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Abstract  
The goal of environmental sound classification is to accurately identify and classify sounds in 

order to provide valuable insights about the environment. The classification task can be solved 

by training machine learning models, such as convolutional neural networks, on a dataset of 

labeled sound samples. Due to the small size of available datasets in this field, time-consuming 

and expensive labeling process, data augmentations have become a popular practice to 

artificially generate additional data. The purpose of this study is to analyze whether using 

Mixed-Type data augmentations improves the classification performance compared to results 

with no augmentations. Mixed-Type data augmentation methods were evaluated on ESC-50 

and UrbanSound8K datasets for the pretrained ResNet-18 model with extracted mel-frequency 

cepstral coefficients as feature inputs. Results for both datasets show that data augmentations 

can improve model performance with certain mixup probabilities and coefficients but specific 

methods and parameters used may vary for each dataset and task. 

 

Keywords   
Environmental sound classification,  mixed augmentation, Mel-Frequency cepstral 

coefficients. 

1. Introduction 

Sound classification is the process of identifying and labelling sounds based on their characteristics, 
such as pitch, duration, and timbre. It is a fundamental task in the field of audio signal processing and 
has numerous applications, including music information retrieval [1], speech recognition [2], and 
environmental monitoring [3]. Improving the efficiency and accuracy of sound classification process 
may enable more low-power devices to perform this task, help in mitigation of noise pollution, and 
increase the robustness of early-warning systems, such as bee hive health monitoring systems [4]. 

There are various approaches to sound classification, including traditional machine learning 
techniques [5] and more recent deep learning approaches [6]. Traditional methods typically involve 
extracting hand-crafted features from the audio signal and using them as input to a classifier, such as a 
Support Vector Machine (SVM), Decision Tree, K-Nearest Neighbor (KNN), Gaussian Mixture 
Modeling (GMM) and Hidden Markov Model (HMM) [7–9]. Due to their limited modeling capabilities, 
that lead to the lack of time and frequency invariance, deep neural network-based models have been 
proven to perform better in classifying environmental sounds than traditional methods [10]. Deep 
learning methods involve training a neural network to learn features directly from the raw audio data. A 
hybrid approach of combining both types of methods has also been explored [11].  

Deep learning models for tasks in all audio domains are limited in size and complexity due to the small 

size of available datasets [12]. With the possible exception of speech recognition, environmental sound 

classification (ESC) suffers from the lack of universal database [13]. Nonetheless ESC tasks are a 

popular classification problem to solve therefore there have been several public datasets created. ESC-
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50 [14] and UrbanSound8K (US8K) [15] are the leading datasets with the best results achieved for ESC 

tasks [16]. ESC-50 is a balanced dataset published in 2015 with 2000 recordings for 50 classes of various 

environmental sounds. Its subset of 10 classes ESC-10 with 400 recordings is often used as a smaller 

version. US8K is a dataset published in 2014 with 8732 sound recordings of diverse city sounds. Other 

occasionally used datasets are: CHIME-HOME [17] with 6138 recordings of house indoor sounds; 

AudioSet [18] with over 2 million recordings of very diverse 632 classes of sounds; FSD50K [19] 

unbalanced dataset with 51197 recordings of various indoor, outdoor and instrument sounds; SONYC-

UST [20] with 18510 recordings of New York city sounds. It can be noted that besides the AudioSet 

dataset, most of these datasets are of limited size and, as mentioned before, are too small for deep 

learning models to be trained properly. 
The state-of-the-art accuracy for the ESC-50 and UrbanSound8K (US8K) datasets was 97.15% and 

96% respectfully[20, 21]. Both [21, 22] equipped deep learning models. Data augmentation techniques 
such as time scaling, time inversion, random crop or padding, and random noise were used in [21]. On 
the other hand, [22] opted to use various feature extraction methods like NGCC [23], MFCC [24], GFCC 
[25], LFCC and BFCC. An approach of using a simple CNN network without any data augmentations or 
signal pre-processing on US8K dataset has demonstrated 89% of mean accuracy which outperforms most 
recent solutions [6]. 

