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Abstract  
The goal of pathfinding algorithms is to find a path between the desired points. An optimal 

path is more complex and time consuming to find, which is why some industries, such as the 

video game industry, can sacrifice optimality for reduced run-time. A grid map can be 

represented as an image, so techniques used in image processing, such as filtering, may be 

applied to pathfinding. In this paper we propose a convolution inspired hierarchical pathfinding 

algorithm that achieved 4% longer paths and 97% shorter runtime than A* on average.  
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1. Introduction 

Pathfinding algorithms solve the problem of finding a path (usually shortest) between two points. 

Finding a path between two points is not difficult and can be done by simple algorithms such as breadth-

first search, which has a linear time complexity [1], however, this only works for unweighted graphs. 

The time complexity of the Dijkstra algorithm used to solve this problem is non-linear [1] due to the 

need to sort current paths by length and guarantee an optimal path. 

Search spaces are usually represented using graphs, which may even have a geometric structure, and 

it is not uncommon to see video games utilizing grid graphs [2], [3]. In video games, various logic must 

be completed within a short time frame (e.g., 16ms for 60 updates per second or more), so it is critical 

for developers to employ a pathfinding algorithm that can perform a search in these time constraints. 

Video games are not required to have true-to-life graphical fidelity, physics simulation, or pathfinding, 

so game developers often use more computationally efficient methods to solve those problems. One 

such example is finding a close-to-optimal path at a fraction of the time, when compared to traditional 

methods, such as A*.  

Grid maps can be represented as images with free tiles and obstacles, which can then be processed 

to form a grid graph. A grid map can be processed into various different graphs, depending on tile 

connection logic. The two classical ways to connect the neighboring tiles for a grid map are 4-way 

(cardinal directions) and 8-way (cardinal and diagonal directions). Both methods introduce the path 

symmetry problem, but the 8-way connection option also doubles the edge count, all of which can easily 

result in unreasonable search times when using pathfinding algorithms, most of which have non-linear 

time complexity. 

Filtering is a powerful technique for image processing that can be used to extract features in raster 

images. Image filtering is generally performed as a series of local neighborhood operations using a 

sliding-window-based principle [4]. The sliding window partitions the grid, where a convolution 

operation can be utilized for each partition to extract information. A similar technique may be employed 

for pathfinding, so in this paper we propose a pathfinding algorithm based on 2D convolution, to 

perform fast and approximate pathfinding in 4-way connected uniform-cost grid maps. 

2. Pathfinding problems and methods 
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2.1. Path symmetry 

One of the biggest problems with grid maps is path symmetry, where there are multiple equally 

optimal paths for two given points, as shown in Figure 1. Path symmetry is often a property of uniform-

cost grid maps, where the order of steps can often be rearranged to form another equally optimal path. 

 
Figure 1 A highly symmetric pathfinding instance with three highlighted paths[5] 

 

The number of symmetric paths increases with path length, and a pathfinding algorithm, such as A*, 

must evaluate all the redundant symmetric paths to find an optimal path. JPS is a pathfinding algorithm 

based on elimination of symmetric paths and can run up to 3.5 times faster than A* [5], which shows 

that path symmetry can hinder pathfinding algorithm performance significantly. 

2.2. A* 

One of the most popular and effective pathfinding algorithms is A* [6], [7]. A* is a best-first search 

algorithm that can use various heuristic functions to adapt to the available space, its rules or the required 

solution. This algorithm can find the optimal path if a suitable heuristic function is chosen, which 

depends on graph type.  

Each iteration A* adds a node to current paths, which is determined by current cost of the path and 

the estimated cost from this node to goal by a heuristic function. The nodes keep track of which node 

they were reached from, and once the algorithm reaches the goal, it traces back to the start to form a 

path and terminates. 

