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Abstract  
The article presents selected compartmental epidemiological models. The SI model is 

discussed, which is considered to be the most basic epidemiological compartmental model. 

The SVIR model was also analyzed, which additionally takes into account e.g. use of 

vaccinations. In addition to theoretical elaboration, the article also includes simulations based 

on real coronavirus pandemic data in selected countries. The obtained results show that on 

the basis of real data from a certain period of time, it is possible to predict the trend of the 

further course of infection in a given population.  
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1. Introduction 

Mathematics is omnipresent in our lives. Moreover, most problems with a natural basis are based 

on mathematical models. It is important to realize how significant a role both mathematics and 

informatics play in medicine, for example, in the process of diagnosing patients [4,19]. Nowadays, we 

are facing the problem of the coronavirus epidemic (COVID-19), that is an infectious disease of the 

respiratory system caused by infection with the SARS-Cov-2 virus [10].   

Mathematical models play an extremely important role in many fields. They are created for 

various needs, as can be seen in [8, 9, 18, 20]. Also for the purpose of fighting the epidemic, many 

mathematical models and simulations have been created to help the authorities of countries around the 

world defeat the invisible enemy [16]. Models created to fight various epidemics are called 

epidemiological models. However, the field of epidemiology was developing much earlier. The 

publication written by W.O. Kermack and A.G. McKendrick [12] from 1927 is considered a 

breakthrough in the field of epidemiological modeling. However, this science continued to develop. 

This is evidenced, among others, by the publications of Dieckmann-Heesterbeek [5] or Murray  

[14, 15]. 

In epidemiological modeling, we distinguish deterministic and stochastic models [1]. Very often 

we can come across models based on ordinary differential equations that describe the dynamics of 

epidemic development [6, 7, 16]. There are many different methods for solving equations and systems 

of differential equations [20], including, for example, the argument shift method [3, 17]. Of course, 

mathematics is closely related to physics. Differential equations also come from this field. They are 

related to the concept of the derivative of a function and the derivative is related to speed. This allows 

us to describe the changes of a certain quantity 𝑥(𝑡) depending on the time [𝑡, 𝑡 + ∆𝑡] [6]. As we will 

see later, this is extremely important when modeling the course of various diseases. 

In our article, we will focus on a few selected epidemiological models. We will also present 

examples of simulations conducted on the basis of statistical COVID-19 data [13, 22, 23] in selected 

European countries. 
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2. Compartmental epidemiological models 

The models analyzed in this article are called group or compartmental models, because a given 

population is divided into groups (subpopulations) due to the state of health, the possibility of 

infecting other individuals or the level of resistance to a given disease [6]. In the simplest 

compartmental model, called SI, we assume that there are only healthy (i.e. susceptible to infection) 

and sick individuals. We also assume that the population is of constant size and not too small, and that 

the individuals are well mixed (evenly distributed). These assumptions are necessary because the size 

of groups versus time will be described by differential equations. Before the first case of the disease 

occurs, the entire population is included in the group of individuals at risk of infection, and each 

subsequent case of infection causes the size of respective groups to change [6, 7]. 

2.1. SI model 

As already mentioned, the simplest compartmental epidemiological model is the SI model. We 

will therefore begin our considerations with its discussion. 

In the SI model [7], we analyze a closed population of 𝑁 evenly distributed individuals. There are 

two separable subpopulations: 

 a subpopulation of individuals susceptible to infection (denoted as S), 

 a subpopulation of infected individuals (denoted as I). 

Figure 1 presents a diagram illustrating the possibilities of individuals to move within groups in 

the analyzed population. Note that individuals can only move between these groups in one direction. 

If an individual from subpopulation S gets sick, it automatically goes to the group of infected 

individuals and it is no longer possible to return to subpopulation S.  

It should be noted here that the discussed SI model can be modified, taking into account the 

possibility of returning infected individuals to group S. Thus, an infected individual returns to 

subpopulation S after the disease has passed and becomes susceptible to infection again. Such a 

modified model can be found in the literature under the name of SIS [7]. 

