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Abstract  
A significant amount of research has been done on quantum computers recently. Many of the 

current public key cryptosystems can be broken if humanity ever develop a powerful quantum 

computer. Such cryptosystems are used in a lot of commercial items nowadays. Solutions have 

been developed that appear to defend us from quantum attacks, but they cannot be applied in real 

life due to safety and efficiency issues. Hash-based digital signature methods are discussed in the 

article. Based on the Merkle tree, digital signatures are examined. The paper analyzes the new 

concepts utilizing vector commitments and Verkle tree. 

The authors of this article provide novel technology of creating a digital signature scheme 

employing cutting-edge technology, Verkle tree. The authors offer the drawbacks of the scheme. 

The authors also provide the concepts of post-quantum signature design using Verkle Tree. 
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1. Introduction 

Quantum computing will take over and become more widespread as time goes on. Quantum encryption, 

also known as post-quantum cryptography, is a cryptographic method for conventional computers that can 

fend off attacks from quantum computers. Computers will be able to carry out complex calculations 

considerably more quickly than traditional computers if they can take advantage of the special capabilities 

of quantum mechanics. It seems obvious that a quantum computer might do certain types of sophisticated 

calculations in a couple of hours. It is notable that a classical computer takes several years to accomplish 

these computations [1]. 

Most, if not all, currently in use traditional cryptosystems will likely be rendered useless by quantum 

computers. Cryptosystems based on the integer factorization problem (RSA) are commonly employed in 

reality nowadays, yet they do not resist quantum computer assaults. The RSA cryptosystem is utilized in a 

wide range of products and applications. This cryptosystem is now implemented into a growing number of 

commercial products. Since the RSA method is mostly used in encryption technology, it can be regarded 

as one of the most prevalent public key cryptosystems that develops with technology [2]. 

There have been a number of suggested alternatives to RSA systems, but none of them can be utilized 

in practice because of security or performance difficulties. Hash-based signature schemes are one of several 

that have been suggested. Since random numbers are employed as the starting random sequence of systems, 

their security depends on the hash function's ability to resist collisions. Designing and putting into practice 

secure and effective post-quantum cryptosystems takes a lot of work. 

The world's top scientists are working to create and refine quantum computers, yet even improved 

systems are vulnerable to powerful attacks [3]. The development of a cryptosystem that is suitable with 

both regular and post-quantum cryptography is our key objective. Yet it is equally critical that our systems 

are efficient, requiring less computational power and taking up little space on servers.  
As quantum computing takes over, RSA and other asymmetric algorithms won't be able to keep our 

personal information secure. We are working to develop post-quantum systems because of this [4,5]. 
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In practice, traditional digital signature schemes are vulnerable to quantum computer assaults. We are 

aiming to create RSA substitutes that are impervious to quantum computer assaults. Digital signature 

schemes based on hashes are one of the options. These programs employ a cryptographic hash function. 

The collision resistance of the hash algorithms used in these digital signature systems is what makes them 

secure. The hash-based Digital Signature Schemes are one RSA substitute. These systems' safety is 

dependent on how secure their cryptographic hash functions are. 

 

2. Literature Review 

Quantum computers can quickly break the encryption techniques now in use. As a result, assaults using 

quantum computers can now defeat conventional encryption techniques. Digital signature techniques that 

can withstand attacks from quantum computers are presented in this article [1]. The study [2] covers one-

way functions as well as one-time signature techniques. In the paper [3], a McEliece public-key encryption 

system implementation with algorithmic and parameter choices is covered, along with the state of 

cryptanalysis at the time. 

Researchers are looking towards quantum computers, according to article [4]. Cryptosystems based on 

the integer factoring problem can be cracked by quantum computers. It suggests that the RSA system, one 

of the best-known public-key cryptosystems, is vulnerable to attack by quantum computers. In [5,] various 

QRNG integration techniques are presented. The authors of articles [6–9] go over different quantum 

number generator-based hash-based digital signature techniques. The Merkle scheme is detailed in article 

[10]. The use of vector commitment is described in papers [11–13]. Verkle trees are described in this study 

[11]. 

