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Abstract
We delve into the Bandit with Knapsacks framework with the aim of creating a learning-augmented
online algorithm with better competitive guarantees than the state-of-the-art classical worst-case al-
gorithms. In particular, we obtain better competitive ratios when the input predictions are accurate,
while also upholding worst-case scenario guarantees for imprecise predictions. Two unique algorithms
are introduced — the first working in a full feedback environment and the other tailored for a bandit
setting. Both algorithms integrate a static prediction in a worst-case 𝛼-competitive algorithm. This
results in an optimized competitive ratio of 1/[𝜋+ 1

𝛼
(1−𝜋)] in scenarios where the prediction is perfect,

and a marginally compromised constant competitive ratio of 𝛼/(1− 𝜋) when the prediction is highly
imprecise, with 𝜋 ∈ (0, 1) parameter chosen by the decision-makers.

1. Introduction

The large availability of data in the application settings of the bandit with knapsacks framework
[2] (e.g., online advertising) brings us to the central research question of this paper: Can machine
learning predictions enhance the performance of traditional algorithms in the Bandit with
Knapsacks framework? Our contribution yields two novel algorithms, one for the full feedback
setting and the other for the bandit case. Both the algorithms have enhanced performances
when equipped with a good prediction, but maintain worst-case guarantees for imprecise ones.

1.1. Related Work

Bandit with Knapsacks. In the case of adversarial bandits with knapsacks, Immorlica et al.
[3] provide a competitive ratio of 𝑂(𝑚 log 𝑇 ). This was improved by Kesselheim and Singla
[4] to 𝑂(log𝑚 log 𝑇 ). Subsequently, Castiglioni et al. [5] provided the first constant-factor
competitive ratio for the case in which 𝐵 = Ω(𝑇 ). Such competitive ratio is 1/𝜌 = 𝑇/𝐵.
Learning Augmented online algorithms. The framework of Learning Augmented online
algorithms was formally established by Lykouris and Vassilvtiskii [6]. Applications of this
framework are wide-ranging and include scheduling [7, 8], caching or paging algorithms [9, 10].
In addition, recently a general framework for integrating predictions into online primal-dual
algorithms was introduced in [11].
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2. Setting

The decision maker makes a sequence of 𝑇 decisions, drawing actions from a finite set 𝐴. A
randomized strategy is defined as 𝜉𝑡 ∈ ∆(𝐴). We denote by 𝜉𝐴 is the best predicted mixed
strategy, while 𝜉* is the best-fixed distribution. The decision maker has 𝑚 available resources
and a budget 𝐵 for each of them. A sequence of items 𝛾 is selected by an adversary. In our
setting, 𝛾𝑡 will be composed of a reward 𝑓𝑡 ∈ [0, 1]𝑛 and a cost vector 𝑐𝑡 ∈ [0, 1]𝑛×𝑚. We focus
on the case in which 𝐵 = Ω(𝑇 ). We denote as 𝜌 = 𝐵/𝑇 the ratio of budget to time horizon.
Benchmark. The benchmark used in the paper is the Fixed Distribution benchmark, defined
in [3] and denoted as OPT𝐹𝐷. Such a quantity is defined as the expected total reward of the
distribution over actions 𝜉*, maximizing E[REW].
Regret. To evaluate the algorithm we use the notion of pseudo-regret, expressed ac

E[REWALG] ≥ 𝑐 OPT𝐹𝐷 + reg

where 1/𝑐 is the competitive ratio, OPT𝐹𝐷 is the profit of the fixed distribution benchmark, and
reg a sublinear regret term.

3. Algorithms

Full-feedback. In the full-feedback algorithm, at each iteration, with probability 𝑝 the predic-
tion is played, with probability 𝜈 the iteration is skipped, and with the remaining probability the
worst-case algorithm is played. Both the prediction and the worst-case algorithm are assigned
the full budget 𝐵 and are stopped when the budget assigned would be depleted, had they been
played for the full sequence. The worst-case algorithm is updated at each iteration.
Bandit. The difference in the bandit feedback algorithm lies in the update rules. The worst-case
algorithm is updated in the iterations in which it is played, otherwise, we set the feedback
at (0,0). Moreover, since the calculation of the expected stopping times is not possible with
the bandit feedback, the budget must be divided preemptively between the two algorithms,
proportionally to the probability of being played.
Results. Both algorithms have the same competitive ratio guarantees in their respective settings.

Theorem 3.1. The algorithms with 𝜉𝐴 = 𝜉* and 𝜈 =
2
√

2 log(1/𝛿)

𝜌𝑇 1/2 , for a sequence of inputs 𝛾
achieve w.h.p. a competitive ratio of 1/[𝑝+ 𝜌(1− 𝑝)]. When

∑︀
𝑓𝑡(𝜉

𝐴) = 0, the competitive ratio
degrades to 1/[𝜌(1− 𝑝)].

4. Conclusions

Our findings, although encouraging, have some limitations. Specifically, our algorithms do not
ensure sublinear regret under stochastic inputs, and are not designed to adjust the probability
parameter 𝑝 in response to real-time performance. Future research could focus on adapting
our framework to stochastic environments and creating algorithms capable of dynamically
modifying the parameter 𝑝 as system dynamics change. Moreover, enhancing our model to
provide best-of-both-worlds guarantees may be useful in diverse applications.
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