One of the ways to reduce search time for A* is to have a better heuristic. Standard online heuristics, 

such as Manhattan distance, do not consider obstacles and can only estimate an optimistic scenario 

without obstacles, which leads to the pathfinding algorithm having to expand many nodes when 

encountering obstacles. A heuristic function that can accurately evaluate distance between nodes may 

result in the pathfinding algorithm expanding only nodes on the optimal path [8].  

2.3. HPA* 

Hierarchical Pathfinding A* (HPA*) is a pathfinding algorithm that was developed in 2004, with 

the aim of reducing the pathfinding time by sacrificing path optimality [9]. HPA* uses a hierarchical 

pathfinding approach, which allows the information of the network-type space to be processed once, so 

that this information can be used to speed up the performance of A*.  

HPA* algorithm creates an abstraction layer by dividing the map into rectangular parts called 

clusters, as marked by the red rectangles in Figure 2. Next, the passage points, shown in green, are 



searched between the clusters and added to the graph of the abstraction layer. This algorithm has been 

applied to 4-way connected graphs and experimental results have shown up to a 10-fold speedup in 

pathfinding and a 1% degradation in path quality compared to the optimal [9]. 

 
Figure 2 HPA* abstract layer creation [10] 

2.4. Heuristic functions 

The goal of a heuristic in pathfinding is to guide an algorithm to the target node. A standard heuristic 

function for 4-way connected maps is Manhattan Distance (MD) (1). Given two points 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑛) and 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑛) MD is calculated as the sum of distances in each dimension 

[11]: 

𝑑(𝒙, 𝒚) =∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 (1) 

MD is fast to calculate, but this method assumes only orthogonal movement, which overestimates 

travel distance in 8-way connected grids where diagonal movement is allowed. Euclidean distance (ED) 

(2) is more suitable for 8-way connected grids; however, the calculation process is computationally 

expensive as it utilizes a square root operation. 

𝑑(𝒙, 𝒚) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (2) 

To speed up the computation, square root can be removed from the equation (2). This makes the 

heuristic function overestimate the distance to the destination, which results in the pathfinding 

algorithm finding paths faster at the cost of no longer guaranteeing optimality [7].  This version of the 

heuristic function is called squared Euclidean Distance (SED). 

3. Proposed pathfinding algorithm 

Convolutional Hierarchical Pathfinding A* is a pathfinding algorithm that utilizes offline 

preprocessing to construct an abstraction layer, which is used to perform an online search. The 

abstraction layer is smaller than the original search space, which results in reduced search time. As the 

name suggests, the process for creating the abstraction layer is based on 2D image convolution, where 

a sliding window is used to generalize information inside the window.  

 During preprocessing, a non-square sliding window is used to partition the map into square 

segments, as shown in Figure 3. If necessary, a map is padded to the required length by copying the 



nearest pixel of the original image. The shape of the sliding window is derived from the square segment 

shape and should be one tile longer to allow overlap with neighboring segments. 

 
Figure 3 Horizontal map slicing with 4x3 window 

 

Within each window, a search is performed to find any valid path along the window, and the purpose 

of the overlap with neighboring segment is to guarantee, that the neighboring segment can be entered. 

A clockwise rotated window is also used to perform the same operations and store vertical traversal 

information. The abstraction layer graph is created by using the segments as nodes, and the traversal 

information from sliding windows to connect the nodes.  

Increasing the segment size will result in a smaller abstraction layer and faster search time, however 

more information will be lost during preprocessing, which can reduce path optimality. For this paper a 

segment size of 3x3 was chosen to introduce some data loss and evaluate the effect of it on pathfinding 

performance. 

During phase 1 of online search, an initial path is found in the abstraction layer using A*, which is 

presented in Figure 4. In phase 2, the nodes of this path are then used as checkpoints and guide the A* 

algorithm in the real grid. For this to work, a coordinate translation must be performed between 

abstraction layer path nodes and real grid nodes. The translation method first determines the direction 

of movement and shifts the translated center point of the target segment towards the origin segment. A 

valid unoccupied tile is then needed as a goal, which is searched in a predetermined order along the 

wall of the origin segment. 

