
Comparison of neural network efficiency, learning process in

relation to various activation functions

Paulina Hałatek1, Paweł Noras1

1Faculty of Applied Mathematics, Silesian Univeristy of Technology, Kaszubska 23, Gliwice, Poland

Abstract
Artificial intelligence and machine learning play a great role in today’s world. Lots of new systems are based on

machine learning such as detecting threats system, detecting malicious network traffic and even creating an

image or response with a given input. All those systems have one common feature, all were created using neural

networks. A neural network is a subset of the machine learning process that helps in advanced way decide

predictions about a given data set. The idea of creating a neural network was inspired by the biological nature of

neurons that are in a human brain. The concept and the biological nature are much alike because the main

purpose of the neural network is to try to mimic the way the biological neurons signal each other. Our paper will

consist of understanding a concept of a neural network and implementing a simple neural network to conclude

whether how usage of a different activation function (sigmoid, tanh, ReLU and gaussian) affects on learning

process of our network.
Keywords
Neural network, artificial intelligence, binary classification, forward propagation, backward propagation, the

chain rule, gradient descent, loss function, activation function, sigmoid, tanh, ReLU, gaussian

1. Introduction

Artificial intelligence has become a trending topic in recent years and has captured the attention of

many researchers and developers around the world. It has the potential to revolutionize the way we

live and work and it has already begun to transform many industries. One of the components of

Artificial intelligence is a neural network, which is a type of machine learning algorithm.

Neural networks are inspired by how a human brain works, they are made up of layers, which consist

of interconnected nodes or neurons. By adjusting the parameters of each connection between nodes it

can learn to recognize patterns in given data and can be used to make classifications based on its

learning data. Nowadays neural networks are commonly used in various situations, such as image

classification, where most used type of neural networks are convolutional neural networks [1].

Furthermore speech recognition is widely used in some text editors, commonly know as speech to text

[2] likewise uses neural networks models. Moreover they can be found in automotive industry

especially in self-driven autonomous cars, which has a lot of sensors that serve a vast input data to a

neural networks [3].

Although neural networks have a lot of potential they can be computationally expensive [5] and

require large amounts of train data to perform accurate predictions, especially in more

28th Conference on Information Society and University Studies (IVUS’2023), May 12, 2023, Kaunas, Lithuania

EMAIL: paulhal456@student.polsl.pl (P. Hałatek); pawenor994@student.polsl.pl (P. Noras)

©️ 2023 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

complex tasks. Nevertheless, researchers and developers are continuously working to overcome

current weaknesses of neural networks and develop new algorithms as well as techniques, so the

capabilities of neural networks are only likely to grow in the future.

Activation functions are a crucial component of neural networks as they determine whether a neuron

should be activated or not, so they directly influence the output of each neuron and tell us if it is

important in the process of prediction. In addition, another factor that can impact the efficiency and

accuracy of a neural network is learning rate [4]. By carefully selecting these two parameters it is

possible to achieve better results.

In our paper we want to focus on performance of different activation functions with several learning

rates values. At the beginning we will describe which data set will be used and what techniques and

algorithms were used during the creation of our neural network. After that there will be an analysis of

collected results, which goal is to find the best activation function to each of the examined learning

rate, draw conclusion based on the results of the experiments and possibly find some relationships

between each activation function and learning rate value.

2. Data set
For a neural network we decided to take a simple data set describing people’s gender based on two

features: weight(lbs) and height(inch). The data set available on kaggle.com and contains of 10.000

samples. Since we wanted to create a simple neural network, we decided to create a binary

classification, so before we started to implement a neural network, first we replaced text gender with

0,1 values. 0 for Male and 1 for Female. Next, we ensured that our data set did not contain null values.

Subsequently, we shuffled, normalized and split the data set by dividing it into 70% as a training set

and 30% as a validation set.

Figure 1: Gender predictions data set information

https://www.kaggle.com/datasets/girishvutukuri/weightheight?resource=download

3. Neural network

Before we go into the details of building a neural network, we need to explain two crucial things first:

weights and bias. Each node in a neural network has its weight that determines the strength of the

signal transmitted through the connection. Bias, on the other hand helps to shift the output of each

neuron in a neural network, allowing it to better fit the data. Both weight and bias are extremely

important in a neural network, since the main purpose of a neural network is to adjust those values to

optimize the network’s performance. In our model we initialized all weights with random values and

all biases with zeros.

Our neural network consists of one input layer with two nodes: weight and height, one hidden layer

that has four nodes from h1 to h4 and one output layer that carries information about predicted values

for a given input values.

