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Abstract
In this paper it is proposed a deep learning technique for emotion classification using spectrogram
images produced from the related electroencephalogram (EEG) signals. The idea is to use the classical,
state-of-the-art deep learning techniques for image recognition applied to the spectrogram of the EEG
signal. The goal is to detect and recognize the level of valence, arousal, dominance, and likability.
Extensive experiments are carried on with different convolutional neural network architectures on the
publicly available DEAP dataset in order to find the best possible model with respect to the accuracy
of the prediction. A new data augmentation technique on EEG signals has been experimented with
and validated. The model has been developed and evaluated by taking a random permutation of the
dataset and partitioning it in 80% training, 10% validation, and 10% test. Doing so allowed us to assess
the model’s ability to recognize an individual’s emotion based on the EEG signals of other individuals.
Results show that the models can learn and detect emotions with high accuracy at the same level as the
state of the art of analogous models already presented in the literature.
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1. Introduction

The use of physiological signals for emotion recognition and detection has been the subject
of several studies in the recent past. An emotion can be detected and recognized by a self-
assessment of the subject or can be inferred from physiological signals. Subjective self-reports,
while valuable, could raise validity issues. On the other hand, physiological signals can be
used to evaluate emotions objectively. The ability to objectively assess the emotional state
of a person could be employed in a wide variety of fields like (but not limited to) education,
medicine, and entertainment with applications ranging from medical diagnostic, robotic and
automatic assistance of motion impaired persons, validation of recommendation algorithms
and, generally speaking, for brain-computer interface (BCI).

An emotion can be defined as a complex psychological state that involves three distinct
components: a subjective experience, a physiological response, and a behavioral or expressive
response. Various descriptions of these states have been proposed: In one approach, a discrete
categorization of emotions is devised as proposed by Ekman et al. [1] and by Plutchik [2] where
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both proposed several universal basic emotions such as anger, fear, sadness, disgust, surprise,
and joy. In this perspective, the emotions could be represented as a graph whose nodes are the
emotions and the edges are the links that connect similar emotions, and various algorithms can
be employed to explore the properties such graphs[3, 4].
A second perspective of describing emotions is called dimensional approach (see Figure 1). In
this case, the emotions are described along three dimensions: valence, arousal, and dominance.
Valence goes from pleasant (very positive) to unpleasant (very negative). Arousal indicates how
much excitement is involved in the feeling of the emotion: from very excited and active, to
very calm, bored, and/or sleepy. Dominance indicates the degree of control one feels: from
being helpless and weak or without control to feeling in control of everything. We will refer to
them in the following as emotion dimensions. The dimensional approach allows us to assess

Figure 1: A 3D representation of the emotion dimensional model.

emotions quantitatively, and it is a common approach adopted in much of the literature on
emotion detection and, therefore, is the approach used in this paper. There can be many ways to
asses an emotional dimension: the subject self-assessment, physiological signals, and external
signals like facial expression. Physiological signals may range from Galvanic Skin Resistance,
Hearth Beat Rate, Respiration Rate, and Electroencephalogram (EEG). The last method attracted
much interest from the researchers because it directly obtains signals from where the emotions
start to form -the brain- (although the paper [5] hypothesized that emotion responses originates
in the heart) and is relatively noninvasive and simple to obtain.

In this work, we developed deep learning models using the DEAP EEG recording dataset [6].
Our approach consists of pre-processing the EEG signal to obtain the spectrogram image for
each EEG channel. The research hypothesis is that the spectrogram, treated as an image, can be
used to effectively detect the level of emotions. The experiments where conducted in order to
determine the best CNN model and in order to select the best hyperparameters to apply to the
model.