 
Figure 1: Scheme of movement of individuals in the SI model 

Due to the fact that we are considering a population with a constant number of individuals, we 

must remember that it is not possible to include births or deaths of individuals from the analyzed 

population in this model. We must also disregard any immigration or emigration. Assuming, for 

example, that the initial population is the population of a given country, then in our model a resident 

cannot leave this population by moving to another country. 

Now let's introduce the functions 𝑆(𝑡) and 𝐼(𝑡) which for a given time 𝑡 ≥ 0 express the size of 

subpopulations S and I, respectively. Bearing in mind that the total size of the population does not 

change over time, we get for any 𝑡 ≥ 0 relation: 

𝑆(𝑡) + 𝐼(𝑡) = 𝑁. (1) 
Differentiating equation (1) we get 

𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
= 0. (2) 

We will take a day as the unit of time 𝑡. We will now use the previously introduced functions to 

describe the considered model using a system of differential equations: 

{

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛼𝑆(𝑡)𝐼(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡)𝐼(𝑡),

 (3) 



 

where 𝑆(0) > 0, 𝐼(0) > 0. The 𝛼 > 0 parameter is called the infection rate. An individual from the 𝑆 

subpopulation can only become ill as a result of contact with an infected person. Hence, in a unit of 

time (i.e. in one day) one sick individual can infect 𝛼𝑆(𝑡) of susceptible individuals [6]. Based on the 

system of equations (3), it is easy to conclude that the equality (2) is satisfied. 

From (3) we also deduce that 𝐼(𝑡) is an increasing function, while 𝑆(𝑡) is a decreasing function. 

This is of course due to the fact that 
𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡)𝐼(𝑡) ≥ 0 

and 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛼𝑆(𝑡)𝐼(𝑡) ≤ 0. 

2.1.1. Example 

Figure 2 shows the graph of the functions 𝐼(𝑡) and 𝑆(𝑡) over the next 100 days from the diagnosis 

of the first three patients in a population of 1000 individuals. We assume that the course of infection 

can be represented by the SI model with the parameter 𝛼 = 0.00015. 

 
Figure 2: Epidemic simulation 

2.2. SVIR model 

In the SVIR model, we also consider a closed population of 𝑁 individuals. The analyzed group of 

evenly distributed individuals is divided into the following subgroups: 

 a subpopulation of individuals susceptible to infection (denoted as S), 

 a subpopulation of infected individuals (denoted as I), 

 a subpopulation of individuals who have already suffered from the disease (denoted as R), 

 a subpopulation of vaccinated individuals (denoted as V). 

It should be noted here that, as in the SI model, the above subpopulations are disjoint, that is a given 

individual may belong to only one of them at a given time. 

It is also extremely important that due to the assumption of a constant size of the analyzed 

population, we omit the birth of new individuals, death or any kind of migration in our considerations. 

Figure 3 shows a diagram illustrating how individuals can move between subpopulations. It is easy 

to see that a susceptible individual can become vaccinated and thus end up in the V subpopulation. 

Another possibility is that the individual becomes ill as a result of contact with an infected person. In 

this case, the individual is transferred to subpopulation I. Then, after recovering from the disease, the 

individual is transferred to subpopulation R. 



 
Figure 3: Scheme of movement of individuals in the SVIR model 

Let us now proceed to the mathematical description of the presented model. The functions 𝑆(𝑡), 
𝑉(𝑡), 𝐼(𝑡) and 𝑅(𝑡) for a given time 𝑡 express the size of respective subpopulations. Thus, for 

example, the function 𝑆(𝑡) determines how many individuals are in subpopulation S at time 𝑡, where 

the time unit 𝑡 is a day. According to the assumption of a constant size of the analyzed population, for 

any 𝑡 ≥ 0 the following equality holds: 

𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁. (4) 
The SVIR model based on the assumptions presented above can be represented by a system of 

differential equations 

{
 
 
 
 

 
 
 
 
𝑑𝑆(𝑡)

𝑑𝑡
= −𝛼𝑆(𝑡)𝐼(𝑡) − 𝛿𝑆(𝑡),

𝑑𝑉(𝑡)

𝑑𝑡
= 𝛿𝑆(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛼𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡),

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡),

 (5) 

where 𝑆(0) > 0, 𝑉(0) ≥ 0, 𝐼(0) > 0, 𝑅(0) ≥ 0. The 𝛼 > 0 parameter defines the infection rate. 