Figure 2: Concept of an implementation of our neural network

A Neural network relies on repetition and improvement. That is why the next steps that we will

explain will be repeated a given number of times. The more the model is being repeated the more

adjusted weights and biases are and the model is more accurate.

3.1. Forward propagation

The first step in implementing a neural network is forward propagation. For simplicity, we will

explain it on a single sample and single node, but everything is working the same for all the other

nodes.

Figure 3: Forward propagation – single node only

In the input layer we have two inputs x1 and x2 with corresponding to them weights w1.1 and w2.1,

each node in the hidden layer is connected to inputs x1 and x2 with different weights,

therefore each node will perform some calculations to get the corresponding node in the hidden layer.

To get the h1 value we simply need to use this equation:

 ℎ1 = (𝑥1 ∗ 𝑥11 + 𝑥2 ∗ 𝑥21) + 𝑥1 (1)

 ℎ1 weighted value

 𝑥1 input value

 𝑥2 input value

 𝑤1.1 weight between(x1 and h1) input layer and hidden layer

 𝑤2.1 weight between(x2 and h1) input layer and hidden layer

 𝑏1 h1’s bias between input layer and hidden layer

Next, we perform the selected activation function. After that, we do the same thing as in previous

step. Since, in this example, we only have one node in the hidden layer with only one weight. Now we

change the input value, so that now the input value is the activated value from an activation function.

Note that this is only for simplicity purpose, in fact the hidden layer has four nodes which gives us

another three weights between the hidden layer and the output layer.

 𝑥1 = (ℎ1 ∗ 𝑥𝑥11) + 𝑥𝑥1 (2)

 𝑜1 predicted value

 ℎ1 activated value in hidden layer

 wH1.1 h1 weight between hidden layer and output layer

 bH1.1 h1’s bias between hidden layer and output layer

3.2. Activation functions

Activation functions decide whether a neuron’s input to the network is important in the operation of

determining a prediction. In our article we will use several functions such as: Sigmoid, TanH, ReLU,

and Gaussian. We will attempt to conclude which of those functions works the best in a neural

network for binary classification. They will be used in forward propagation to define a predicted value

but also in backward propagation as a derivative of a function to adjust weights and biases for the

model to be a better fit.

It is worth mentioning that we use a binary cross entropy loss function, which is commonly used for

binary classification. In the binary classification we only have two possible outcomes, hence to ensure

that a final output value is between 0 and 1, we need to use an activation function that maps the output

in the given range. Therefore we will use as the last activation function the sigmoid function.

3.3. Calculating loss

A Loss function calculates the difference, which is called ”loss” between the predicted output of the

network and the actual output. It is a measure of how well the network’s predictions match the true

value. Since our model has only two possible outputs we use a binary cross entropy loss function,

which is dedicated in such a case. It measures the difference between the predicted probability of the

positive class and the true probability of the positive class.

 𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ 𝑦 log 𝑦̂ − (1 − 𝑦) 𝑙𝑜𝑔(1 − 𝑦̂)𝑁

𝑖=1 (3)

𝑦 data set output (0 or 1)

𝑦̂ predicted probability of the positive class(the class labeled as 1)

N output size

3.4. Backward propagation

Backward propagation is a learning algorithm that allows a neural network to adjust its weights based

on the difference between the predicted output and the actual output. The algorithm works by

computing the gradient of the loss function with respect to each weight in the neural network. The

gradient tells us how much the output of the neural network will change when we change the given

weight.

This is an iterative process that is repeated many times throughout the learning process, adjusting

weights of the neural network after each iteration to reduce the error and help achieve better

predictions, as the accuracy of the network improves over time.

3.4.1. Finding gradient

In order to establish which node is responsible for the most loss in every layer, and therefore which

node’s weight value must be changed, we need to find the gradient of the loss function. To compute

the gradient, we use the chain rule of calculus. The chain rule allows us to break down the derivative

of the output into smaller derivatives that are easier to compute. We then use these smaller derivatives

to calculate the gradient of the loss function.

We will try to explain it on a simple figure:

Figure 4: Calculating the gradient of the loss function

In order to calculate the delta_0 we need to use a given formula:

 𝑑𝑒𝑙𝑡𝑎_0 = 𝑤 ∗ 𝑑𝑒𝑙𝑡𝑎_1 ∗ 𝑓 ′(𝑧) (4)

To get the loss of the h1 node we need to multiply three components: w which is the weight between

the hidden layer and the output layer, delta_1 which is already known since it is simply delta between

the predicted value and the real output value, f(z)’ is a derivative of an activation function of the value

obtained through forward propagation. We do the same calculation for all the other nodes with the

aim to discover what loss every node has.