 

 

3. Hash-based one-time signature schemes 

Hash-based one-time signature methods offer particularly promising possibilities for the post-quantum 

era. We take into consideration signature schemes whose security is dependent solely on the cryptographic 

hash function's ability to resist collisions. The Lamport-Diffie one-time signature (LDOTS) system is an 

example [6]. While constructing randomized algorithms and protocols, it is believed that computers have 

access to a stream of truly random bits (that is a sequence of independent and unbiased coin tosses). In 

actual implementations, a sample is drawn from a "source of randomness" to generate this sequence [7]. 

We assume that Lamport-Diffie one-time signature’s security parameter n is a integer. LDOTS  uses a 

one-way function 𝑓 ∶  {0,1}𝑛  → {0,1}𝑛and cryptographic hashing function 𝑔 ∶ {0,1}𝑛  → {0,1}𝑛 to 

generate an LDOTS key pair, the LDOTS signature key X consists of a string of 2n bits of length n. X is 

chosen randomly: 

 

𝑋 = (𝑥𝑛−1[0], 𝑥𝑛−1[1], … , 𝑥1[0], 𝑥1[1], 𝑥0[0], 𝑥0[1])𝜖𝑅 {0,1}(𝑛,2𝑛)                                (1) 

 

The LDOTS verification key is Y 

 

𝑌 = (𝑦𝑛−1[0], 𝑦𝑛−1[1], … , 𝑦1[0], 𝑦1[1], 𝑦0[0], 𝑦0[1])𝜖 {0,1}(𝑛,2𝑛)                                (2)                    

 

To calculate the key, we use the one-way function f: 

 

  𝑦𝑖[𝑗] = 𝑓(  𝑥𝑖[𝑗]), 0 ≤ 𝑖 ≤ 𝑛 − 1, 𝑗 = 0,1.                                                               (3)                         

 

So LDOTS key generation requires 2n evaluations of f. The signature and verification keys are n-length 

2n-bit strings. In case of LDOTS signature generation, document 𝑀 𝜖 {0,1}∗  is signed using LDOTS with 

signature key X. let's 𝑔(𝑀) = 𝑑 =  (𝑑𝑛−1, … , 𝑑0) is the message digest of M. The LDOTS signature is 

𝑠𝑖𝑔𝑛 = (𝑥𝑛−1[𝑑𝑛−1], … , 𝑥1[𝑑1], 𝑥0[𝑑0]) 𝜖 {0,1}(𝑛,𝑛).                                             
This signature is made up of n bit strings of length n. As message digest function d, they are chosen. In 

most cases, hashes per second are used to measure how many cryptographic operations a processor can do 



at any one moment [8]. The i-th bit string of this signature is xi[0], but if the i-th bit in d is 0, i-th bit string 

of this signature is xi[1]. The signature does not require the evaluation of f. The signature length is n2. 

In the case of LDOTS verification, if we want to verify the signature of M, 𝑠𝑖𝑔𝑛 =
(𝑠𝑖𝑔𝑛𝑛−1, … , 𝑠𝑖𝑔𝑛0 ), verifier calculates the message digest 𝑑 =  (𝑑𝑛−1, … , 𝑑0). Then, it is determined 

whether it is or not: 

 

(𝑓(𝑠𝑖𝑔𝑛𝑛−1), … , 𝑓(𝑠𝑖𝑔𝑛0)) = (𝑦𝑛−1[𝑑𝑛−1], … , 𝑦0[𝑑0]).                                            (4)   

                                        

LDOTS generates keys and signatures fairly quickly, however the signature size is quite huge. To 

decrease the size of signatures, the Winternitz one-time signature scheme (WOTS) is suggested. The 

concept is to sign multiple bits in a message digest using a single string, or a single string in a one-time 

signature key. WOTS utilizes a cryptographic hashing function and a one-way function, just like LDOTS. 