The spectrogram is a 2-dimensional array 𝑆 obtained from the EEG signal; each column 𝑖 of 𝑆
represents the signal’s Power Spectral Densities (PSD) in the time interval 𝑖. In other words,
𝑆(𝑗, 𝑖) is the power of the sinusoid of the signal at frequency 𝑗 in the time interval 𝑖. We obtain a
spectrogram image or a 3-dimensional tensor by stacking all EEG channels together. Then, we
use the state-of-the-art convolutional neural network (CNN) architectures [7, 8], commonly
employed for image detection, to recognize the emotion dimensions described above. In this



paper, we adopt the standard methodology of fine-tuning the model on the validation set and
then evaluate it on a test set. We take a random permutation of the dataset and partition it
into three sets: training, validation, and testing. We made extensive experiments using many
combinations of hyperparameters and configurations. We provide a detailed description of
the experiments done, accompanied by detailed reports of data results. We also provide the
running code on a Colaboratory notebook. The novelty of this work is in the fact that this is
(to the best of my knowledge) the first paper that uses the state-of-the-art ResNet architecture
in conjunction to the spectrogram images. This approach will consider in a single image the
spatial, temporal and the frequency domain feature of the EEG signal thus allowing to employ
the power of ResNet architecture in image detection and recognition. Furthermore this allow
us to avoid the heavy prepossessing analysis to found (if any) the most relevant EEG channel
which gives the most significant response to the emotional stimulus as described in [9].

The work is organized as follows. In Section 2, we briefly cover the most significant related
literature. In Section 3, we describe the dataset and the pre-processing algorithms we employed
to obtain the tensors used as input to the models. In Section 4, we report the experiments’
results and the models’ evaluation. In Section 5, we give final remarks and directions for future
works.

2. Related works

Emotion detection and recognition have been the subject of several studies in literature [10, 11].
While many use classical machine learning techniques, relatively few use modern deep learning
architectures [12]. In [6], a dataset, called DEAP, of EEG signals recorded from 32 participants
watching music videos is presented. They obtained a total of 1280 recordings. They computed
the PSD of the signal over the trial length. Then, they took the average of the PSD over four
frequency bands: theta (4-7 Hz), alpha (8-13 Hz), beta (14-29 Hz), and gamma (30-47 Hz). They
determined that positive and negative correlations exist between the band’s strength detected
in some of the electrodes and the intensity of valence and arousal. They developed a Gaussian
naive Bayes model reaching an accuracy of 0.620 on arousal, 0.576 on valence, and 0.554 on
liking. In [13], another dataset, AMIGOS, is created similar to the DEAP dataset. In this case,
the number of participants was 16, and the number of short videos they watched was 40. They
also developed a Gaussian naive Bayes model, which attained an accuracy of 0.576 on valence
and 0.592 on arousal by using the EEG signal alone. In [14], a hybrid 1-dimensional CCN +
LSTM model is developed for detecting valence and arousal. They make the first experiment by
training the model on the data of each single participant. Part of the data of a single participant
was used as a training set and the other as a test set. For example, using the DEAP dataset, they
took, out of 40 videos, 32 for the training set and the remaining 8 videos as a test set. They
did a similar experiment on three datasets: DEAP, DREAMER [15], and DASP [16]. The final
accuracy was calculated by taking the average of all the results. They reached an accuracy of
63.02% on valence and 67.34% on arousal when using exclusively the EEG signal. However, it
is not explained in detail what kind of features are given in input to the model. In [12], four
distinct datasets have been used: DEAP, AMIGOS, DREAMER, and MAHNOB-HCI [17]. They
first compute the PSD of each EEG channel of three EEG bands, namely, theta (4-7 Hz), alpha



(7-13 Hz), and beta (13-30 Hz). The PSD was then averaged over the trial length. Then, they
plotted the power spectrum heat maps for the three EEG bands using bicubic interpolation
to obtain a 2D image according to the standard EEG 10-20 system. These images contain the
topographical information for the three frequency bands and are treated as standard images.
Their idea is to feed these images to a state-of-the-art convolutional image detector. They used
the well-known (albeit relatively old) VGG-16 architecture [8] pretrained on Imagenet [18].
They employed the so-called leave-one-subject-out evaluation and averaged the results over all
participants. They obtained, by using the EEG signal alone, the accuracy of 71.09% on valence,
72.58% on arousal, and 74.77% on liking.

