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Abstract  
Nowadays, the engineering application of vehicle detection from aerial images is a challenging 

task due to the particularity of perspective, the small size of the objects, and the complex 

background. This research aim is to investigate low-resolution aerial images of vehicles that 

can be utilized for vehicle detection using machine learning models. The research work was 

conducted using one-stage deep learning-based object detection algorithms YOLOv5, 

YOLOv7, and YOLOv8 on the two datasets (COWC and VEDAI) that addressed the task of 

small vehicle detection. For the training of the models, available pre-trained weights were used 

as a starting point, and then each model was trained by utilizing transfer learning. The obtained 

results of the study demonstrated that by reducing the image pixel ratio every 5 cm per pixel 

from 12.5x12.5 to 27.5x27.5 cm per pixel, the accuracy of the object detection models 

decreases by an average of 3.51%. When the pixel ratio varies from 30x30 to 32.5x32.5 cm 

per pixel, the accuracy of the models drops by an average of 2.33% on the COWC dataset and 

42.4% on the VEDAI dataset. 
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1. Introduction 

Object detection involves finding the numerous objects in the images and identifying their locations. 

Recently object detection has been considered one of the most challenging tasks in computer vision due 

to the appearance of objects varying greatly depending on various circumstances, such as image capture 

technologies. One such technology is UAVs (Unmanned Aerial Vehicles) - a critical enabler for a wide 

range of applications including automated driving, crowd flow counting, topographic exploration, 

environmental pollution monitoring, etc.  

Over the years, a lot of effort has been put into identifying vehicles and other small targets in the 

images that UAVs collect. According to B. Wang and B. Xu in 2021 [1] the most common difficulties 

of object detection in aerial images are: 

 The particularity of perspective. Since aerial images are typically taken from above, the objects 

have less texture features [1]. As a result, the targets can be easily mistaken with other objects [2]. 

 The size of the objects. In aerial images, the objects are quite small (composed of only 15 to 30 

pixels). Moreover, Convolutional Neural Networks (CNNs) down-sampling layers minimize the 

amount of information that each object has. For instance, after four down-sampling layers, a 24x24 

pixels object maintains only around one pixel in feature maps, making it challenging to identify 

small objects from the background [1]. 

 The complexity of the background. Usually, aerial images might cover an area of several square 

kilometers. The presence of different backgrounds in this receptive field, such as the countryside, 

mountains, urban areas, etc., interfere with the object detection process [1]. 
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Deep learning algorithms have enabled vehicle identification technologies to attain very high 

performance. The deep convolutional neural network may use the dataset to train and enhance its model 

independently. Deep learning-based object detection algorithms that are frequently utilized may be split 

into two categories: one-stage and two-stage detectors [3]. 

Two-stage object detection algorithms Faster R-CNN (Region-based Convolutional Neural 

Networks) divide the target detection into two stages, that is, first use the Region Proposal Network 

(RPN) to extract candidate target information, and then use the detection network to complete the 

location and category of candidate targets [3]. One-stage object detection algorithms such as YOLO 

(You Only Look Once) do not require to use RPN, and directly generate the location and category 

information of the target through the network, which is an end-to-end target detection algorithm. 

Therefore, the single-step target detection algorithms have a faster detection speed [3]. 

One of the first methods to use convolutional neural networks for object detection and to show off 

their impressive capabilities is region-based CNN (R-CNN) [4]. In R-CNN, a selective search algorithm 

selects image regions that could contain target objects, and then the CNN is used to map the target 

objects in the suggested region. Fast R-CNN used an SPP (Spatial Pyramid Pooling) layer and a RoI 

pooling layer to increase accuracy and runtime over R-CNN [4]. Unlike the R-CNN, which classifies 

each region proposal independently, Fast R-CNN computes a feature map from a full image only once 

and then categorizes region proposals by projecting each one onto that feature map. Moreover, the Fast 

R-CNN algorithm uses a time-consuming selective search method to look for region suggestions in a 

target image. In Faster R-CNN [4], the selective search is replaced with RPN, which calculates region 

proposals from an input image. Faster R-CNN is 900% faster than Fast R-CNN and is made up 

completely of deep learning networks. Directly connecting the RPNs and the classifier network would 

help Faster R-CNN to further advance [5]. In 2017, T. Tang et al. designed an improved Faster-RCNN 

to solve the difficulties of locating the positions of small vehicles and classifying the vehicle from the 

background [6]. 

