the 
production of scientific Braille documents.  For instance they allow a teacher to use a document that was 
prepared for mainstream students and to convert it into Braille.  



Labradoor [1] (LAtex to BRAille DOOR) converts a full LaTeX document including Mathematical 
formulas into Marburg Braille or into HRTEX (Human Readable TeX). Then several projects have been 
developed to convert MathML formulas: for instance Bramanet [2] produces French Mathematical Braille, 
math2braille [3] produces the Braille code in use in the Netherlands, and [4] produces Nemeth. As many 
Braille Mathematical codes exist, it seems interesting to create a programming library which is able to 
handle various Mathematical codes, as well mainstream as Braille, in a unified way, so applications using 
it could propose the best Maths code for each user. MMBT (Multi-Language Mathematical Braille 
Translator) [5] was a first attempt in this direction. It supported transcriptions from and to LaTeX, MathML, 
French (revisions 1971 and 2001), British and Italian Braille notations. MMBT has been developed in 
Java, it was discontinued and is now replaced by UMCL.  

UMCL [6] (Universal Maths Conversion Library) is a programming library encapsulating various 
converters for different Braille codes in a single library, usable through a simple and unique API.  UMCL 
is an open-source project and is portable. It was developed in standard "C" with wrappers to different 
other programming languages. To make this possible without increasing the complexity, an architecture 
based on a MathML as central representation of the formula was developed. Currently output modules 
have been developed for the French notations (revisions 1971 and 2001) and Italian. Beta versions of 
Marburg and British code are also already available. Input modules for LaTeX and Marburg Braille are 
also under development. 

Another project which helps to produce documents usable by visually impaired people is Infty [7]. It is 
a large project aiming at giving access to printed Mathematical content. It is based on a core module 
(InftyReader) which is an OCR specialised in Mathematical documents. It produces a topological 
representation of the formulas in an XML format. Then this representation can be converted into various 
formats: MathML, LATEX, HTML, HRTEX, KAMS, and into Unified Braille Code (English) and Japanese 
Braille code. 

In the other directions, converters allow sighted people to access documents written by blind people. 
This is more difficult to process since Braille codes are context sensitive. INSIGHT [8] proposes a 
complete system to translate Maths documents with mixed Grade II Braille text and Nemeth code to 
LATEX. The system processes an image of a Braille sheet (for instance a scanned page) and recognises 
the Braille dots to produce an ASCII Braille file. Text and Nemeth code are automatically identified and 
separated to be separately translated. Finally a single LATEX document is produced to be read by a 
sighted individual. 

Several projects [9], [10], [11] focus on better presenting Mathematical contents in speech. 

Now we need some new software tools that support the work of blind users, facilitating their 
understanding and helping them to carry out calculations, while facilitating inclusion in mainstream 
environment. Indeed more and more such pupils attend to mainstream schools, so it is necessary that 
these tools are usable with teachers who do not have a specific knowledge of Braille. A few projects have 
been carried out since a few years. 

The Maths Genie [12] is a formula browser that facilitates understanding of formulas using voice. It 
has been designed to convey the structure of the Mathematical expression as well as its contents. The 
graphical rendering is synchronised to the audio. The current version supports English, French and 
Spanish for speech, and offers facilities to add any local language provided that a speech synthesiser is 
available with the requested interface. A Braille output supporting Nemeth code, based on [4], is 
available. 

Lambda [13] is a Mathematical reading and writing system designed for blind students. The main 
characteristic of the Lambda project is that it is built on a brand new code. This code is an XML code 
specifically designed for supporting the Braille transcription into 8-dot pattern national codes. Each 
Lambda national code has the lambda structure and a Braille character dictionary as close as possible to 
the official national code. Lambda comes with a dedicated editor, which includes navigation support, input 
functions (keyboard shortcuts, menus, tool bar). It outputs Lambda Braille, speech synthesis 
(Mathematical symbols are verbalised in a descriptive language), a visual presentation in a linear code (a 



specific font in which each Braille character is represented by a visual symbol). A graphical rendering can 
be displayed on demand (but it is not synchronous to input). 