It is worth noting that the vast majority (if not all) of the works published in literature
employ a 10-fold cross-validation scheme (see [19]). In this work, we also used a more classical
evaluation scheme based on the partition of the dataset into three subsets: training, validation,
and test sets. In the evaluation scheme containing a validation set, the hyperparameters of
the model, the principal component analysis, and all the design choices about the model’s
effectiveness are chosen using the validation set. During the fine-tuning of the hyperparameters,
the best model is chosen based on its performance on the validation set. Once the choice is
made, it is tested on a test set to assess the model’s performance and objectively evaluate its
effectiveness. It is also worth noting that, since the datasets present in literature albeit contain
a fair amount of data, their quantity is orders of magnitude less than the quantity of data
contained in the analogous dataset commonly employed in the field of image detection [20]
and object detection [21, 22] where billions of (labeled) images are easily provided. Therefore,
the performances of the deep learning models developed in the literature for emotion detection
from EEG signals are less impressive than the analogous performance in image detection and
recognition.

3. Methods

3.1. Dataset description and preprocessing

We built and tested the prediction models using one of the best-known online datasets, the
DEAP dataset. This dataset contains the EEG signals of 32 individuals that were collected while
the subjects watched and listened to music videos taken from YouTube. Each subject was invited
to view 40 one-minute videos and then asked to express her emotions on the dimensional model
described above. In the following we refer to the EEG signals of one participant watching
one video as an experiment or trial. Additionally, a parameter called likability was used to
quantify how much the participant liked the stimulus. In the following we treat likability as
another emotion dimension. For each emotion dimension, the participant was asked to rate its
intensity on a continuous scale between 1 and 9, where 1 stands for minimum intensity, and 9
for maximum intensity. We transformed the continuous scale of each emotion dimension 𝑒 into
a binary value 𝑏(𝑒) ∈ {0, 1} so that 𝑏(𝑒) = 0 if 𝑒 < 5, 𝑏(𝑒) = 1 if 𝑒 ≥ 5.

The EEG signal consists of 32 channels, each corresponding to an electrode that measures
the difference in electric potential in the skull area where it is positioned.

We used for all the experimentation ResNet101 and VGG11 architectures, referred in the
following as the CNN architectures. The input tensor 𝑇 to the CNN architecture has three



Figure 2: (a) The EEG signal of one channel and (b) the PSD corresponding to the orange windows in
the EEG signal (a).

dimensions denoted by the depth 𝐶, the height 𝐻 and the width 𝑊. Each data point of the input
tensor will be denoted as 𝑇 (𝑐, 𝑓 , 𝑡). In all subsequent configurations the width of the input
tensor is the time.

3.1.1. Spectrogram computation

We divided the raw signal of each of the 32 EEG channels in 34 overlapping segments, called
time segments, each of which is composed by 256 data points and the amount of overlapping is
32 data points1. For each time segment the Discrete Fourier Transform (DFT) is computed with
a Tukey window and from it we obtained the PSD (for more details on the definition of PSD and
spectrogram please refer to [23, 24, 25]). Since each window is composed by 256 data points,
the DFT returns a total of 129 different frequencies. These frequencies are between 0 and 64Hz,
since the signal available in the DEAP dataset has been (down)sampled at 128Hz. Since the
DEAP dataset’s preprocessed data have a bandpass frequency filter from 4.0-45.0Hz, we excluded
all the frequencies outside such interval (which are 0), eventually obtain 2(45 − 4) + 1 = 83
different frequencies. Figure 2 shows: in (a) an example of the original signal and in (b) the PSD
of one window.

3.1.2. Hyperparameters configuration

Therefore in its basic configuration the input tensor has dimensions 𝐶 = 32, 𝐻 = 83 and𝑊 = 34
(see Figure 3 for a heat map of the channels’ spectrograms stacked together). We called it the
normal, configuration. However we developed other two configurations of the input tensor.
The second configuration is obtained by the first one by subtracting to each time segment the
PSDs of the first 3 seconds of recording, in which the subject has been exposed to a neutral

1The amount of overlapping has been chosen by following the best practices of the digital signal processing
community.