Whereas 𝛾 > 0 is the recovery rate (i.e. the frequency of leaving the I subpopulation), and 𝛿 > 0 is an 

indicator determining the intensity of vaccination. 
1

𝛾
 represents the average duration of infection for a 

single individual [6, 7]. 

Adding the sides of the equation of the system (5), we get 
𝑑𝑆(𝑡)

𝑑𝑡
+
𝑑𝑉(𝑡)

𝑑𝑡
+
𝑑𝐼(𝑡)

𝑑𝑡
+
𝑑𝑅(𝑡)

𝑑𝑡
= 0.  

Hence and from the equality (4) we conclude that, according to the initial assumption, 𝑁 is a constant 

quantity for each 𝑡 ≥ 0. 

2.2.1. Example 

Let's consider a closed population of 1000 individuals. We know that there are 10 individuals 

infected with a certain disease. So far, 1 person has recovered from the infection. Moreover, no one 

has yet been vaccinated to make the body immune to the virus that causes the disease. Let's assume 

that  the infection follows the SVIR model for infection, recovery and vaccination  rates of  

𝛼 = 0.0003, 𝛾 = 0.07, 𝛿 = 0.01, respectively. Figure 4 illustrates the course of the disease in the 

analyzed population during the next 100 days from the moment of diagnosis of ten initial patients and 

one recovered. 



 
Figure 4: Epidemic simulation 

3. Theil coefficient 

In the further part of the article, we will use, among others, Theil's coefficient to assess the quality 

of the model. So let's recall the necessary information about it. 

The Theil coefficient [21] is used to calculate the relative prediction error to determine the quality 

of the model. We use the following formula to calculate this coefficient 

𝑇2 =
∑ (𝑦𝑡 − 𝑦𝑡

𝑝
)2𝑛

𝑡=1

∑ 𝑦𝑡
2𝑛

𝑡=1

 

where 𝑦𝑡 is the real value a 𝑡, 𝑦𝑡
𝑝

 is the predicted value at time 𝑡, and 𝑛 is the length of the testing 

period. Most often we give the result as 𝑇 = √𝑇2 ∙ 100%. How should the Theil coefficient be 

interpreted? The higher the value of the coefficient, the lower the quality of the model. If the 

coefficient is equal to 0, then the model can be said to be very well defined. 

4. Simulation of the course of the coronavirus pandemic 

We will run simulations within certain periods of infection in selected countries. For the purposes 

of the simulation, we assume that 𝑁 (the size of the population in which the epidemic broke out) is 

equal to the total number of all confirmed cases of infection from the beginning of the outbreak to the 

last day of prediction (end of the considered infection period). In the case of the SVIR model, 𝑁 is 

also affected by the number of vaccinations performed to date. 

Due to the fact that the SVIR model does not take into account the phenomenon of death as a 

result of disease, we will assume that the deceased are included in subpopulation R (as people who 

acquired immunity as a result of infection) [6].  

  Real pandemic data comes from [13, 22, 23]. To simulate the course of the coronavirus 

pandemic, we will use the Mathematica software. 

4.1. Simulation of the course of the coronavirus pandemic in Croatia using 
SI model 

Let's now take a closer look at the course of the coronavirus pandemic in Croatia. We will consider 

the period from October 11, 2020 to February 8, 2021. We assume that 𝑁 = 235473, because 235473 

of coronavirus cases were diagnosed by February 8, 2021. We will try to select the 𝛼 parameter in the 

SI model so that the model reflects the actual development of the epidemic in the first 31 days of the 



analyzed time period as accurately as possible. For this purpose, we will use the method of least 

squares by minimizing the expression: 

∑(𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡))
2

31

𝑡=1

 (6) 

where 𝐼𝑟𝑒𝑎𝑙(𝑡) expresses the actual number of sick people on particular days. Whereas 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡) 
expresses the data obtained from the considered model. After minimizing, we get the information that 

the expression (6) takes the smallest value when 𝛼 = 2.11836 ∙ 10−7. 