As we have obtained deltas for our neural network we are now able to calculate the partial

derivative of the loss function with respect to weight.

∂𝑙𝑜𝑠𝑠

∂𝑊
 = 𝑧 ∗ 𝑑𝑒𝑙𝑡𝑎_1 (5)

We simply need to multiply z value which is obtained through forward propagation with the delta_1

which is the loss at the unit on the other end of the weighted link. We do the same calculation on all

the weights, but is worth mentioning that z value for the input node is simply the input value itself.

The partial derivative of the loss function with respect to bias is straightforward since the input

value of a neuron is simply 𝑥 ∗ 𝑤 + 𝑏 and the partial derivative of that with respect to bias is simply 1.

So when we are calculating the partial derivative of the loss function with respect to bias we simply

ignore the output(z) in the bias case and multiply with one.

𝜕𝑙𝑜𝑠𝑠

𝜕𝐵
 = 𝑑𝑒𝑙𝑡𝑎_1 (6)

3.4.2. Gradient descent

Once we have calculated the gradient of the loss function, we can adjust the weights of the neural

network in the direction of the negative gradient. This process is known as gradient descent, and it

helps to reduce the error and improve the accuracy of the neural network. By repeating this process

many times, the neural network can learn to make better predictions and improve its accuracy over

time. With the undermentioned formulas we are able to adjust weights and biases in our neural

network:

 𝑊𝑛 = 𝑊𝑛 − 𝑙𝑟 ∗
𝜕𝑙𝑜𝑠𝑠

𝜕𝑊𝑛
 (7)

 𝐵𝑛 = 𝐵𝑛 − 𝑙𝑟 ∗
𝜕𝑙𝑜𝑠𝑠

𝜕𝐵𝑛
 (8)

Wn weights between n and n – 1 layer

Bn biases between n and n – 1 layer

lr learning rate
𝜕𝑙𝑜𝑠𝑠

𝜕𝑊𝑛
 the partial derivative of cost function with respect to 𝑊𝑛

𝜕𝑙𝑜𝑠𝑠

𝜕𝐵𝑛
 the partial derivative of cost function with respect to 𝐵𝑛

4. Experiments

In order to properly distinguish which of all selected activation functions causes the greatest

efficiency in the neural network, we performed numerous tests on the different learning rate values.

The learning rate is an essential component since it determines how much the model’s parameters are

adjusted in response to the error gradient calculated during backward propagation. It is crucial since it

establishes the step size taken while searching for an optimal set of weights that minimize the loss

function. If the learning rate is too large, then the model may overshoot the optimal solution and fail

to converge. On the other hand, if the learning rate is too small, the model may converge very slowly

or get stuck in the local optima.

Hence, we performed a series of tests on the same data group to establish the best learning rate for

our neural network model. The following chart represents the selected learning rate, chosen activation

functions and how the loss value changes over the iterations of a learning process.

Table 1
Results

Learning rate Activation function 5.000 10.000 15.000 20.000 Accuracy

1.0

 Tanh
Sigmoid

ReLU

0.212557
0.212006
0.211986

0.212348
0.211981
0.211759

0.212187
0.211957
0.211762

0.212108
0.211931
0.211752

0.9233
0.9253
0.9250

 Gaussian 0.689551 0.690943 0.691412 0.691669 0.5350

0.4

 Tanh
Sigmoid

ReLU

0.211997
0.214458
0.212180

0.211925
0.212266
0.212037

0.211868
0.212228
0.212017

0.211822
0.212207
0.212012

0.9253
0.9253
0.9250

 Gaussian 0.682184 0.688430 0.689812 0.690369 0.5466

0.3

 Tanh
Sigmoid

ReLU

0.211972
0.217609
0.212237

0.211947
0.212087
0.212049

0.211936
0.211958
0.212018

0.211924
0.211958
0.212010

0.9250
0.9247
0.9246

 Gaussian 0.455034 0.683672 0.688427 0.689610 0.5510

0.1

 Tanh
Sigmoid

ReLU

0.213781
0.255914
0.213939

0.212012
0.228511
0.212137

0.211964
0.217184
0.212102

0.211942
0.213456
0.212097

0.9243
0.9207
0.9250

 Gaussian 0.224507 0.213791 0.213537 0.214163 0.9243

0.01

 Tanh
Sigmoid

ReLU

0.336745
0.675752
0.341098

0.265695
0.632663
0.267676

0.248511
0.540214
0.249068

0.237134
0.425782
0.238158

0.9067
0.8833
0.9070

 Gaussian 0.364649 0.294041 0.272665 0.260963 0.8960

0.001

 Tanh
Sigmoid

ReLU

0.766653
0.703097
0.723045

0.722256
0.699322
0.688658

0.695289
0.697234
0.656713

0.671695
0.694981
0.618996

0.5730
0.5047
0.7687

 Gaussian 0.598759 0.560524 0.524052 0.489547 0.8696

In view of having several results for different learning rate, we will compare each learning rate