Figure 3: The color plot of the tensor used as input to the models.

stimulus. We called it as the delta configuration. A third configuration has been obtained in the
following manner. Three frequency intervals have been chosen: theta (4-7 Hz), alpha (7-13 Hz)
and beta (13-30 Hz) according to the paper [12]. Then the average of the frequencies in each
interval have been computed obtaining an input tensor of height 𝐻 = 3. Then, we swapped
the height axis with the depth axis of the tensor, obtaining an input tensor with 𝐶 = 3, 𝐻 = 32
and 𝑊 = 34. This configuration is called reduced and allowed us to use a CNN architecture in
which the weights were pretrained on Imagenet since 3 is the depth of first convolutional layer
of a pretrained model.

We developed three different way of data normalization. In the first, called fine normalization,
for each time slot 𝑡, for each frequency 𝑓 and for each EEG channel 𝑐we computed the maximum
𝑚1(𝑐, 𝑓 , 𝑡) for all the trials. We first compute

𝑇1(𝑐, 𝑓 , 𝑡) =
𝑇 (𝑐, 𝑓 , 𝑡)
𝑚1(𝑐, 𝑓 , 𝑡)

and after this we computed the average 𝑎1(𝑐, 𝑓 , 𝑡) and the standard deviation 𝑠1(𝑐, 𝑓 , 𝑡) for all
the trials using the values of 𝑇1. Then each data point of the normalized tensor 𝑈1 is given as

𝑈1(𝑐, 𝑓 , 𝑡) =
𝑇1(𝑐, 𝑓 , 𝑡) − 𝑎1(𝑐, 𝑓 , 𝑡)

𝑠1(𝑐, 𝑓 , 𝑡)

The second type of data normalization, called coarse normalization, is obtained by computing
the maximum 𝑚2(𝑐), along all the trials for each EEG channel 𝑐. In this case we first computed

𝑇2(𝑐, 𝑓 , 𝑡) =
𝑇 (𝑐, 𝑓 , 𝑡)
𝑚2(𝑐)



and after this we computed the average 𝑎2(𝑐) and the standard deviation 𝑠2(𝑐) along all the
experiments for each EEG channel 𝑐 using the values of 𝑇2. Then each data point of the
normalized tensor 𝑈2 is obtained as

𝑈2(𝑐, 𝑓 , 𝑡) =
𝑇2(𝑐, 𝑓 , 𝑡) − 𝑎2(𝑐)

𝑠2(𝑐)

in the third type of data normalization, called all normalization, we computed the maximum 𝑚
of all data points of the input tensor. Then,

𝑇3(𝑐, 𝑓 , 𝑡) =
𝑇 (𝑐, 𝑓 , 𝑡)

𝑚

and after this we computed the average 𝑎 and the standard deviation 𝑠 is of all data points of the
tensor 𝑇3. Then each data point of the normalized tensor 𝑈3 is obtained as

𝑈3(𝑐, 𝑓 , 𝑡) =
𝑇3(𝑐, 𝑓 , 𝑡) − 𝑎

𝑠

Other type of configurations has been obtained by swapping the height axis (frequencies)
and the depth axis (channels) of the first two configurations. We call these configurations as
obtained by the swap of frequencies.

We employed a data augmentation scheme which consists in a random shift of the input
tensor, after normalization but before the swap of frequencies, by an amount of up to 15% or 20%
or 22% of the width of the tensor. This is motivated by the fact that a particular emotion may
be felt by one subject at certain time while other subjects may feel the same emotion slightly
before or slightly later. We used, in the backpropagation algorithm, the cross entropy (CE) loss
function. Generally speaking, the CE gives a measure of the distance between two probability
distributions 𝑝 and 𝑞 over the same domain 𝒞 = {1, 2… , 𝐾}, i.e. a set of classes. Its definition is

𝐻(𝑞, 𝑝) =
𝐾
∑
𝑖=1

𝑞(𝑖) log 1
𝑝(𝑖)

(1)