 
Figure 4 CHPA pathfinding example. a) real map, b) abstraction layer, c) pathfinding in abstraction 
layer, d) pathfinding using checkpoints in real map. Green – start, red – goal, yellow – checkpoint, light 
green – path 

 



This method of coordinate translation may reduce path optimality. To reduce errors caused by the 

coordinate translation, a Pstep parameter is introduced, which defines the interval of checkpoints to be 

used for pathfinding in the real grid. An example of Pstep effect on final path can be seen in Figure 5, 

where the resulting final path using Pstep=2 is more optimal than Pstep=1. Increasing Pstep value 

reduces the checkpoint, and the associated coordinate translation count, which results in fewer 

opportunities for sub-optimal translations and should on average increase path optimality. 

 
Figure 5 CHPA* pathfinding results for a) abstraction layer with b) Pstep=1 and c) Pstep=2 

4. Experimental setup 

The proposed algorithm was tested against the A* algorithm using various heuristic functions. The 

same A* implementation was also used for CHPA*, which will make for a fair comparison as there will 

not be an implementation optimization difference.  

The benchmark set of maps and scenarios used for testing were created by Sturtevant [12], and 

features maps from games such as Starcraft, Warcraft III, labyrinths, randomly generated maps, etc. 

The algorithms were implemented using Python, and pathfinding for path lengths above 700 tiles can 

take more than a minute depending on obstacles, so path counts had to be reduced to have a reasonable 

testing time. The scenarios were ordered by path length and divided into 200 segments, where one path 

was chosen at random from each segment. The maps chosen for testing were: 

 ArcticStation 

 BrokenSteppes 

 Enigma 

 Nightshade 

The tests were carried out using a personal desktop computer, and the specifications are as follows: 

 CPU – AMD Ryzen 5 3600 

 GPU – Nvidia GEFORCE GTX 1080Ti GPU 

 RAM – 16GB 

 OS – Windows 10 

5. Results 



The effects of CHPA* parameter Pstep were tested and can be seen in Figure 6. As the value of 

Pstep increases, the path length approaches optimal, however that also causes more nodes to be explored 

in the real grid, which will increase search time. 

 
Figure 6 CHPA* test results using various Pstep values 

 

We can also see that on average, with Pstep=2 the path length was reduced by 8%, and explored 

node count by 0.5%. Increasing Pstep further has diminishing returns on path length reduction of 1.5% 

and 0.5% for Pstep value of 3 and 4 respectively, and increases explored node count by 1.5%. Pstep=2 

resulted in the best balance of path quality and search area, so further experiments will be carried out 

only using this value.  

Next, A* and CHPA* algorithms were tested using various heuristic functions, and the results can 

be seen in Table 1. 

 

Table 1 
Pathfinding result of A* and CHPA* with various heuristic functions. F1 and F2 for CHPA* denote phase 
1 and phase 2, where phase 1 is the search in the abstraction layer 

Pathfinding method Average path 
length 

Average 
explored nodes 

A* + ED 873.37 120005.71 

A* + SED 1040.63 16770.77 

A* + MD 873.37 80696.25 

CHPA* + F1-ED F2-ED 903.09 18033.84 

CHPA* + F1-ED F2-SED 903.79 16766.83 

CHPA* + F1-MD F2-MD 904.23 13446.26 

CHPA* + F1-MD F2-ED 904.23 14255.29 

 

A* algorithm with ED and MD heuristics achieved the expected optimal average path length, 

however MD heuristic explored 33% less tiles and was less computationally expensive, so it led to 

significantly shorter search times. Using SED heuristic results in 19% longer paths on average, but it 

explores 80% less nodes than MD, which can be valuable in situations where computation time is strict. 