In one pass, YOLO predicts and categorizes bounding boxes of objects. An image is initially divided 

into non-overlapping grids through YOLO. For each cell in the grids, YOLO fore-casts the likelihood 

that an object will be present, the coordinates of the anticipated box, and the object's class. Each cell's 

bounding boxes and their confidence scores are predicted by the network. The network then determines 

the classes' probabilities for each cell [7]. The first version of YOLO, coined YOLOv1, reportedly 

achieves a faster inference time, but lower accuracy compared to a single-shot detector [8]. In order to 

increase the speed and accuracy of detection, YOLOv2 was suggested. Anchor boxes are used in 

YOLOv2 together with convolutional layers that are not fully connected [8]. The accuracy of the 

network is further increased by YOLOv2 using batch normalization (BN) and a high-resolution 

classifier. YOLOv3 [9] uses three detection levels and predicts three box anchors for each cell. To 

extract feature maps, YOLOv3 adds a deeper backbone network (Darknet-53) to the system. Due to the 

addition of more layers, the prediction is slower than with YOLOv2. Many technical improvements 

were made in YOLOv4 while maintaining its computational efficiency. The improvements slightly 

affected the inference time but significantly increased accuracy [10]. 

According to A. Ammar et al. in 2021 [2], vehicle detection is possible for different data sets with 

an accuracy from 85.3% to 98%. However, vehicle detection is still challenging when aerial images are 

small in size and contain a large number of objects. It might cause information loss when convolution 

operations are performed [2]. 

There are different aerial image data sets such as OIRDS [11], PUCPR [13], COWC[14], and 

VEDAI [15] that might be used for the investigation of vehicle detection. The overhead imagery 

research data set (OIRDS) project produced a data set with almost 1,000 labeled images suitable for 

developing automated vehicle detection algorithms [11]. “Overhead imagery research data set” contains 

approximately 1,800 labeled targets. For each target, there are over 30 annotations and over 60 statistics, 

that describe the target within the context of the image. Images sizes range from 256×256 pixels to 

512×512 pixels. The dataset contains five classes of vehicles (“truck”, “pickup”, “car”, “van” and 

“unknown”). Annotations give information such as color and distance to the ground [11]. On the other 

hand, this database is hard to apply to benchmark target detection algorithms because there is no defined 

evaluation protocol, the dataset is obtained by aggregating multiple sources of images (20 different 

sources), and does not have sufficient statistical regularity.  These issues make the results difficult to 

reproduce, preventing other researchers from making any comparisons with this dataset [11, 12]. It was 



tried to split this database (easy, medium, and hard). However, the precise set of images in each split 

was not defined, preventing the reproduction of results [12].   

Approximately 17,000 photos in the Pontifical Catholic University of Parana Dataset (PUCPR) are 

devoted to car counting in settings of various parking lots. The dataset includes details about 16,456 

vehicles. The aerial images in the collection were taken from a drone view at a height of about 40 

meters. The image set is annotated by a bounding box per car. All labeled bounding boxes have been 

well recorded with the top-left and bottom-right points [13]. 

Nearly 90,000 automobiles were collected using a drone from 4 distinct parking lots for the Car 

Parking Lot Dataset (CARPK). This is a large dataset with an emphasis on automobile counting in 

various parking lots. The bounding box for each car is annotated in the image set. Top-left and bottom-

right points have been accurately recorded for each labeled bounding box. It is supporting object 

counting, object localizing, and further investigations with the annotation format in bounding boxes 

[13]. 

The purpose of this study is to investigate the change in the accuracy of object detection models for 

detecting vehicles in aerial images when the resolution of the images fed to the models is reduced. The 

findings of this study might be useful when certain situations require quick and real-time decision-

making regarding the distribution of vehicles in a geographic space if collecting aerial photographs of 

this space is available. When it is known what minimum resolution and object detection models are 

sufficient to obtain acceptable results from aerial images, it is possible to save time for flying UAVs, 

processing information, and presenting results. The models selected for this study are one of the best-

performing one-stage detectors (YOLOv5, YOLOv7, YOLOv8) that reach high accuracy and speed 

when applied to object detection tasks. 