In the domain of environmental sound, it has been noted that time-frequency representations are 
especially useful as learning features due to the non-stationary and dynamic nature of the sounds [26]. 
These representations can be grouped into two broad categories: time-domain methods and frequency-
domain methods. Time-domain methods involve computing statistics such as the mean, standard 
deviation, skewness, and variance over different time windows of the signal. Other time-domain methods 
include calculation of zero-crossing rate, amplitude envelope and the root mean square energy. 
Frequency-domain methods include techniques such as the calculation of the Power Spectral Density 
(PSD) and the Mel-Frequency Cepstral Coefficients (MFCCs). For an increase in performance, it is 
advised to combine several feature extraction methods and types of methods [27].  

Combination of suitable audio feature extraction, deep learning methods and data augmentation has 
been proven to help boost the classification performance [28]. Data augmentation is a widely used 
technique in various machine learning tasks, including environmental sound classification, to virtually 
enlarge the datasets [29]. Augmentations can be divided into two general categories: image and audio 
signal. Image augmentation methods include adding noise, sample pairing [30], cropping, adding filters 
(e.g. blur, sharpen) [31]. Audio signal augmentations include random cropping, frequency filtering, 
equalized mixture data augmentation [32], tone shifting.  

A recent approach is to use various mixup methods [28] to provide higher prediction accuracy and 
robustness. Generally, the process of data augmentation is context and dataset dependent, which requires 
expert knowledge to select augmentation methods. Mixup augmentation technique is data-agnostic, and 
is performed by generating a random mixing coefficient, which is used to produce a new image and label 
as a convex combination of two selected images/labels.  

In this paper the proposed augmentation technique is based on the mixed-example data augmentation 
methods, which combine multiple examples from the training set to create a new, augmented example. 
This technique aims to increase the diversity of the training data, which can lead to better generalization 
and improved model performance.   

The rest of this paper is organized as follows. Section 2 presents the materials and methods. Section 
3 describes the details about the chosen augmentation methods. The experimental results are shown in 
Section 4. The results and future prospects are discussed in Section 5. Finally, the conclusions are 
presented in the last Section 6. 

2. Materials and methods 
2.1. Datasets 

The study focuses on two publicly available datasets for ESC, that is ESC-50 and UrbanSound8K 

(US8K). These datasets consist of audio recording of various indoor and outdoor environmental sounds. 

For example, the ESC-50 dataset consists of 2000 sound clips, such as animal, natural environment, 



 

 

water, human produced sounds (not speech), household indoor sounds, city sounds. The UrbanSound8K 

dataset consists of 8732 short sounds of various city noises people usually complain about. 

2.2. Classification Model 

ResNet-18 [33] is an 18 layers deep convolutional neural network that has shown strong performance 

on a variety of tasks, including image classification and object detection. It is relatively lightweight and 

efficient, while still being able to capture complex patterns in the data. Additionally, ResNet18 has been 

pre-trained on a large dataset (ImageNet), which means that it has already learned to recognize a wide 

range of features that may be useful for environmental sound classification.  

2.3. Data Pre-processing 

To apply ResNet-18 model for classification, raw audio recordings were converted to image 

representation of sound as Mel-frequency cepstral coefficients (MFCCs). The scheme for feature 

extraction steps is demonstrated in Figure 1. 

 
Figure 1: Feature extraction steps 

3. Data Augmentation Methods 
3.1. Gaussian Noise 

Gaussian noise augmentation is based on modifying the original image by adding the random values 
generated using normal (Gaussian) distribution with a mean of 0 and a standard deviation equal to 3% 
of absolute minimal value in the matrix of the original spectrogram. 

3.2. Mixup 

Mixup constructs virtual training examples �̅� from two examples 𝑋𝑖, 𝑋𝑗 drawn at random from the 

training data, and mixup coefficient λ ~ U(a;b) [34] as follows: 

�̅� = 𝜆𝑋𝑖 + (1 − 𝜆)𝑋𝑗, (1) 

Mixing is done between the data of the same class label. The scheme for mixup method is shown in 
Figure 2. 