Next, we will do ex post prediction to see if the model with the determined parameter 𝛼 correctly 

reflects the trend of disease development during the next 90 days. For this purpose, we calculate the 

mean absolute percentage error 𝑀𝐴𝑃𝐸 and Theil's coefficient 𝑇2: 

𝑀𝐴𝑃𝐸 =
1

90
∑ |

𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡)

𝐼𝑟𝑒𝑎𝑙(𝑡)
|

121

𝑡=32

∙ 100% ≈ 3.74%,  

𝑇2 =
∑ (𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡))

2121
𝑡=32

∑ (𝐼𝑟𝑒𝑎𝑙(𝑡))
2121

𝑡=32

≈ 0.002,  

𝑇 = √𝑇2 ∙ 100% ≈ 4.56%.  

Thus, the data on infected people obtained from the model differ from the real data by about 3.74% - 

- 4.56%on average. It can therefore be concluded that the SI model with the set parameter 𝛼 well 

reflects the actual development of the epidemic in Croatia, and the error, which does not even exceed 

5%, is relatively small. 

   
Figure 5: Epidemic simulation 

A graphic illustration of the discussed simulation of the course of coronavirus infection in Croatia 

is presented in Figure 5. 

4.2. Simulation of the course of the coronavirus pandemic in Bulgaria using 
SI model 

In the case of Bulgaria, let's consider the time period from October 21, 2020 to January 19, 2021. 

We assume 𝑁 ≈ 213000. First, we will fit the model parameters to the initial 31 days. Using the least 

squares method, it turns out that the best fit of the real values to the model during the initial 31 days of 

the analyzed period occurs for the parameter 𝛼 = 2.91903 ∙ 10−7.  

Subsequently, we assess the quality of mapping real data by the model over the next 60 days. We 

get that     

𝑀𝐴𝑃𝐸 =
1

60
∑ |

𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡)

𝐼𝑟𝑒𝑎𝑙(𝑡)
|

91

𝑡=32

∙ 100% ≈ 1.18%,  



𝑇2 =
∑ (𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡))

291
𝑡=32

∑ (𝐼𝑟𝑒𝑎𝑙(𝑡))
2121

𝑡=32

≈ 0.00018,  

𝑇 = √𝑇2 ∙ 100% ≈ 1.36%.  

So we can see that the average error of the predictions obtained from the model does not even exceed 

1.5%. Therefore, we assume that the SI model with the determined parameter 𝛼 reflects very well the 

tendency of the disease development in Bulgaria in the considered period. 

 
Figure 6: Epidemic simulation 

4.3. Simulation of the course of the coronavirus pandemic in Denmark 
using the SVIR model 

Using statistical data related to COVID-19 in Denmark from February 26, 2021 to April 16, 2021, 

we will present a simulation of the course of the pandemic in this country. We will adjust the 

parameters of the model to the initial 20 days, more precisely from February 26, 2021 to March 17, 

2021. We assume 𝑁 ≈ 1600000, because by April 16, 2021, this is the total number of SARS-Cov-2 

infections and vaccinations in Denmark. After minimizing the expression 

∑((𝑉𝑟𝑒𝑎𝑙(𝑡) − 𝑉𝑚𝑜𝑑𝑒𝑙(𝑡))
2 + (𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡))

2 + ((𝑅𝑟𝑒𝑎𝑙(𝑡) − 𝑅𝑚𝑜𝑑𝑒𝑙(𝑡))
2)

20

𝑡=1

 

we get information that the infection rate 𝛼 = 1.72152 ∙ 10−7, the recovery rate 𝛾 = 0.0748762 and 

the vaccination rate 𝛿 = 0.0192519. 

 Figure 7  presents a simulation of the course of SARS-Cov-2 virus infection for the next 30 days, 

that is until April 16, 2021. 

 
Figure 7: Epidemic simulation 



 The mean absolute percentage error for the infected population is 15.8515%. Theil's coefficient 

for 𝐼(𝑡) is equal to 0.0325189, so 𝑇 = 18.033%. The data we get from the simulation differ about 

15.85 - 18% from the real data. In this situation, we can conclude that the model presents the course 

of infections in Denmark with a significant error. 

 The mean absolute percentage error for recovered people, 𝑅(𝑡), is 0.472322%. Theil's coefficient 

is equal to 0.000029394, so 𝑇 = 0.542162%. Thus, we can see that when comparing the predicted 

data with the real data, they differ by about 0.47 - 0.54%. So the difference between them is small. 