Let 𝑦 = 𝑓 (𝑥) be the 𝐾-dimensional output of the CNN architecture 𝑓 where 𝑥 is the input
tensor and 𝐾 is the number of classes of the model. Let 𝑐𝑥 be the ground truth (GT) class
corresponding to 𝑥. Applying the softmax function to 𝑦 we obtain a 𝐾-dimensional vector
𝑝𝑦 such that 0 ≤ 𝑝𝑦(𝑖) ≤ 1 and ∑𝐾

𝑖=1 𝑝𝑦(𝑖) = 1. The predicted class ̂𝑐𝑥, is the class for which
𝑝𝑦( ̂𝑐𝑥) ≥ 𝑝𝑦(𝑖) for 𝑖 ∈ 𝒞. If we interpret 𝑝𝑦 as a probability function, the best model should
produce a 𝑝𝑦 that minimizes the CE between the GT probability distribution 𝑞𝑦(𝑖). It is common
to assume that 𝑞𝑦(𝑖) = 0 if 𝑖 ≠ 𝑐𝑥 and 𝑞𝑖(𝑖) = 1 if 𝑖 = 𝑐𝑥. Suppose, for the sake of simplicity that
𝐾 = 2, as in all of our models, and suppose that to the input 𝑥, with GT class 𝑐𝑥 corresponds
a probability 𝑝𝑦(𝑖) = 0.49 if 𝑖 ≠ 𝑐𝑥 and 𝑝𝑦(𝑖) = 0.51 if 𝑖 = 𝑐𝑥. Clearly, in this case, the model
produces a 𝑝𝑦 which is quite distant to 𝑞𝑦. Nevertheless the model’s predicted class is correct. In
other words, any probability function 𝑝𝑦 such that 𝑝𝑦(𝑐𝑥) > 𝑝𝑦(𝑖) for all 𝑖 ≠ 𝑐𝑥 is a correct output
of the model regardless its distance from the GT probability 𝑞𝑦. Given these observations, we
applied in our experiments the label smoothing [26] scheme. In other words we relaxed the



Table 1
For each emotion dimension and each set the quantity and percentage of experiments labeled 1.

Emotion Train Val Test
# % # % # %

Valence 577 0.563 70 0.547 77 0.602
Arousal 585 0.571 90 0.703 79 0.617
Dominance 628 0.613 76 0.594 91 0.711
Liking 675 0.659 85 0.664 97 0.758

requirement that 𝑞𝑦(𝑖) = 1 if 𝑖 = 𝑐𝑥 and 𝑞𝑦(𝑖) = 0 otherwise, and assume only that 𝑞𝑦(𝑐𝑥) > 𝑞𝑦(𝑖)
for all 𝑖 ≠ 𝑐𝑥. We tested the label smoothing scheme by choosing 𝑞𝑦(𝑐𝑥) to be equal to 0.75 or 0.9
or 1.0.

Counting all the possible combinations of hyperparameters we obtain a total of 864 different
configurations, for each CNN architecture, denoted in the following as grid points.

3.2. Data and experimentation setup

We used Pytorch framework [27] for the CNN models and the package Scipy [28] for computing
spectrograms and DFTs of the EEG signal. Wemade publicly available the software we developed
in a Colaboratory notebook2. In order to asses which configuration gives out the best model we
conducted a grid search on the 864 grid points described in the previous section. Both Resnet101
and VGG11 architectures were modified in order to accept in input a tensor that has depth not
necessarily equal to 3, which is the fixed default in these architectures since they were originally
developed for RGB image detection and recognition. Every model outputs a binary value which
represents the high/low value of the corresponding emotion dimension.

We applied a backpropagation algorithm based on SGD, with a batch size of 32,
momentum=0.9, weight_decay=0.0005. We employed a warm up scheme in which the ini-
tial learning rate is first decreased by a factor of 10−3 and then linearly increased in the first 32
epochs. After this warm up, the learning rate for all grid points without a pretrained model
is 3.0 × 10−3 and for the pretrained models is 1.0 × 10−3. In both cases and after warm up, the
learning rate is decreased every 20 epochs by a factor of 0.85. The total number of epochs for
all grid points is 440.