2. Methods 

2.1. Data Preprocessing 

The research was conducted using object detection algorithms on the COWC and VEDAI datasets 

that address the task of small vehicle detection. The cars overhead with context (COWC) dataset 

contains many unique cars (32,716) from six different image sets, each covering a different 

geographical location and produced by different images [14]. The images cover regions from Toronto 

(Canada), Selwyn (New Zealand), Potsdam and Vaihingen (Germany), Columbus, and Utah (The 

United States). The COWC dataset provides data from overhead at 15 cm (about 5.91 in) per pixel 

resolution at ground (all data is EO) and is designed to be challenging for detection models. 

Furthermore, it contains 58,247 usable negative targets, many of which have been hand-picked objects 

similar to cars such as boats, trailers, bushes, and A/C units. To compensate for the additional difficulty, 

the context was included around targets. Context can help identify something that may not be a car or 

confirm it is a car. In general, the idea is to allow a deep learner to decide the weight between context 

and appearance such that something that looks very much like a car is detected even if it is in an unusual 

place. 

The vehicle detection in aerial imagery (VEDAI) database includes various back-grounds such as 

woods, cities, roads, parking lots, construction sites, or fields. In addition, the vehicles to be detected 

have different orientations and can be altered by specular spots, occluded, or masked. Each image is 

available in several spectral bands and resolutions. VEDAI set has 2950 cars in 512x512 and 1024x1024 

images. The dataset with 1024x1024 resolution images has a resolution of 12.5cm×12.5cm per pixel. 

Likewise, 512x512 resolution images have a resolution of 25cm×25cm per pixel. The images were 

taken during the spring of 2012. Raw images have 4 uncompressed color channels. The dataset has nine 

different classes of vehicles: “plane”, “boat”, “camping car”, “car”, “pick-up”, “tractor”, “truck”, “van”, 

and “other”. Two meta-classes are also defined and considered in the experiments. The “small land 

vehicles” class has the “car”, “pick-up”, “tractor”, and “van” classes included, and the “large land 

vehicles” class contains the “truck” and “camping car” classes [15]. 

When preparing the VEDAI dataset for the experiments, these classes have been dropped: “plane”, 

“boat”, “camping car”, “tractor”, “truck”, and “other”. These changes were done in order to have 

comparable visual data about the vehicles. Only one class "Car" was left in both datasets. In the COWC 



dataset, a class of negative samples was removed. Figure 1. depicts a histogram of different numbers of 

cars in the VEDAI dataset. 

 

 

 
Figure 1: Histogram of "Car” class count by the image in the VEDAI dataset 

 

The Roboflow [16] platform was used to manage the data sets. For each evaluation sample, the 

dataset images were proportionally reduced in size to achieve the desired centimeters per pixel ratio. 

With the use of the Roboflow platform, an analysis of the data was performed, resulting in the following 

findings: 

 COWC dataset contains 32810 annotations. The average number of bounding boxes per image 

is 18.8. There are 800 images in the dataset with null examples. 

 VEDAI dataset contains 2807 annotations. The average number of bounding boxes per image 

is 2.2. There are 233 images in the dataset with null examples. 

 Figure 1. demonstrates that the VEDAI dataset has mostly from 2 to 4 vehicles per image and 

the COWC dataset has from 2 to 49 vehicles per image. 

2.2. Object Detection Algorithms 

The YOLOv5 adopted the concept of anchor boxes to speed up the R-CNN algorithm and abandoned 

the use of manually chosen anchor boxes was released in 2020. To get a better prior value, K-means 

clustering was done on the bounding box dimensions [17].  

Introduced in 2022 YOLOv7 surpassed all known object detectors created before in both speed and 

accuracy in the range from 5 FPS to 160 FPS and had the highest accuracy 56.8% AP among in that 

time all known real-time object detectors with 30 FPS or higher on GPU V100. YOLOv7 was trained 

on the MS COCO dataset from scratch without using any other datasets or pre-trained weights. The 

YOLOv7 model preprocessing method is integrated with YOLOv5, and the use of Mosaic data 

augmentation is suitable for small object detection [17]. 