 

 

 
Figure 2: Example output mixup data augmentation method. The blue and orange squares represent 
the original spectrograms, the diagonal pattern represents the mixup part of the resulting image 
 

The rest of the augmentation methods are derived from mixup with different part of the image mixed. 

3.3. Vertical/horizontal mixup 

This method is used to vertically/horizontally mixup the top fraction of spectrogram image 𝑋𝑖 with 
the bottom fraction of image 𝑋𝑗. A cutpoint is generated by multiplying the width/height of the first 

image with mixing coefficient λ. Cutpoint is a pair of row r and column c indices of an image X. The 
resulting merged image is then created by mixing the top cutpoint rows/columns from both images and 
selecting the bottom cutpoint rows/columns from the first image. The scheme for horizontal/vertical 
mixup method is shown in Figure 3. The outlined part shows the mixed part of the image and the solid 
blue part is the original 𝑋𝑖 image. 

 
Figure 3: Example of a) horizontal, b) vertical mixup data augmentation method 

3.4. Random 2x2  

This method divides the images into 4 quadrants using two randomly generated height and width 
cutpoints and then for each quadrant either 𝑋𝑖 section or mixup of 𝑋𝑖 and 𝑋𝑗 with mixing coefficient λ is 

used. A constraint p = 0.5 on 2x2 grid has been found to be helpful in preventing the image content from 
becoming too long, narrow or missing [30]. Example random 2x2 mixup method illustration is shown in 
Figure 4. The outlined part shows the part of the image that is mixed and the solid blue part is the original 
𝑋𝑖 image. 

 
Figure 4: Example of random 2x2 mixup data augmentation method 

3.5. Random column/row interval  

This method picks a random interval of columns/rows and replaces that part of 𝑋𝑖 spectrogram image 
with the mixed columns/rows from 𝑋𝑗 . The start and end indices are generated randomly for the 

column/row interval to be mixed. Random interval method is somewhat similar to the previously 
mentioned vertical/horizontal mixup method with the difference being that the random interval does not 
start from the first column/row. The scheme for random column/row interval mixup method is shown in 
Figure 5. The outlined part shows the part of the image that is mixed and the solid blue part is the original 
𝑋𝑖 image. 



 

 

 
Figure 5: Example of random a) row, b) column interval mixup data augmentation method 

3.6. Random columns/rows  

This method involves randomly selecting rows/columns from Xj to be mixed up. Probability of 
choosing a row/column from Xj is determined by p, and for experimental testing we used p value of 0.5. 
The scheme for random column/rows mixup method is shown in Figure 6. The outlined part shows the 
part of the image that is mixed and the solid blue part is the original 𝑋𝑖 image. 

 
Figure 6: Example output random a) rows, b) columns mixup data augmentation method 

4. Experimental Results 
4.1. Experiment setup 

The fixed duration of an audio sample for ESC-50 is 5 seconds, for UrbanSound8K – 4 seconds. For 
each audio file in the ESC-50 and US8K datasets a log-mel spectrogram is generated. Features are 
extracted from all recordings with Hamming window size of 512, hop length of 512, 128 Mel bands and 
sampling rate of 44.1 kHz. The resulting spectrograms are padded or their length is fixed. Bootstrap 
validation with 5 runs is performed for dataset using Stratified Shuffle Split with 0.25 test set size and 
static random seed of 42. All data is then standardized according to train set. Augmentation is performed 
online (when data sample is being provided to model for training). 

Training was performed on ResNet-18 model with weights pre-trained on ImageNet and batch size 
of 16. Training was performed for 25 epochs with cases of augmentation probability of 0.3, 0.5, 1.0 and 
mixup coefficient generated uniformly in the intervals of (0.2; 0.3), (0.45; 0.55), (0.7; 0.8). 

In total there were 76 distinct method configurations to test, that is, no augmentation, Gaussian noise 
with 3 augmentation probabilities, 3 augmentation probabilities with 3 mixup coefficients and 9 
augmentations utilizing mixup. 