One-time signature approaches are insufficient for most real-world scenarios since each key pair can 

only be used once for a signature. Ralph Merkle presented a solution to this problem. He suggests using a 

whole binary hash tree. The idea is to use a full binary hash tree to restrict the validity of an arbitrary but 

fixed number of one-time verification keys to a single public key, the hash tree's root. 

 

4. Merkle tree authentication scheme 

One-time signature schemes are very inconvenient to use, because to sign each message, we need to use 

a different key pair. The problem with such schemes are that they require to store n digests. For everyday 

use it is impractical, and we would like a scheme that allows us to store a uniform-sized digest, no matter 

how many files we have. Merkle Tree was proposed to solve this problem. By using a binary tree as the 

root, this approach can replace a large number of verification keys with a single public key. A cryptographic 

hash function and a one-time Lamport or Winternitz signature scheme are used in this system. 

Merkle signature scheme (MSS) works for any cryptographic hash function and any one-time signature 

scheme. We assume that 𝑔 ∶  {0,1}∗  → {0,1}𝑛 is a cryptographic hashing function and the one-time 

signature scheme is already selected. 

When generating the MSS key pair, the signer chooses 𝐻 ∈ ℕ, 𝐻 ≥ 2. Then the key pair is generated. 

Using them, it will be possible to sign/verify 2𝐻 documents. Note that this is a significant difference from 

signature schemes such as RSA and ECDSA, where many documents can potentially be signed/verified 

with just one key pair. However, in practice this number is also limited by the devices with which the 

signature is created or by certain policies [9]. 

The signer will generate 2𝐻 unique key pairs (𝑋𝑗 , 𝑌𝑗), 0 ≤ 𝑗 < 2𝐻. Here, 𝑋𝑗  is the signature key and 𝑌𝑗 

is the verification key. Both of them are bit strings. The leaves of the Merkle tree are 𝑔(𝑌𝑗), 0 ≤ 𝑗 < 2𝐻. 

The internal nodes of a Merkle tree are calculated according to the following rule: a parent node is the hash 

value of the concatenation of its left and right children. The MSS public key is the root of the Merkle tree. 

The MSS secret key is a sequence of 2𝐻 one-time signature keys [10].  

This figure shows an example where the height of the Merkle tree is H=3. 

 
Fig. 1. Merkle tree height H=3 

 

Generating an MSS key pair requires computing 2𝐻 unique key pairs and evaluating a 2𝐻+1 − 1 hash 

function.  



It is not necessary to store the full hash tree to compute the root of a Merkle tree. Instead, the tree hash 

algorithm is used. The basic idea of this algorithm is to sequentially compute the leaves and when we can 

compute their parents as well.  

 
Fig. 2. Merkle tree, tree hash algorithm 

 

This shows the order in which Merkle tree nodes are computed by the tree hash algorithm. In this 

example, the maximum number of nodes stored on the stack is 3. This happens after node 11 is created and 

pushed onto the stack. To compute the root of a Merkle tree of height H, the tree hash algorithm requires 

2𝐻 calls, and 2𝐻 − 1 evaluations of the hash function. 

MSS successfully uses one-time signing keys for signature generation. To sign a message on M, we 

must first compute the n-bit 𝑑 = 𝑔(𝑀). The signer then generates a one-time signature 𝑠𝑖𝑔𝑛OTS  using the 

s-th one-time signature key 𝑋𝑠, 𝑠 ∈ {0, … , 2𝐻 − 1}. A Merkle signature contains this one-time signature and 

the corresponding one-time verification key 𝑌𝑠. To prove the authenticity of 𝑌𝑠, the signer also appends the 

index s and the authentication path to the verification key 𝑌𝑠. This index and the authentication path allow 

the verifier to construct a path from the leaf 𝑔(𝑌𝑠) to the root of the Merkle tree. A node h in the 

authorization path is a sibling node of height h, which is the path from the leaf 𝑔(𝑌𝑠) to the root of the 

Merkle tree. 