The most recent group of YOLO-based object detection models is called YOLOv8. For detection, 

segmentation, and classification, there are five models (Nano, Small, Medium, Large, and Xtra Large) 

in each category of the YOLOv8. The fastest and smallest is YOLOv8 Nano, and the slowest and most 

accurate is YOLOv8 Extra Large (YOLOv8x). All of the YOLOv8 models had improved throughput 

when compared to other YOLO models trained at 640 image resolution while using around the same 

amount of parameters [17]. The effectiveness of object detection on 640 image size between YOLOv8 

and YOLOv5 is summarized in Table 1. 



Table 1 
Object detection performance comparison between YOLOv8 and YOLOv5 

Model Size YOLOv5 YOLOv8 Difference 

Nano 28 37.3 +33.21% 
Small 37.4 44.9 +20.05% 

Medium 45.4 50.2 +10.57% 
Large 49 52.9 +7.96% 

Xtra Large 50.7 53.9 +6.31% 

3. Evaluation metrics  

For the evaluation of the performance of the models, the following evaluation metrics [18] were 

used in this study: 

 Total (pre-process + inference + NMS) detection speed in milliseconds; 

 Precision; 

 Recall; 

 Mean average precision (mAP) calculated at Intersection over Union (IoU) [19] threshold 0.5 

(mAP@0.5); 

 mAP over different IoU thresholds from 0.5 to 0.95 with step 0.05 (0.5, 0.55, 0.6, 0.65, 0.7, 

0.75, 0.8, 0.85, 0.9, 0.95); 

 F1 score; 

 Confusion Matrix. 

The precision metric Precision stands for the proportion of positive samples in the samples with 

positive prediction results (see calculation formula (1)). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (1) 

where TP denotes true positive samples, FP – false positive samples. 

The recall represents the prediction result as the proportion of the actual positive samples in the 

positive samples to the positive samples in the whole sample. The calculation formula (2), where FN 

stands for false negative samples can be defined as 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 (2) 

The F1 score is the weighted average of precision and recall, calculated (3) as follows: 

𝐹1 = (
2

𝑅𝑒𝑐𝑎𝑙𝑙−1 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
) = 2 ∙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙  𝑅𝑒𝑐𝑎𝑙𝑙

Precision + Recall
 (3) 

Precision reflects the model’s ability to distinguish negative samples. The higher the precision, the 

stronger the model’s ability to distinguish negative samples. Recall reflects the model’s ability to 

identify positive samples. The higher the recall, the stronger the model’s ability to detect positive 

samples. The F1 score is a combination of the two. The higher the F1 score, the more robust the model. 

For object detection tasks, the most common way to determine if a single object proposal is correct 

is by using the Intersection over Union (IoU) metric [19]. It takes the set A of proposed object pixels 

and set of true object pixels B and calculates the intersection area. The calculation formula (4) is as 

follows: 

𝐼𝑜𝑈(𝐴, 𝐵) =
𝐴 ∩ 𝐵

A ∪ B
 (4) 

In most cases, an IoU of over 0.5 means that the object was detected, otherwise it was a failure . 

𝑚𝐴P =
1

n
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP + FN
 (5) 



The mean of average precision (AP) values are calculated over recall values from 0 to 1. Average 

precision is calculated as the weighted mean of precisions at each threshold and the weight is the 

increase in recall from the prior threshold. The mean of average precision is the average AP of each 

class. The mAP is evaluated (5) by finding each class‘s average precision (AP) and then averaging over 

all specified classes. 

4. Experiments and results 

During the experiments, the processes indicated in Fiure. 2. were carried out, which consisted of 

obtaining images with their original pixel ratio, resizing images, dividing the data sets into training, 

validation, and testing sets, running training sets to models, custom training models using pre-trained 

weights, evaluating models with testing sets. 

 

 

 
Figure 2: Process flow diagram of experiments 

 

For the training of the models, available pre-trained weights were used as a starting point for each 

variation of the datasets („yolov5s.pt“ for the YOLOv5, „yolov7.pt“ for the YOLOv7, and „yolov8s.pt“ 

for YOLOv8). Afterward, each model was trained by utilizing transfer learning for 100 epochs. After 

training, testing was performed, by providing models with unseen images and capturing their inference 

time, as well as available precision metrics. Regarding the dataset splits, both datasets featured the same 

data split: 70% training, 20% validation, and 10% testing. The hardware used for training and testing 

each variation is provided in the Table 2. 