3. Strategies to overcome the problem 
The strategies presented here are implemented in MaWEn prototypes that are developed conjointly by 
Johannes Kepler Universität Linz and l'Université Pierre et Marie Curie within the framework of the 
MICOLE project. These prototypes are preliminary studies for the development of a Mathematical 
Working Environment dedicated for blind pupils and students.  

3.1 To support collaborative work by synchronising views 
One essential idea is that new tools should support collaborative work between blind and sighted 
individuals, most typically in a mainstream teaching environment, where a single blind pupil needs to be 
able to collaborate with a sighted teacher and possibly several sighted school mates. 

This requires synchronisation of 2 representations using 2 different modalities, one for the blind and 
one for the sighted. Documents are composite: a main textual structured content includes Mathematical 
expressions. In MaWEn it is not yet possible to include other kinds of objects (like images with alternative 
content) but this possibility will be explored if the need appears from the users, for instance in the case of 
reading a schoolbook. Synchronisation of textual contents in both modalities is not particularly difficult, 
nevertheless care should be taken that the part which is displayed in Braille always appears on the 
screen and is clearly identifiable so that sighted users can easily follow the work of the blind pupil. 

In the case of Mathematical expressions it is necessary that each of the representations synchronised 
needs to be a natural representation; that is the representation the readers are used to. In the case of 
sighted people it needs to be the natural graphical view, while In the case of Blind readers it has to be the 
Braille Mathematical notation they have been taught, that is the official Braille notation in use in their 
environment.  

Synchronisation must allow each person to point at a location on the document, in the textual part as 
well as in a Mathematical expression, to show it to the other, in order to highlight an idea or to explain an 
error. With a graphical view this pointing should be done using the mouse by clicking on the desired 
location. The specified location would then be highlighted on the alternative view. In the other mode the 
Blind user must be able to make a selected location display with a different background on the screen. 

The synchronisation must also support selection. The current selection must appear clearly as well on 
the screen as on the alternative display (Braille). This is achieved by showing the current selection with a 
different background colour. On the Braille bar it is possible to underline the selection using dots 7 and 8. 

Synchronisation seems essential in inclusive education. Once again it is not a particular difficulty in the 
case of textual contents. For Mathematical expressions, it is made possible by the use of MathML 
conjointly with MathML to Braille converters. Indeed the MathML can easily be displayed graphically 
thanks to existing software. MathML to Braille converters enable the user to access in real time to a 
Braille transcription of the formula displayed on the screen. We have developed a model allowing to keep 
the Mathematical elements described in MathML and the corresponding Braille symbols linked. This 
model is implemented in the UMCL conversion library and allows MaWEn prototypes to support full 
synchronisation between the 2 views.  

Remark: in the following sections we will only focus on the Mathematical expressions. 

3.2 Collapse and Expand sub-branches of expressions 
The main obstacle for a blind person to read and understand a Mathematical expression is the length of 
formulas and the complexity of notations. To get an idea about these crucial problems, and to explain the 
concept of collapse/expand which may help to overcome them, we would like to talk on the structural 
tree of a formula. As an example, let us consider this equation: 



L1 = L0 .�1− v 2

c 2  (4) 

It is an equation, with two sides: A “simple expression”, L1  and a product, composed of another 

simple expression, L0 , and a square root. The square root, in turn, is the difference between the 
number 1 and a fraction. The numerator of that fraction is v 2 , the denominator is c2 . 

This little discussion shows that our formula can be viewed as a tree; it is this very tree that makes up 
its Mathematical meaning, and that is understood by a sighted person at one glance, even if that person 
be not a Mathematician at all, or if that formula were even much more complex than this relatively simple 
example. On the other hand, the blind student will have considerable difficulty understanding the tree, 
and these difficulties are for sure more than proportional to the length of the formula. The blind person will 
have to do quite much reading forward and backward in order to finally understand this tree. 

It is the idea of collapse/expand to assist the blind person in understanding the tree by presenting 
certain parts of it in full, while others are presented only in terms of blocks, informing the reader that more 
detailed information about the branch is available on request. 