 The mean absolute percentage error for 𝑉(𝑡), i.e. vaccinated people, is 6.46959% and Theil's 

coefficient is equal to 0.0127645, so 𝑇 = 11.298%. We can say that in this case the simulation data 

differs by about 6.47 - 11.30%  from the real data. 

Let's also note that, according to the assumptions of the model, the average duration of illness per 

person is 
1

𝛾
≈ 13. It turns out that this information is consistent with the facts reported in the literature, 

because the average duration of SARS-Cov-2 infection is considered to be two weeks [2]. 

4.4. Simulation of the course of the coronavirus pandemic in the Czech 
Republic using the SVIR model 

To create a simulation of the course of the coronavirus pandemic in the Czech Republic, we will 

use data for the period from February 15, 2021 to April 15, 2021. We adjust the parameters of the 

model to the first 30 days of the considered period. In the Czech Republic, until April 15, 2021, a total 

of 3.16 million coronavirus infections and vaccinations were recorded, therefore we assume  

𝑁 ≈ 3160000. Minimizing the expression  

∑((𝑉𝑟𝑒𝑎𝑙(𝑡) − 𝑉𝑚𝑜𝑑𝑒𝑙(𝑡))
2 + (𝐼𝑟𝑒𝑎𝑙(𝑡) − 𝐼𝑚𝑜𝑑𝑒𝑙(𝑡))

2 + ((𝑅𝑟𝑒𝑎𝑙(𝑡) − 𝑅𝑚𝑜𝑑𝑒𝑙(𝑡))
2)

30

𝑡=1

 

we find out that the parameters of the model take the following values: 

𝛼 = 5.56285 ∙ 10−8,  
𝛾 = 0.0613324,  
𝛿 = 0.0108898.  

   

Then, for 𝐼(𝑡), 𝑅(𝑡) and 𝑉(𝑡), we do ex post prediction for the next 30 days. 

The mean absolute percentage error for the 𝐼(𝑡) infected population is 12.3121%, while Theil's 

coefficient is 0.0259539. Hence 𝑇 = 16.1102%. This means that the model differs by about 12.31 - 

- 16.11% from the actual course of coronavirus infection in the Czech Republic. 

The mean absolute percentage error for 𝑅(𝑡), i.e. for recovered, is 1.24234%, and the Theil 

coefficient in this case is equal to 0.000189218. Then 𝑇 = 1.37556%. The difference between the 

data from the proposed model and the real data is about 1.24 - 1.38%. 

The mean absolute percentage error for vaccinated people is 27.2049%. Theil's coefficient for 

𝑉(𝑡) is equal to 0.0822293, so 𝑇 = 28.6756%. We can see that the difference between the predicted 

and actual number of people vaccinated is significant, as it is around 27.20 - 28.68%. From the 

Figure 8  you can see that from a certain point the actual number of people vaccinated is much higher 

than the one obtained from the model. The reason for this phenomenon may be the fact that people - 

aware of the threat posed by the coronavirus in previous periods - were more willing to be vaccinated. 

An illustration of the data on the discussed simulation of the course of coronavirus infection in the 

Czech Republic is shown in Figure 8. 

Let's take a closer look at the interpretation of the 𝛾 parameter. Turns out 
1

𝛾
≈ 16 days. However, 

according to the literature, the disease caused by the SARS-Cov-2 virus lasts an average of 14 days 

[2]. Thus, also in this case, it can be assumed that the 
1

𝛾
 value correctly reflects the average duration of 

the disease of any individual. 

 



 
Figure 8: Epidemic simulation 

5. Summary 

It turns out that even the simplest SI model can correctly reflect the actual trend of coronavirus 

development in selected countries. Moreover, this model can be modified relatively easily. Thanks to 

this, it is possible to include more factors influencing the development of the disease in the 

considerations. We may consider, for example, vaccination of the analyzed population against the 

virus causing the infection. The results obtained from the performed simulations reflect the real data 

with a certain error. It can be assumed that this is due to the fact that the model does not take into 

account all the factors that affect the development and spread of the disease. 
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