For ℎ = 0, … 𝐻 − 1 figure 3 shows an example of s=3. So, the s-th merkle signature is 

𝑠𝑖𝑔𝑛𝑠 = (𝑠, 𝑠𝑖𝑔𝑛OTS, 𝑌𝑠,, (𝑠𝑖𝑔𝑛0, … , 𝑠𝑖𝑔𝑛𝐻−1))                                                        (5) 

 

 
Fig. 3. Generation of Merkle's signature when 𝑠 = 3. 

 

The dashed nodes denote the authentication path of the leaf 𝑔(𝑌3). Arrows indicate the path from the 

leaf 𝑔(𝑌3) to the root. 

Merkle's signature verification involves two steps. In the first step, the verifier uses the one-time 

verification key 𝑌𝑠 to verify d's signature 𝑠𝑖𝑔𝑛OTS  by means of the corresponding one-time signature 

scheme verification algorithm. At the second stage, the verifier checks the reliability of the one-time 

verification key 𝑌𝑠.  

Merkle Trees are computationally fast, and a Merkle Tree over n nodes can be constructed in O(n) time. 

Merkle Tree that contains many nodes can have Merkle proofs that are then prohibitively large. To sign 2n 

messages the height of the tree must be n. The Merkle Proof itself might put a significant and expensive 

strain on our local storage.  
 



5. Merkle Tree vs Verkle Tree 

Verkle trees are a powerful upgrade to Merkle trees that allow for much smaller verifications and are 

more efficient. The structure of the Verkle tree is very similar to the Merkle Patricia tree [11]. 

The main idea of the Verkle Tree is that we can build a Merkle Tree but substitute Cryptographic Hash 

functions with Vector Commitments. First, we decide how many pieces to divide our tree into, k. Then 

compute a Verkle Tree across a number of files, including f0, f1, ..., fn. Then, after dividing our files into k 

subgroups, we compute a Vector Commitment, or VC, over each of the subsets of files. Additionally, we 

determine each Vector Commitment membership proofs PRi with regard to VC for each file fi in the subset. 

Following that, we compute Vector Commitments across previously computed commitments up the tree 

until we compute the root commitment [12].  

In Fig 4, we have 9 files and branching factor k = 3. We divide the files into subsets of size k = 3, a 

Vector Commitment is computed over each subset along with the corresponding membership proofs. This 

leaves us with the commitments VC1, CV2, and VC3. We compute the Vector Commitment VC4 over these 

three commitments along with the membership proofs PR9, PR10, and PR11 for the commitments VC1, VC2, 

and VC3 respectively with respect to the commitment VC4. The digest of the Verkle Tree is the root 

commitment, which is VC4 in this case. 

 
Fig. 4. A verkle tree when 𝐾 = 3 

 

As previously stated, the Verkle tree is an improved variant of the Merkle tree. Both sorts of trees have 

unique characteristics, especially when it comes to offering Merkle and Verkle proofs. The whole set of 

sister nodes in a Merkle tree, including Merkle Patricia trees, constitutes the evidence of a value. The proof 

must include all nodes in the tree that have any parent node in common with the node you are attempting 

to prove. 

Verkle tree differs from Merkle tree in that you simply need to provide the path plus a small amount of 

additional information as proof - you don't even need to include sibling nodes. This is why Verkle trees 

profit from larger width while Merkle Patricia trees do not: in both situations, a tree with greater width 

leads to shorter routes, but in a Merkle Patricia tree, this effect is overcome by the increased cost of needing 

to provide all the width -1 sister node per level in a proof. This cost is absent in a Verkle tree. 

In a verkle tree, an inner node is computed from its children using a hash function other than a standard 

hash. A vector commitment is used instead. This small parameter is what we'll use as proof. The primary 

proposition of the Verkle tree is that a Merkle tree can be obtained by replacing the cryptographic hash 

functions with vector commitments. Similar to a Merkle tree, a Verkle tree accomplishes the same thing. 