Experimental testing was performed on a system provided by the Kaunas University of Technology, 

and this process took almost 64h (~5mins one augment method for 25 epochs * 5 runs * 76 augmentation 

methods * 2 datasets). Specifications of the system are 2x AMD EPYC 7452 32-Core Processor with 

2x 256GB RAM and NVIDIA A100-PCIE-40GB GPU.  

4.2. Results for ESC-50 dataset 

There are many hyperparameters to consider, so the results were gradually filtered according to their 
performance. The first hyperparameter to consider is the augmentation probability. Mean results grouped 
by probability of augmentation for ESC-50 dataset can be seen in Table 1. 



 

 

Table 1  
Mean ESC-50 results grouped by augmentation probability and no augmentation 

Probability  Mean 
accuracy

  

Mean 
loss  

Min 
accuracy

  

Min 
loss  

Max 
accuracy

  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

1 0.834  0.627
  

0.815  0.540
  

0.855  0.700
  

0.824
  

0.603
  

0.841
  

0.661
  

0.5 0.846  0.580
  

0.827  0.483
  

0.868  0.648
  

0.836
  

0.560
  

0.854
  

0.616
  

0.3 0.845  0.589
  

0.824  0.499
  

0.864  0.651
  

0.837
  

0.568
  

0.854
  

0.628
  

No 
augmentatio

n 

0.839  0.603
  

0.822  0.495
  

0.870  0.696
  

0.826
  

0.570
  

0.842
  

0.636
  

 

Looking at mean accuracy, results for 0.3 and 0.5 probabilities are slightly higher (0.7%) than no 
augmentation, which is expected as data augmentation should improve model performance when dataset 
is relatively small. Maximum accuracy of 0.87 was achieved during no augmentation, however almost 
all loss metrics indicate better performance for probabilities of 0.3 and 0.5. On the other hand, probability 
of 1.0 managed to degrade model performance compared to no augmentation in every metric that was 
recorded, so for further analysis results for probability of 1.0 was not considered. 

Grouping results by mixup coefficient presents almost identical results for all values of mixup, as 
shown in Table 2, however upon closer inspection small trends can be seen. Mixup coefficient of 0.7-
0.8 means that during mixup 70-80% of original image is used, and 20-30% of random image. 

 

Table 2  
Mean ESC-50 results grouped by mixup coefficient and no augmentation. Results exclude 
augmentation probability of 1.0. 

Mixup coeff.  Mean 
accura

cy  

Mean 
loss  

Min 
accura

cy  

Min 
loss  

Max 
accura

cy  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

0.2-0.3  0.845  0.582  0.824  0.493  0.867  0.650  0.837  0.561  0.854  0.618  

0.45-0.55  0.845  0.584  0.825  0.481  0.868  0.651  0.836  0.569  0.854  0.623  

0.7-0.8  0.846  0.584  0.828  0.499  0.865  0.646  0.837  0.558  0.856  0.622  

No 
augmentation  

0.839  0.603  0.822  0.495  0.870  0.696  0.826  0.570  0.842  0.636  

 

Most metrics show best results for mixup coefficient of 0.7-0.8, except for minimum loss and 
maximum accuracy, however the differences might be due to error with this sample size so hard 
conclusions cannot be drawn about the coefficient effect on model performance from this data alone. 

Results show that mixup coefficient of 0.7-0.8 produces slightly better results ESC-50 dataset, which 
might suggest that the model prefers to have the main image “dominant” (image with higher mixup 
coefficient), and not the other way around. 

Finally, mean results for each augmentation method can be seen in Table 3. Mixup augmentation 
performs best on almost all metrics except maximum loss and Q3, which suggests that the method 
produces less consistent. All proposed mixup methods performed better than the standard Gaussian Noise 
augmentation method. Interestingly, all column methods (random column interval, random column, 
horizontal mixup) performed better than their row counterparts. 