In order to test the effectiveness of the models we conducted a completely randomized
experiments. To do so we computed a random permutation of the 1280 experiments of the
dataset. Of the first 256 experiments of the permutation 128 has been used for the validation
and the other 128 for test set. The remaining 1024 are used for the training set. In Table 1 are
reported for each emotion dimension and each set the quantity and percentage of experiments
labeled 1.

We also conducted several 𝑘-fold analysis. In the first one we computed a random permutation
of the 1280 trials and used a 10-fold analysis by considering 128 trials for the test and the other
for the training. Furthermore we conducted a 32-fold analysis by considering 40 trials of a

2https://colab.research.google.com/drive/1g3uV0uI7cFlOOew3rzfRz6BzsINgkgRO?usp=sharing
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single participant as a test and the others as a training. This last experiment has been conducted
because most of the works in the literature report using this kind of evaluation analysis.

The experiment setup is as follow. We first conducted a grid search over all the grid points
described above using only the ResNet101 architecture. Based on the results of the grid search
we selected the best hyperparameters. Then we train again both ResNet101 and VGG11 on
these hyperparameters. During this last training we saved the models which achieved the best
accuracy on the validation set in the last 340 epochs. We repeated this training for 30 times
overall collecting 30 ResNet101 and 30 VGG11 models for each of the four emotion dimensions.
We observed a lot of variability during the training phase even when the learning rate becomes
very small and the model overfits the training set. For example, in Figure 4 we have the accuracy
plot for both the training and validation set for the best grid point of the model predicting
Arousal. This suggested utilizing an ensemble of the models. We tested an ensemble of 30 and

Figure 4: Plot of the accuracy of the training and validation of the best grid point on the Arousal.

15 of these models all from the same architectures. We also used an ensemble of 60 and 30
models from both CNN architectures.

4. Results

In all the grid points the training average accuracy is over 0.750 and can easily reach 0.999, a
clear sign that the models overfits quite effectively. Furthermore we observed that even when
the model overfits and the learning rate is very small, there is still quite a lot of variability in
the accuracy on the validation set. For each different type of emotion dimension and for each
grid point, we computed the average, standard deviation and the maximum of the accuracy
over the last 340 epochs for the validation set. Eventually we selected the hyperparameters
reported in Table 2.

In Table 3 we report the results of the ensemble tests. In the ensemble test we run a number
𝑛 of models and the output is defined by the majority. The values reported are the accuracy
obtained using different ensemble configurations. We tested single architecture (ResNet101 and
VGG11) with 15 and 30 models ensemble. We also mixed 30 ResNet101 and 30 VGG11 (resp. 15).
The row called average is the average of the accuracy of the four emotion dimensions. The row
Avg. single models represents the average of the accuracy over all 𝑛 ∈ {15, 30} single models.



Table 2
The hyperparameters which were selected after the grid search. The column average is the average
accuracy on validation set over the last 340 epochs. The column max is the maximum accuracy achieved
by the model over the last 340 epochs during the training on the validation set.

emotion pretr. augment augment swap spectra normaliz. smooth average max
type parameter freq. type

valence 0 translate 0.2 1 normal coarse 0.90 0.627 0.703
arousal 0 translate 0.22 0 normal all 0.75 0.704 0.766

dominance 0 translate 0.22 1 normal fine 1.00 0.703 0.742
liking 0 no augment. 0 1 normal all 0.90 0.706 0.742

Table 3
The accuracy obtained using different ensemble configurations. Highlighted are the best results on the
test set. The row average is the average accuracy of the four emotion dimensions. The row Avg. single
models represents the average of the accuracy over all 𝑛 ∈ {15, 30} single models. The row differences is
the difference in percentage between the two previous rows.