The main difference is that they are substantially more efficient in terms of size in bytes. 

 

6. Vector Commitments 

Instead of committing to individual messages, Vector Commitment (VC) allows users to commit to an 

ordered list of q values (i.e., a vector). This is done in such a way that it will later be feasible to open the 

commitment with respect to particular positions (for example, to prove that 𝑚𝑖 is the 𝑖-th committed 

message). To be more specific, vector commitments are necessary to meet position binding. An adversary 

should not be able to open a commitment to two separate values at the same location, according to the 

concept of position binding. We require VCs to be concise, which means that the length of the commitment 

string and the size of each opening must be independent of the vector length [13]. 



Vector commitments may additionally need to possess the "hiding property," which states that even after 

viewing certain openings, it should be impossible to tell if a commitment was made to the vectors 

(𝑚1, … , 𝑚𝑞) or to (𝑚1
′ , … , 𝑚𝑞

′ ). The implementation of vector commitments does not, however, depend 

much on the hiding property. 

Furthermore, required is the ability to update Vector Commitments. They are provided with two 

algorithms to update the commitment and the accompanying openings, to put it crudely. The first approach 

enables the committer to acquire a (modified) Com' containing the updated message when updating a 

commitment Com by altering the 𝑖-th message from 𝑚𝑖 to 𝑚𝑖
′. Holders of an opening for a message at 

position j with respect to Com may update their evidence according to the second method in order to make 

it legitimate with respect to the new Com'. 

We can make advantage of the conventional and well-established RSA assumption to realize Vector 

Commitment. Compact and effective solutions made possible by vector commitment significantly 

outperform earlier studies in terms of the effectiveness of the resulting solutions, the "quality" of the 

underlying assumption, or both [14]. 

 

 

 

7. Vector Commitments based on RSA 

If an integer N is the product of two different prime numbers 𝑝, 𝑞, it is known as the RSA modulus. We 

have a random number 𝑧 ∈ ℤ𝑁, a public RSA modulus N, a public exponent 𝑒, and god (𝜖, 𝜙(𝑁)) = 1. To 

solve the RSA problem, one must determine the one and only 𝑦 ∈ ℤ𝑁 such that 𝑧 = 𝑦𝑒mod 𝑁. The public 

exponent 𝑒 can be chosen based on multiple distributions, and different distributions result in different 

variants of the problem. We take into account the RSA problem where 𝑒 is picked at random from a (𝑙 +
1)-bit prime (for some parameter 𝑙). Formally speaking, the related RSA assumption reads as follows. 

We have RSA Assumption. Let N be a random RSA modulus of length k, z be a random element in ℤ𝑁, 

and 𝑒 be a (𝑙 + 1)-bit prime (for some parameter 𝑙), 𝑘 ∈ ℕ is security parameter. The RSA assumption is 

then considered to be valid if for each PPT adversary 𝐴, the probability 

 

Pr [𝑦 ← 𝐴(𝑁, 𝑒, 𝑧): 𝑦𝑒 = 𝑧 mod 𝑁]                                                       (6) 

is negligible in 𝑘. 

 

We offer vector commitment realization based on the RSA assumption. It can be described with 

following algorithms: 

VC.KeyGen (1𝑘 , 𝑙, 𝑞) Randomly choose two 𝑘/2-bit primes 𝑝1, 𝑝2, 𝑁 = 𝑝1𝑝2, and then choose 𝑞 (𝑙 +

1)-bit primes 𝜖1, … , 𝜖𝑞 that do not divide 𝜙(𝑁). For 𝑖 = 1 to 𝑞 set 

 

𝑆𝑖 = 𝑎ΠΠ𝑗=1,𝑗≠𝑖
𝑒 𝑒𝑗                                                                     (7) 

The public parameters pub is (𝑁, 𝑎1𝑆1, … , 𝑆𝑞 , 𝑒1, … , 𝑒𝑞). The message space is 𝑀 = {0,1}ℓ 

VC.Compub(𝑚1, … , 𝑚𝑞) Compute 

𝐶 ← 𝑆1
𝑛1 ⋯ 𝑆𝑞

𝑚𝑞
                                                                           (8) 

and output 𝐶 and the auxiliary information aux = (𝑚1, … , 𝑚𝑞). 