 



 

 

Table 3  
Mean ESC-50 results grouped by augmentation methods. Results exclude augmentation probability of 
1.0 

Method  Mean 
accuracy  

Mean 
loss  

Min 
accuracy  

Min 
loss  

Max 
accuracy  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

No 
augmentation  

0.839  0.603
  

0.822  0.495  0.870  0.696  0.826  0.570  0.842  0.636  

Mixup  0.852  0.565
  

0.829  0.460  0.875  0.640  0.845  0.544  0.858  0.603  

Gaussian noise  0.841  0.602
  

0.820  0.502  0.863  0.657  0.832  0.595  0.847  0.640  

Random 2x2 
mixup  

0.848  0.570
  

0.826  0.491  0.867  0.627  0.840  0.551  0.858  0.610  

Vert. mixup  0.840  0.599
  

0.820  0.528  0.854  0.669  0.835  0.578  0.851  0.628  

Horiz. mixup  0.849  0.573
  

0.829  0.466  0.872  0.638  0.838  0.550  0.860  0.621  

Random row 
interval mixup  

0.842  0.596
  

0.823  0.498  0.863  0.652  0.833  0.581  0.849  0.628  

Random 
column interval 

mixup  

0.846  0.583
  

0.826  0.493  0.867  0.645  0.837  0.563  0.853  0.623  

Random rows 
mixup  

0.842  0.599
  

0.823  0.505  0.864  0.665  0.831  0.576  0.853  0.635  

Random cols 
mixup  

0.847  0.582
  

0.828  0.485  0.871  0.654  0.836  0.559  0.854  0.622  

4.3. Results for UrbanSound8K dataset 

Mean results grouped by probability of augmentation for ESC-50 dataset can be seen in Table 4. 

 

Table 4  
Mean US8k results grouped by augmentation probability and no augmentation 

Probability  Mean 
accuracy  

Mean 
loss  

Min 
accuracy  

Min   
loss  

Max 
accuracy  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

1  0.958  0.143  0.954  0.130
  

0.962  0.155
  

0.957
  

0.138
  

0.960
  

0.149
  

0.5  0.967  0.118  0.963  0.105
  

0.970  0.132
  

0.965
  

0.112
  

0.969
  

0.122
  

0.3  0.967  0.118  0.963  0.105
  

0.970  0.133
  

0.965
  

0.112
  

0.968
  

0.124
  

No 
augmentation 

0.968  0.125  0.964  0.109
  

0.972  0.146
  

0.967
  

0.110
  

0.969
  

0.143
  

 

Applying augmentation with a probability of 1.0 results in the worst loss and accuracy for the model. 
The loss value is decreased by 5.6% when using either 0.3 or 0.5 augmentation probability compared to 
no augmentation. The highest accuracy is identified for the case with no augmentation applied, although 
the difference is insignificant with only a 0.001 increase compared to the best performing result with 
augmentation used. 

The results once again indicate that using no augmentation leads to the highest accuracy, although 
the difference of only 0.001% is not significant. In contrast, Table 5 shows that using mixup with 
coefficients of 0.2-0.3 produces the best results in all loss metrics, resulting in a decrease of 7.2% in 



 

 

mean loss compared to no augmentation. This suggests that the model has almost identical accuracy, but 
with lower loss, leading to a more robust model. 

 

Table 5  
Mean US8k results grouped by mixup coefficient and no augmentation. Results exclude augmentation 
probability of 1.0. 

Mixup  Mean 
accuracy  

Mean 
loss  

Min 
accuracy  

Min   
loss  

Max 
accuracy  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

0.2-0.3  0.967  0.116  0.963  0.102  0.970  0.131  0.965  0.109  0.968  0.121  

0.45-0.55  0.967  0.117  0.963  0.105  0.970  0.132  0.965  0.111  0.969  0.123  

0.7-0.8  0.967  0.120  0.963  0.108  0.970  0.134  0.965  0.115  0.968  0.125  

No 
augmentation  

0.968  0.125  0.964  0.109  0.972  0.146  0.967  0.110  0.969  0.143  

 