Emotion Resnet101 VGG11 Mixed (ResNet + VGG)
30 models 15 models 30 models 15 models 30+30 models 15+15 models

Validation Test Validation Test Validation Test Validation Test Validation Test Validation Test

Valence 0.664 0.641 0.672 0.656 0.711 0.680 0.688 0.633 0.719 0.672 0.695 0.703
Arousal 0.813 0.656 0.813 0.656 0.781 0.695 0.781 0.688 0.781 0.688 0.781 0.695

Dominance 0.703 0.695 0.719 0.688 0.734 0.680 0.703 0.656 0.727 0.664 0.750 0.680
Liking 0.758 0.672 0.750 0.641 0.664 0.672 0.711 0.672 0.734 0.703 0.727 0.695
Average 0.734 0.666 0.738 0.660 0.723 0.682 0.721 0.662 0.740 0.682 0.738 0.693

Avg. single models 0.700 0.634 0.699 0.628 0.695 0.643 0.693 0.643 0.698 0.638 0.697 0.640
Difference 3.42% 3.24% 3.95% 3.19% 2.79% 3.84% 2.72% 1.86% 4.20% 4.38% 4.12% 5.35%

Table 4
Accuracy of k-fold evaluations. Highlighted the best results.

Emotion Rand. 128, ep.>100 Rand. 128, ep.>0 32 part., ep. >100 32 part., ep. >0
Resnet VGG11 Resnet VGG11 Resnet VGG11 Resnet VGG11

arousal 0.661 0.681 0.663 0.682 0.675 0.673 0.715 0.712
dominance 0.693 0.696 0.709 0.703 0.691 0.698 0.732 0.720
liking 0.659 0.659 0.698 0.691 0.704 0.671 0.733 0.716
valence 0.670 0.652 0.673 0.654 0.685 0.672 0.710 0.682
average 0.671 0.672 0.686 0.683 0.689 0.679 0.722 0.708

The row differences is the difference in percentage between the two previous rows. We can see
that in all cases the ensemble of models improve the accuracy of both the validation and the
test set. By mixing both architectures we obtain a gain of more than 4% in accuracy.

In Table 4 are reported the results of the 𝑘-fold experiments. In the 𝑘-fold experiment the
dataset is partitioned in 𝑘 disjoint parts. One part is the test set and the other 𝑘 −1 will comprise
the training set. We did two kind of experiments. In the first one a random partition of the trials
is determined; this partition is composed by 10 elements each of which contains 128 trials. In
the second case the partition is composed by 32 elements each of which contains the 40 trials of
one participant. In all cases we record the maximum accuracy of the model over the test set and
averaged this number over all the tests. In the columns containing the label 𝑒𝑝. > 100, we took



the maximum accuracy on the test set restricted over the last 340 epochs of the training because
after the epoch 100 the model is more stable. When the column contains the label 𝑒𝑝. > 0 we
took the maximum accuracy on the test set over all the epochs. We see that in the case when
𝑘 = 32 participants and we take the maximum accuracy over all the epochs, we obtain the best
accuracy results which are quite comparable to the best already achieved in literature.

5. Conclusion and future works

In this work we developed a new technique for emotion detection using the EEG signal. We
stacked together the spectrogram of each EEG channel in order to obtain a 3-dimensional tensor
which encloses frequencies, temporal and spatial information. In this way we transformed the
emotion detection problem in an image recognition problem. Therefore we were able to use the
state-of-the-art convolutional architectures which proved quite effective on image detection.
Future works aims to apply the same methodology to the other dataset already available in
literature. Another line of research is to integrate to the EEG signals other types of biological
signals (ECG, GSR, etc.) since, as reported in literature [12], the combined use of different
biological signals significantly increases the accuracy of the models. We built and tested the
prediction models using one of the best-known online dataset, the DEAP dataset. However
future works will consider to extend this approach to other datasets. One of the challenge in
this field, if compared with the field of image detection, is that in the latter there exist datasets
containing millions and even billions of images, while the datasets already available of EEG
signals contain thousand or even less examples, collected from a few scores of participants.
Moreover these datasets are not homogeneous and often collect different type of emotions.
Therefore one of the possible future work is to collect a larger database of EEG signal in term of
number of experiments and number of participants.
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