VC.Open  𝑝𝑢𝑏(𝑚, 𝑖, aux ), Compute 

𝐴𝑖 ← √∏  
𝑞
𝑗=1,𝑗≠𝑖  𝑆

𝑗

𝑚𝑗5
mod 𝑁                                                            (9) 

Notice that knowledge of pp allows to compute 𝐴𝑖 efficiently without the factorization of 𝑁.  

VC.Verpub(𝐶, 𝑚, 𝑖, Λ𝑖) The verification algorithm returns 1 if 𝑚 ∈ 𝑀 and 

 

𝐶 = 𝑆𝑖
𝑚Λ𝑖

𝑒𝑖mod 𝑁                                                                   (10) 

Otherwise it returns 0. 

VC.Update 𝑒𝑝𝑢𝑏(𝐶, 𝑚, 𝑚′, 𝑖) Compute the updated commitment 𝐶𝑡 = 𝐶 ⋅ 𝑆𝑖
𝑚𝑟−𝑚. Finally output 𝐶′ and 

𝑈 = (𝑚, 𝑚′, 𝑖). 



VC.ProofUpdate  pUB(𝐶, Λ𝑗, 𝑚′, 𝑖, 𝑈) A client who owns a proof Λ𝑗, that is valid with respect to to 𝐶 for 

some message at position 𝑗, can use the update information 𝑈 to compute the updated commitment 𝐶′ and 

to produce a new proof Λ𝑗
′  which will be valid with respect to 𝐶′.  

We distinguish two cases: 

1. 𝑖 ≠ 𝑗. Compute the updated commitment as 𝐶′ = 𝐶𝑆𝑖
𝑚′−𝑚 while the updated proof is Λ𝑗

′ =

A𝑗 √𝑆𝑖
𝑚′−𝑚𝑒

 (notice that such 𝑒𝑗-th root can be efficiently computed using the elements in the 

public key). 

2. 𝑖 = 𝑗.  Compute the updated commitment 𝐶′ = 𝐶 ⋅ 𝑆𝑖
𝑚′−𝑚 while the updated proof remains the 

same 𝐴𝑖. 

In order for the verification process to be correct, notice that one should also verify (only once) the 

validity of the public key by checking that the 𝑆𝑖 's are correctly generated with respect to 𝑎 and the 

exponents 𝑒1, … , 𝑒𝑞. 

A drawback of this scheme is that the size of the public parameter pp is 𝑂(𝑞2), the size of the public 

parameters is linear in q. This can be important in scenarios where big datasets are used with vector 

commitment. Also, this construction can be easily optimized in such a way that the verifier stores only a 

constant number of elements, instead of the entire public parameters. The signature is computed on 

(𝑖, 𝑆𝑖, 𝑒𝑖). 

 

 

8. Novel scheme using Verkle Tree 

Because a different key pair must be used to sign each message, one-time signature schemes are 

particularly demanding to employ. These systems have the drawback of requiring n digests to be stored. 

We would like a system that enables us to save a uniform-sized digest regardless of the number of files we 

have because it is prohibitive for regular use. The Merkle Tree was suggested as a solution to this issue. 

This method can replace numerous verification keys with a single public key by employing a binary tree as 

the root.  

A Merkle Tree with n nodes can be built in O(n) time because Merkle Trees are computationally quick. 

A Merkle tree with many nodes can result in prohibitively huge Merkle proofs. To sign 2n messages the 

height of the tree must be n. Our local storage may experience a large and costly strain as a result of the 

Merkle Proof itself. 