 

Table 2 
Hardware used for the experiments 

Hardware Specification 

CPU model Intel(R) Xeon(R) 
CPU frequency 2.30GHz 

GPU model Nvidia T4 
GPU VRAM 16GB 

GPU Memory Clock 1.59GHz 

 

The following issues were observed during models training: 

 YOLOv8 training on COWC at 15x15 cm per pixel variation would display uncommon 

behavior in several repeated runs, where model training performance drops in the middle of training, 

and the precision drops instantly. 



 YOLOv7 training on VEDAI at 20x20 cm per pixel variation also exhibits inconsistent 

behavior, as after the first 20 training epochs the training metrics fluctuate and drop, resetting the 

training progress. 

 
Figure 3: Training YOLOv5 on COWC results 

 

The results of training YOLOv5 on the COWC dataset are provided in Figure 3. The testing results 

(see Table 3.) demonstrate the performance of YOLOv5, YOLOv7, and YOLOv8 models when trained 

and tested at various image pixel ratios. Specifically, the models were evaluated at 15, 20, 25, 27.5, 30, 

and 32.5 cm per image pixel resolution. However, it should be noted that the original pixel ratio of the 

VEDAI dataset is 12.5 cm per pixel, while the initial pixel ratio of the COWC dataset is 15 cm per 

pixel, meaning that the original resolution of the datasets did not match in the starting evaluation phase. 

As a result, the findings of the VEDAI and COWC datasets were not directly comparable during the 

experiments when the pixel ratio was 12.5 cm per pixel. 

It was found that on the VEDAI dataset P, R, and mAP indicators values are smaller than on the 

COWC dataset (see Table 3). However, the testing speed was higher. When the datasets had the lowest 

pixel ratio, which is 32.5 cm per pixel, the YOLOv7 model obtained better test results on the COWC 

dataset than the YOLOv5. However, YOLOv5 showed significantly higher values on the VEDAI 

dataset than YOLOv7. For the COWC dataset, YOLOv7 achieved mAP score of 0.93, while YOLOv5 

achieved 0.889 under the same conditions. For the VEDAI dataset, YOLOv7 achieved mAP score of 

0.029, while YOLOv5 achieved 0.248. YOLOv7 had a faster total detection speed across all datasets 

and their variations. Figure 4. display the change of accuracy metric of all the models changed with the 

COWC or VEDAI datasets when the image pixel ratio was reduced by 5 or 2.5 cm, while Figure 5. 

graphs the detection speed results for the same evaluation task. 

 

 

 
Figure 4: Graph of dependence of mAP@50 indicator and image pixel ratio 
 



Table 3 
Testing YOLOv5 YOLOv7 and YOLOv8 models on COWC and VEDAI datasets results 

Model Dataset 
Centimeters 
per pixel 

Detection 
Speed (ms) 