The above example formula (4) collapsed to the maximum possible, would be represented just by a 
block. Expanding this to one level, we get: 

L1= L0 . < block>
 (5) 

Expanding the block will finally give its content, namely: 

L1= L0 .�1�< block>  (6) 

When looking at the above tree expansions, it will be noticed that there are “jumps” in the expansion: 
For example, when expanding the right side of the equation, strictly following the tree structure would 

result in a block for the multiplication: 
L1= < block>

, and then it would be necessary to expand this 
block to obtain the expression showed in (5). Also, expanding the square root should yield: 
L1 = L0 .�< block> . We did not propose to follow the structure in such a strict way because we think 

that this would make the process of expanding clumsy and, hence, less useful: sub-expressions of 
sufficient simplicity and brevity, like the left factor of the right side of our equation or the contents of the 
square root, should be displayed at once, without having to go through the strict expand process. It is 
considered an important task for the developer of a good collapse/expand algorithm to be “judicious 
enough” to keep these ergonomic aspects in mind. 

This collapse/expand is not a new technique: It is used in “Integrated Development Environments” for 
quite a long time. It is implemented in projects to support blind persons in dealing with Mathematics, e.g., 
Maths Genie [12] and Lambda [13]. 

In the MaWEn prototype, we give headlines to the different blocks in order to make it easier to the 
user to understand the underlying structure. These headlines are mnemonic letters. To come back to our 
example, the formula, collapsed to the maximum possible, would be represented by the letter E, for 
“Equation”. Expanding this to one level, the square root is represented by the letter “Q”, so we would get:   

L1= L0 . Q
 (5') 

When expanding the Q, its content would be displayed using the letter “F” for fraction: 

L1= L0 .�1�< block>  (6') 

When looking at the above mnemonics like “E”, “Q”, “F” etc. one might ask how to distinguish them 
from ordinary Mathematical symbols. Indeed, a possibility of clearly distinguishing such mnemonics from 



Mathematical characters must be found. As far as 6-dot Braille representations are concerned, this 
problem will not occur, because we shall use the mnemonics with dot 7. In case of an ASCII based Maths 
notation, however, other techniques need to be applied. 

Another important requirement for collapse/expand support is the ability to synchronize it with the 
visual view. This means that, in a collaborative setting of a blind and a sighted person, a means must be 
found to make collapse of part of a formula visible to the sighted partner, typically, the teacher. 

3.3 Editing functions 
We do not consider it essential to use Braille Mathematical codes for inputting formulas. The main reason 
is that converters from Mathematical Braille to MathML are not yet available in the languages we need. It 
is also necessary to implement a solution which does not imply the use of a Braille keyboard, which is not 
available in every situation. Anyway as soon as such Braille to MathML converters will be efficiently 
available in UMCL, it will not be difficult to add this feature. 

We propose instead a combined input scheme, where simple expressions such as numbers, 
variables, or polynomials can be input directly from the Braille or ASCII keyboard, while complex 
structures like roots, sub and superscripts, fractions etc. are to be input through commands (available in a 
menu and as keyboard shortcuts) 

z Numbers: Ordinary Arabic numbers should be input directly, either through a Braille keyboard or 
through an ordinary qwerty keyboard. In the latter case, the number sign, which is common in many 
Braille codes, will be input automatically. As an alternative, input through a command should also be 
possible – this will prove helpful, e.g., in the rare case where Roman numbers are to be input through a 
standard keyboard. In any case, number input will be terminated by a space. Some caution will have to 
be applied when deleting or inserting digits: When a digit following the number sign is deleted, the 
number sign should be removed automatically provided there is no digit left. When inserting a digit it 
should be checked if another digit is present just after in order not to add a number sign. 

z Variables: The same philosophy as for numbers will be applied. Special attention deserves the 
case where a variable consists of more than one letter. We can offer several strategies to handle this: In 
any case, we propose that letters input directly through the keyboard should be considered distinct one-
letter variables, provided that they are not separated by spaces. Now in order to handle the case of multi-
letter variables, one could either implement a command with a template (see below), or one might use 
spaces as separators, as is common with the well-known computer algebra system Mathematica. 

z Fences (parentheses etc.): These symbols should be input directly through the keyboard. 