Merkle proofs can be greatly improved by Verkle trees, which enable significantly reduced proof sizes. 

The verifier simply needs to offer a single proof that demonstrates all parent-child ties between all 

commitments along the paths from each leaf node to the root, as opposed to having to present all "brother 

nodes" at every level. When compared to optimal Merkle trees, proof sizes can be reduced by a factor of 

6–8, and when compared to Merkle Patricia trees, proof sizes can be reduced by a factor of more than 20–

30. 

Instead of the Merkle tree, we use the Verkle tree. 

When generating the key pair, the signer chooses 𝐻 ∈ ℕ, 𝐻 ≥ 2. Then the key pair is generated. Using 

them, it will be possible to sign/verify 2𝐻 documents. The signer will generate 2𝐻 unique key pairs 

(𝑋𝑗 , 𝑌𝑗), 0 ≤ 𝑗 < 2𝐻. Here, 𝑋𝑗  is the signature key and 𝑌𝑗 is the verification key. Both of them are bit strings. 

The leaves of the Verkle tree are 𝑔(𝑌𝑗), 0 ≤ 𝑗 < 2𝐻. They are computed and used as the leaves of the tree 

and each node in the tree is a hash value of of its children’s concatenation.  The public key of the Verkle 

crypto system is the root commitment. To generate public key 2𝐻 pairs of keys must be computed. 

We can use one-time signing keys signature generation. To sign a message on M, we must first compute 

the n-bit 𝑑 = 𝑔(𝑀). Firstly, arbitrary size message m is transformed into size n by means of the hash 

function. Document's signature will be the concatenation of: one-time signature, one-time verification key, 

index s for the proof and the root commitment.  

In Verkle's signature verification, verification is done as follows: the one-time signature of 𝑠𝑖𝑔𝑛 should 

be verified using 𝑌𝑠. After this, if it is true, the commitments VCi are verified. If the root of the tree is equal 

to root commitment, the signature is verified. In verkle tree root commitment is digest. 

 

 



 

9. Conclusion 

We discussed currently available random number generation tools for both classical and quantum cases. 

The post-quantum cryptography systems were covered. We discussed hashing-based one-way functions, 

their integration into Merkle. We discussed vector commitment and commitments based on RSA 

assumption. We discussed powerful upgrade of the Merkle tree - Verkle tree, how it is computed and 

integrated. Novel shames, their efficiency, created a new model and integrated it into Verkle. They do 

require more complex cryptography to implement, but they present the opportunity for large gains to 

scalability. 
It is important for us that the resulting schemes protect us from both classical and quantum computer 

attacks. After reviewing the tasks performed, we got the systems that are integrated into Merkle. Merkle 

Trees, which are built using cryptographic hash functions, are a good solution to protect against quantum 

attacks, but the verification size is too large. A parent node in a Merkle tree is the hash of its children. We 

have an improvement Verkle Tree, where a parent node in a Verkle Tree is the vector commitment of its 

children. To implement the new technology, we discussed vector commitment and commitments based on 

RSA assumption. 

The Verkle scheme is a powerful upgrade of the Merkle scheme that allows for much smaller 

verifications. Instead of providing all nodes at each level, verification only needs one proof to validate all 

parent-descendant relationships - all commits from each leaf node to the root. This allows the verification 

size to be reduced by about 6-8 times compared to the classical Merkle scheme. 

In our updated schemes we used Verkle tree instead of Merkle tree. In this case, only a small parameter, 

vector commitment, is needed to use as proof. We used vector commitments based on the RSA assumption 

to build the Verkle tree. 

As previously stated, it is critical that the resulting methods defend us from attacks by quantum 

computers. Unfortunately, so far Vector commitments based on RSA can be broken by quantum computers. 

We are improving the scheme to make it more secure and efficient. In the future, we plan to create electronic 

signature schemes that will use verkle trees, but we will use lattices to build vector commitments. Our 

schemes will be based on post-quantum assumptions. 
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