P R 
mAP@
50 

mAP@
50-95 

v5 COWC 

32.5 x 32.5 cm 

10.9 0.87 0.79 0.88 0.45 
VEDAI 9.5 0.41 0.31 0.24 0.07 

v7 COWC 9.7 0.93 0.84 0.93 0.56 
VEDAI 5.3 0.11 0.11 0.03 0.01 

v8 COWC 6.6 0.89 0.83 0.89 0.53 
VEDAI 5.1 0.42 0.41 0.34 0.11 

v5 COWC 

30 x 30 cm 

14.8 0.91 0.87 0.93 0.55 
VEDAI 9.8 0.71 0.64 0.69 0.31 

v7 COWC 12.8 0.94 0.91 0.95 0.61 
VEDAI 8.8 0.83 0.74 0.82 0.35 

v8 COWC 7.6 0.93 0.85 0.91 0.60 
VEDAI 5.7 0.72 0.73 0.79 0.39 

v5 COWC 

27.5 x 27.5 cm 

18.2 0.95 0.88 0.94 0.58 
VEDAI 13.9 0.83 0.77 0.86 0.42 

v7 COWC 14 0.95 0.90 0.96 0.62 
VEDAI 9.8 0.8 0.86 0.89 0.48 

v8 COWC 10.4 0.94 0.87 0.93 0.62 
VEDAI 6 0.87 0.78 0.87 0.49 

v5 COWC 

25 x 25 cm 

23.6 0.96 0.9 0.95 0.61 
VEDAI 15.3 0.88 0.78 0.89 0.44 

v7 COWC 18 0.95 0.93 0.96 0.64 
VEDAI 11.7 0.90 0.88 0.94 0.5 

v8 COWC 12.5 0.94 0.88 0.93 0.63 
VEDAI 9.2 0.88 0.86 0.92 0.55 

v5 COWC 

20 x 20 cm 

30.2 0.96 0.92 0.96 0.65 
VEDAI 20.9 0.87 0.87 0.94 0.54 

v7 COWC 30.5 0.96 0.94 0.97 0.67 
VEDAI 20.6 0.88 0.82 0.90 0.50 

v8 COWC 18.1 0.95 0.89 0.94 0.66 
VEDAI 14.4 0.94 0.85 0.93 0.58 

v5 COWC 

15 x 15 cm 

46.3 0.96 0.93 0.97 0.67 
VEDAI 36.8 0.96 0.87 0.95 0.55 

v7 COWC 40.5 0.96 0.94 0.97 0.65 
VEDAI 32.6 0.95 0.84 0.94 0.55 

v8 COWC 27.3 0.93 0.88 0.92 0.60 
VEDAI 25.9 0.91 0.90 0.94 0.61 

v5 
VEDAI 12.5 x 12.5 cm 

41.9 0.95 0.89 0.96 0.57 
v7 38.5 0.81 0.84 0.86 0.47 
v8 30.1 0.91 0.90 0.94 0.63 

 

 

 



 
Figure 6: Graph of dependence of detection speed and image pixel ratio 

5. Conclusion 

In this paper, the change in the accuracy of vehicle detection using reduced pixel ratio aerial images 

was investigated. When models object detection on aerial images mAP indicator results from 0.86 to 

0.97 needed to be reached, the usage of a pixel ratio of 12.5x12.5 to 27.5x27.5 cm per pixel, and 

YOLOv5, YOLOv7, and YOLOv8 object detection algorithms were proposed. When investigating the 

dependence of aerial image resolution on the performance of object detection models, it was observed 

that one-stage object detection algorithms such as YOLOv5, YOLOv7, and YOLOv8 achieve an 

average of 3.51% lower mAP scores when the image pixel ratio is reduced every 5 cm per pixel from 

12.5x12.5 to 27.5x27.5 cm per pixel. 

The YOLOv8 model had the most stable results among other models, decreasing by an average of 

0.24% when tested on the COWC dataset from 12.5x12.5 to 27.5x27.5 cm per pixel image pixel ratio. 

The YOLOv5 model achieved an average mAP reduction of 9.6% with images from 12.5x12.5 to 

27.5x27.5 cm per pixel image pixel ratio from the COWC dataset, significantly lagging behind the other 

tested models. All models performed better on the COWC and not on the VEDAI dataset during testing. 

The VEDAI dataset only had 2807 annotated vehicles, while the COWC dataset contained 32810 

annotated vehicles, which may have influenced the testing results. Additionally, vehicles in the VEDAI 

dataset were labeled, even if some of them were partially hidden by other objects or just partially visible 

at the edges of the image. When models were tested with the COWC dataset, results dropped by an 

average of 0.68% and by an average of 6.35% with the VEDAI dataset when using image pixel ratios 

between 12.5x12.5 and 27.5x27.5 cm per pixel. More pronounced changes in the mean average 

accuracy of the models are noticeable when the pixel ratio varies from 30x30 to 32.5x32.5 cm per pixel. 

When the pixel ratio was 30x30 cm per pixel then the accuracy dropped by an average of 1.42% on the 

COWC dataset and 11.96% on the VEDAI dataset. When the pixel ratio was 32.5x32.5 cm per pixel 

then the accuracy dropped by an average of 3.23% on the COWC dataset and 72.84% on the VEDAI 

dataset. 

Future research should include other one-stage and two-stage deep learning-based object detection 

algorithms and experiments with more image-pixel ratio options in order to collect more data on the 

change in accuracy of the object detection models. 
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