z Binary operators (addition, multiplication etc.): The normal way of input should be via keyboard. 
However, commands may also be provided, creating templates like this: When the command for 
“Addition” is issued, an item like “placeholder + placeholder” might appear on the screen, where 
“placeholder” is a short symbol that can be easily recognized but still not easily confused with true 
Mathematical characters. For six-dot Braille codes, a double full six-dot cell would be an option. When an 
expression is input at the spot where the placeholder appears, then the placeholder will be replaced by 
that expression automatically. 

z Complex structures: Complex structures such as sub and superscripts, roots, fractions etc. 
could be input through commands generating templates like in the previous example. An exception could 
be simple sub or superscripts, which might be input directly using the characters _ (underscore, for 
subscript) and ^ (caret for superscript), known from the TeX system. 

To supply efficient mechanisms of selecting sub-expressions of a formula is very important, first 
because it is needed to realize collapse/expand support (see previous section), second, because a blind 
user needs to be able to select a portion of a formula in order to make it visible to his/her sighted 
partners. 

The selection mechanisms are designed with the tree structure of an expression, as discussed in the 
previous section, in mind: This is because navigating through an expression will need that structure in 



any case. Pointing to a spot in a formula with the Braille display will select that node in the tree 
corresponding to the spot. Double clicking at a selected spot will select its parent node - through iterated 
application of that method, more and more of the expression, up to the whole one, may be selected. 

There are some special cases to take care of: since not every character within a formula written in a 
Braille notation corresponds to a spot in its visual rendering, we need to provide for conventions on what 
should be selected when such a spot is pointed at on the Braille display. An example of such a character 
would be the opening and closing sign for a fraction, or the sign that announces the beginning of a sub or 
superscript. As a general rule, we propose that, when the user points at such a character, then the 
structure which is announced, or terminated, by that symbol will be selected. In particular, pointing at the 
“Begin of Fraction” or “End of Fraction” indicator will select the whole fraction, pointing at the symbol 
announcing a sub- or superscript will select the sub or superscript, pointing at the symbol announcing a 
root will select the contents of the root. 

3.4 Manipulation support functions 
Actually carrying out Mathematical calculations is even more difficult than reading and writing formulas. 
The problems in doing formal manipulations arise because of the complex structures that deploy during a 
calculation: sighted people may organise a computation such that it can be easily surveyed and 
navigated, and they use additional graphics to help their reasoning (see equation 1). Then there is a need 
for powerful editing tools that pupils can use to do calculations more easily. These tools should provide 
support with respect to the Braille notation itself and not to the Mathematical content.  

We would like to develop our ideas on supporting blind persons in doing Mathematics by an example. 
Consider this exercise of multiplying two sums in parentheses: 

�3a –5b�6c �. �4a+ b–3c� (7) 

The difficulties arising for a blind pupil already with such a relatively simple task were extensively 
analysed in [14]. Here, we shall describe how those difficulties might be reduced by implementing what 
we call a Manipulation Wizard. 

To solve the exercise requires two steps: First the product must be expanded, meaning that every 
term of the left pair of parentheses has to be multiplied against every term of the right pair. Second, the 
resulting sum has to be simplified. We shall describe two wizards, one for expanding, and one for 
simplification, which in our example will be executed in sequence. 

We begin with the expansion wizard: Every term of the left factor has to be multiplied by every term of 
the right one, the order being completely arbitrary. A wizard should address this by offering the various 
sub-multiplications to the student – (s)he is presented the factors, and needs just to enter the sub-
products. By pressing the Down arrow key, the next sub-product should be automatically presented. For 
every sub-product, there should be an edit field to receive the calculated value from the user, e.g., in the 
line: 

3a�4a= .. .  (8) 

There is an empty box after the equals sign, to receive the result 12a²  from the user. The wizard 
should collect all these results of sub-products, yielding a sum like this: 

12a² –20ab�24ac�3ab –5b2�6bc− 9ac�15bc –18c2
(9) 

This sum is not yet the final result – it needs to be simplified. For this task, a Simplification Wizard 
should be designed: to simplify an algebraic sum, the following systematic procedure can be applied: 
Iterate through all the terms of the sum, choosing a "reference term" – this is the outer iteration. Compare 
the reference term to all terms coming after it, in order to find terms to be contracted – this is the inner 
iteration. If the reference term can be contracted with subsequent terms, collect the contractions for the 
resulting sum. If you do not find any successors of a reference term to be contracted with it, take the 
reference term into the result unchanged. 