separately in order to determine which activation function did best. We will try to compare two

metrics: the loss function value at the end of 20.000 iterations and accuracy of overall model using a

given activation function.

 (a) (b) (c) (d)

Figure 5: The loss functions with 20.000 iterations and 1.0 learning rate

In the above figure for learning rate equal to 1.0, we can see that at 20.000 iterations the lowest loss

function value had ReLU activation function, but really close to it were Sigmoid and Tanh. Gaussian

clearly stands behind the other three, when it comes to loss value and accuracy. On the ReLU, Tanh

and Gaussian plots, we can see that at the beginning of the learning process we can see jumps in the

chart, which means that the learning rate for those activation functions was to high and caused the

model to overshoot the optimal solution.

Another odd thing happen for Gaussian function, we suppose that the learning rate is to high for this

particular function. Therefore, the model was getting worse over time. We can claim that the learning

rate was too high and caused the model to overshoot the optimal solution. At the end Tanh, Sigmoid

and ReLU performed well for given learning rate, but since Sigmoid has the biggest accuracy and was

the only one of all which didn’t struggle at the beginning we’ve decide that it was the best activation

function for learning rate equal to 1.0.

 (a) (b) (c) (d)

Figure 6: The loss functions with 20.000 iterations and 0.4 learning rate

For a learning rate equal to 0.4, we can conclude that the Tanh function has the best results. But as

before Tanh, Sigmoid and ReLU have very similar results at the end. We can see that there are no

longer any jumps in Tanh and ReLU plots, but instead Sigmoid seemed to struggle a little bit more

than last time. Gaussian is still overshooting the optimal solution and cleary is performing the worst of

all activation function.

 (a) (b) (c) (d)

Figure 7: The loss functions with 20.000 iterations and 0.3 learning rate

For a learning rate equal to 0.3 we can see very similar results to the ones before, at learning rate

equal to 0.4. Again Tanh has the best results of all of them, Sigmoid has seemed to struggle a little bit

at the beginning as well and Gaussian still struggle to find optimal solution, so even 0.3 learning rate

might be too big for it.

 (a) (b) (c) (d)

Figure 8: The loss functions with 20.000 iterations and 0.1 learning rate

First thing that we noticed after changing the learning rate to 0.1 is that the Gaussian function

finally does not overshoot optimal solutions and the loss function in that activation function ultimately

decreases. Accordingly accuracy for Gaussian increases as well and it even the accuracy of Tanh

function. All of the function performed very similarly to each other, but Sigmoid looks like it

performance is decreasing with lower learning rate. Since Tanh has the lowest loss function value, but

ReLU has the slightly bigger accuracy and both plots of these function looks relatively the same, we

have decided that both of them can be considered as the best for 0.1 learning rate value.

 (a) (b) (c) (d)

Figure 9: The loss functions with 20.000 iterations and 0.01 learning rate

On the above image we can see that at the beginning all functions are learning a little bit slower

compared to previous examined learning rates. Clearly the worst performing activation function is

Sigmoid, our assumption from previous analysis turned out to be true, that the lower learning rate

indicate weaker performance results. Tanh again has the lowest learning rate of all functions, but as

before it fall short a little bit with accuracy compared to ReLU function, but as before both of these

functions clearly performed better than the other two.

 (a) (b) (c) (d)

Figure 10: The loss functions with 20.000 iterations and 0.001 learning rate

The last comparison is for a learning rate, that is equal to 0.001. From a given table it can be

concluded that the Gaussian function is the best, since it has the lowest loss function and the greatest

accuracy. For other activation functions we can determine that when we decreased significantly the

learning rate value, the model for each activation function was not able to make accurate predictions,

therefore the slope of the loss function was being decreased very slowly, which means that it took a

lot of time for a model to properly learn from a given data. Taking into account all figures, we can

presume that the Gaussian activation function works the best when learning rate decreases.