Looking at Table 6 random column augmentation performs best overall. Although, as seen in the 
results from Table 4 and Table 5, the accuracy while using augmentation compared to no augmentation, 
it is still only 0.001% higher, which is not significant. However, what is clearly seen in the previous 
tables and this table in the mean loss column, is that we always get lower loss compared to no 
augmentation. In this column, all used augmentation methods performed better or at least the same as no 
augmentation when evaluating mean loss, with the random cols mixup method being the best, giving a 
decrease of 14.4% in mean loss compared to no augmentation. This demonstrates that the models trained 
with augmentation are more confident with their predictions. In addition, from Table 6 we see that the 
difference between the min and max loss and accuracy of using random columns and using no 
augmentation is lower, respectively 0.029 compared to 0.037 and 0.007 compared to 0.008, which means 
that the trained models are more consistent and stable when applying augmentation. 
 

Table 6  
Mean US8k results grouped by augmentation methods. Results exclude augmentation probability of 
1.0 

Method  Mean 
accuracy  

Mean 
loss  

Min 
accuracy  

Min 
loss  

Max 
accuracy  

Max 
loss  

Q1 
acc  

Q1 
loss  

Q3 
acc  

Q3 
loss  

No 
augmentation  

0.968  0.125  0.964  0.109  0.972  0.146  0.967  0.110  0.969  0.143  

Mixup  0.966  0.117  0.963  0.104  0.969  0.131  0.964  0.112  0.967  0.122  
Gaussian noise  0.968  0.121  0.961  0.106  0.973  0.143  0.967  0.113  0.972  0.123  

Random 2x2 
mixup  

0.968  0.112  0.965  0.101  0.972  0.126  0.967  0.105  0.969  0.120  

Vert. Mixup  0.965  0.122  0.961  0.111  0.969  0.135  0.963  0.117  0.968  0.127  
Horiz. Mixup  0.967  0.119  0.962  0.103  0.972  0.138  0.965  0.111  0.969  0.124  
Random row 

interval mixup  
0.965  0.124  0.962  0.111  0.968  0.137  0.964  0.121  0.966  0.126  

Random column 
interval mixup  

0.969  0.115  0.965  0.102  0.972  0.129  0.967  0.108  0.970  0.121  

Random rows 
mixup  

0.964  0.125  0.960  0.115  0.967  0.137  0.962  0.118  0.965  0.130  

Random cols 
mixup  

0.969  0.107  0.965  0.094  0.972  0.123  0.967  0.100  0.971  0.114  

5. Discussion 

Column mixup methods performed better than row, which seems to suggest that having complete 
frequency data is more important than full temporal data in the ESC problem.  



 

 

For ESC testing mixup coefficient of 0.2-0.3 and 0.7-0.8 were chosen, and one might argue that such 
values produce the same set of images. This may be true for an infinite set, however, image set for a 
training epoch is finite, and 0.7-0.8 mixup coefficient guarantees that the augmented set will always have 
one of each sample as the “dominant” image (higher mixup coefficient), whereas with 0.2-0.3 the reverse 
is true.  

When comparing ESC-50 with US8K datasets, we see more improvements in former, and a probable 
reason could be that ESC-50 has only 40 examples per class, while US8K has up to 1000 examples per 
class. For other research it could be useful and interesting to apply these augmentations for dataset with 
very low number of samples, there we could see bigger improvements. For future improvements in 
accuracy, a combination of various feature extraction methods could be used with our proposed methods. 

6. Conclussion 

Results from the ESC-50 and UrbanSound8K datasets show that data augmentation can improve 
model performance, particularly when using probabilities of 0.3 or 0.5. Mixup augmentation with a 
coefficient of 0.7-0.8 was found to produce the best results for the ESC-50 dataset. The random column 
augmentation demonstrated the highest accuracy for the UrbanSound8K dataset. It is important to note 
that the results for the UrbanSound8K dataset showed lower and less significant improvements compared 
to the ESC-50 dataset. It is also worth noting that applying augmentation with probability of 100% 
resulted in worst results in loss and accuracy in both datasets. Overall, these results indicate that data 
augmentation can be a useful tool for improving model performance, but the specific methods and 
parameters used may vary depending on the dataset and task at hand. 
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