Even when strictly following this scheme, you may fall into two difficulties: First, you shall find terms 
succeeding a reference term that already were compared to a prior reference term, such that they do not 
need consideration anymore. Second, the procedure may let you view terms as reference terms which 
were successors of older reference terms, such that they also were already treated and are now to be 
skipped. 

The Simplify Wizard addresses these difficulties by quite a simple procedure: As always, it presents 
you the various pairs "reference term – successor" beside each other. You may iterate through the 
successors with a pair of keys, e.g., Page-Up and Page-Down, leaving the reference term unchanged. 
You may take the next reference term with another key, e.g., the End key. 

When a particular reference term is chosen, you may mark it with Control-M – this sets an opening 
square bracket left to it, which will remain adherent, such that, when you come across that term in the 
future, you will see that it was already considered. Also, it will be copied into a temporary edit buffer, 
allowing you to contract successors with it. Equally, when you decide a particular successor to be 
contracted to the reference term, then you should mark it with Control-M: This also makes an opening 
square bracket adhere to it, such that it can be seen as already having been used in the future; moreover, 
it copies the successor into the temporary buffer, to facilitate computing the contracted term. 

Once a particular reference term has been fully processed, i.e., once all its successors have been 
considered, the sum representing the contraction, or the unchanged reference term, can be written into 
the temporary buffer. Once the various terms having formed the contracted sum were deleted manually, 
you may press the Down arrow key in order to copy the interim result into the final one, automatically 
clearing the temporary buffer to give room for the next reference term. 

Although wizards of that kind would reduce much of the tremendous difficulties encountered by blind 
persons in doing Mathematics, it was argued that they are “too supportive”, which means that they take 
so much Mathematical work away from the pupil that (s)he might fail to understand the procedures of 
calculation. It is indeed an open research question how to develop software routines which, although 
being supportive, still leave enough responsibility on behalf of the pupil. As an example, the Expansion 
Wizard might be modified such that the pupil may carry out the iterations through the terms of the two 
factors by him/herself: By walking through one factor, (s(he may choose one of its terms as reference 
term by selecting it. In a second step, this reference term should be made constantly accessible to the 
pupil, while (s)he walks through the second factor in order to do the inner iteration by selecting terms of it. 
Once the result of a sub-product is computed, the student may issue a command to copy the result to a 
final sum, which (s)he may inspect after all the iterations are completed. 

The ideal case would be to have a kind of “Method Base”, consisting of elementary support functions, 
from which more complex supportive wizards similar to the ones sketched here should be modelled 
through a configuration language, or, perhaps, through a wizard, in turn. Such a meta-tool should be 
made accessible to the teacher, or perhaps to a very advanced pupil, in order to tailor support to the 
pupil’s Mathematical maturity and abilities. 

3.5 Context sensitive help for Braille codes 
Additionally there is also a tremendous need for providing contextual support on the Braille Mathematical 
code. Braille Maths codes are normally hard to learn for a blind pupil, and almost impossible to learn for a 
sighted teacher. In order to support both the pupil and the interested teacher, a tool to furnish context-
sensitive help for a Mathematical text written in a Braille notation would be desirable. Such a tool might 
display information about a character read by the Braille display, information about its meaning in 
Mathematical context for the blind partner, and, if possible, the black-print analogue of the character for 
the sighted partner. It should also offer concrete examples of its use, and an account of the important 
rules to be followed when using it. 



4. Conclusion 
We believe that the strategies described in this paper will effectively support the work of Blind individuals. 
They will be implemented in MaWEn and evaluated in school situations.  One common thread with the 
other projects cited in the state of the art is the use of MathML. It is of tremendous importance to 
generalise the use of MathML in mainstream scientific documents so these documents can be easily 
accessed with those specialised tools.  
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