5. Conclusion

Through analysis of attained results for all activation functions, we concluded that there is not one

simple answer in which we decide which one of given activation functions works the best way,

therefore we decided that the best option to establish it, is to determine it for each learning rate

separately.

We are now aware that the learning rate is a crucial thing in creating neural network model, since

when the learning rate is to high it leads to a situation when the model may overshoot the optimal

solution and fail to converge. This is what happened with for example the Gaussian activation

function. When we decreased the value, the model started to work properly. On the other hand, if the

learning rate is too small, the model may converge very slowly, we could see it when the learning rate

was equal 0.01 or 0.001, the accuracy for models was significantly worse compared to different

learning rate values.

Overall, we can identify some dependencies of examined activation functions to learning rate value.

Firstly, the most obvious one is that performance of Gaussian function increases with lower learning

rate value. Contrary it could be observed that Sigmoid function results tend to be weaker when

learning rate started to be lower. From these observations we can gather some conclusions. When one

deal with high learning rate Sigmoid might be the best activation function we can choose. When

dealing with lower learning rates Gaussian may turned out to be the one best performing. If having to

deal with something in the middle one can’t go wrong with ReLU or Than, because these two seemed

to have most persistent performance through all experiments, but fall a little bit short on very high and

low learning rate values.

This project was interesting to create, since it was our first experience with neural networks and the

work and effort that was applied to complete this article are practical and applicable. This research

offered an opportunity to learn and expand our knowledge about immeasurable possibilities offered by

neural networks likewise creating this article helped us better understand how neural networks work

and the analysis allowed acquiring practical experience in data analysis.

In a future we want to broaden our knowledge of neural network, by creating new experiments

using a deep neural network with more complex data sets. It can be truly interesting to learn how the

size of hidden layers affects on learning process or effectiveness of the entire model. Another idea that

would be interesting way to develop our model is to create some kind of visualisations, that would

represent how fast a model is learning. With a large knowledge base about neural network we could

create an application that takes an input given by user and based on it, concludes obtained results.

References

[1] Neha Sharma, Vibhor Jain, Anju Mishra, An Analysis Of Convolutional Neural Networks For

Image Classification, Procedia Computer Science, Volume 132, 2018, Pages 377-384, ISSN

1877-0509.

[2] Sanket Shah , Hardik Dudhrejia, Speech Recognition using Neural Networks,

INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH TECHNOLOGY (IJERT)

Volume 07, Issue 10 (October – 2018).

[3] Tian Y., Pei K., Jana S., Ray B. (2017). DeepTest: Automated Testing of Deep-Neural-

Networkdriven Autonomous Cars.

[4] Igiri Chinwe, Uzoma Anyama, Silas Abasiama. (2021). Effect of Learning Rate on Artificial

Neural Network in Machine Learning. International Journal of Engineering Research, 4.

[5] Livni R., Shalev-Shwartz S., Shamir O. (2014). On the computational efficiency of training

neural networks. Advances in neural information processing systems, 27.

[6] https://www.v7labs.com/blog/neural-networks-activation-functions

[7] https://medium.com/analytics-vidhya/what-do-you-mean-by-forward-propagation-in-ann-

9a89c80dac1b

[8] https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

[9] https://towardsdatascience.com/calculating-gradient-descent-manually-6d9bee09aa0b

[10] https://en.wikipedia.org/wiki/Activation_function

[11] https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e

[12] https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/

[13] https://www.linkedin.com/advice/3/how-does-cross-entropy-mean-squared-error-affect

[14] https://www.askpython.com/python/examples/backpropagation-in-python

[15] https://builtin.com/machine-learning/backpropagation-neural-network

[16] https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

https://www.v7labs.com/blog/neural-networks-activation-functions
https://medium.com/analytics-vidhya/what-do-you-mean-by-forward-propagation-in-ann-9a89c80dac1b
https://medium.com/analytics-vidhya/what-do-you-mean-by-forward-propagation-in-ann-9a89c80dac1b
https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a
https://towardsdatascience.com/calculating-gradient-descent-manually-6d9bee09aa0b
https://en.wikipedia.org/wiki/Activation_function
https://towardsdatascience.com/derivative-of-the-sigmoid-function-536880cf918e
https://machinelearningmastery.com/learning-rate-for-deep-learning-neural-networks/
https://www.linkedin.com/advice/3/how-does-cross-entropy-mean-squared-error-affect
https://www.askpython.com/python/examples/backpropagation-in-python
https://builtin.com/machine-learning/backpropagation-neural-network
https://towardsdatascience.com/part-2-gradient-descent-and-backpropagation-bf90932c066a