Shifting focus to CHPA*, phase 1 and phase 2 ED heuristic on average explored only 8% more 

nodes than A* with SED, while having only 4% longer path than optimal. Other CHPA* configurations 

explored even less nodes, while preserving average path length within 0.2% of other configurations, so 

choosing a heuristic for CHPA* largely comes down to minimizing explored nodes. Out of the tested 

configurations with CHPA*, MD heuristic resulted in longest average path, which is still 14% better 

than A* with SED, and 20% less explored nodes.  



Surprisingly, ED heuristic outperforms MD heuristic on CHPA* average path length by 0.2%, but 

explored 34% more nodes. MD and ED heuristics both find optimal paths, however those paths may 

differ and cause different errors in CHPA* coordinate translation, which results in paths of different 

length in the real map. 

The last test was performed to compare average search time between the algorithms, and the results 

are shown in Table 2. 

 

Table 2 
Pathfinding search time results 

Pathfinding method 
Average path 
length 

Average search 
time, s 

A* + MD 873.37 29.23 

CHPA* + F1-MD F2-MD 884.04 0.79 

 

During this testing, CHPA* achieved only 2% longer path, however on average it took 97% less 

time to find them, which is the result of heavily reducing search space. 

The implemented system includes capability to visualize the pathfinding process, which was used 

to observe general pathfinding algorithm behavior. In Figure 7 a comparison between A* and CHPA* 

is shown for a short path, where CHPA* has a smaller exploration footprint than A*. Unfortunately, 

this system does not visualize the abstraction layer, and the total explored nodes count is very similar 

to A* in this instance. 

 

  
a) b) 

Figure 7 Pathfinding result visualization on 12x12 map. a) A* b) CHPA*. Heuristic – MD, Pstep=1, green 
– start, blue – goal, orange – path, yellow – checkpoint, red – closed list tile, green – open list tile 

 

Figure 8, Figure 9, and Figure 10 present pathfinding algorithm behavior over a longer distance, 

and here the benefits of CHPA* can be seen. A* explored most of the map due to the walls obstructing 

the optimal path, whereas CHPA* performs pathfinding in the compressed abstraction layer, which 

greatly reduces node expansion. 



 
Figure 8 A* + MD result visualization on 128x128 map. Green – start, blue – goal, orange – path, red 
– closed set tile, green – open set tile 

 

 
Figure 9 CHPA* Pstep=1 result visualization on 128x128 map. Green – start, blue – goal, orange – path, 
yellow – checkpoint, red – closed set tile, green – open set tile 

 



 
Figure 10 CHPA* Pstep=3 result visualization on 128x128 map. Green – start, blue – goal, orange – 
path, yellow – checkpoint, red – closed set tile, green – open set tile 

 

6. Future work 

Main problems of current CHPA* implementation: 

1. Only works with 4-way connected graphs. 

2. Simplistic coordinate translation logic reduces path quality. 

3. Preprocessing edge cases lead to obstacles not being recognized and producing extremely long 

paths. 

In the future, an analysis on the effect of different window sizes for path quality and search times 

can be performed.  

The proposed algorithm finds paths between multiple checkpoints, which could be done in any order, 

so parallel processing may be applied to speed up the search even further. 

7. Conclusion 

In this paper a new pathfinding algorithm is proposed for fast approximate pathfinding called 

CHPA*. The algorithm utilizes preprocessing, inspired by 2D image convolution, to create an 

abstraction layer, reduce search space and improve path search times. 

Results in worst case show 4% path length degradation on average, more than 80% less explored 

nodes, and takes 97% less time to find a path compared to A* with an optimal MD heuristic. During 

our testing, the heuristic function for CHPA* had very low impact on path length (only 0.2% 

difference), but significantly changed explored node count, so the heuristic choice in most cases will 

come down to minimizing search space. 

The drawbacks of the algorithm are preprocessing edge cases that can lead to not recognizing 

obstacles in abstraction layer, creating extremely long paths during online search, or even not being 

able to find a path. 
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