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Abstract
Bayesian persuasion studies how an informed sender should influence beliefs of rational receivers who
take decisions through Bayesian updating of a common prior. We focus on the online Bayesian persuasion
framework, in which the sender repeatedly faces one or more receivers with unknown and adversarially
selected types. We show how to obtain a tight ̃︀𝑂(𝑇 1/2) regret bound in the case in which the sender
faces a single receiver and has partial feedback, improving over the best previously-known bound of̃︀𝑂(𝑇 4/5). We also provide the first no-regret guarantees for the multi-receiver setting with partial
feedback.
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The Bayesian persuasion framework, introduced by Kamenica and Gentzkow [3], is an eco-
nomic model which helps to explain how individuals make decisions based on the information
they receive from others, and how this information can be used to influence their behavior.
The framework has found application in advertising [4, 5, 6, 7, 8], voting [9, 10, 11, 12], rout-
ing [13, 14, 15], security [16, 17], sequential decision making [18, 19, 20], and incentivized
exploration in multi-armed bandits [21, 22, 23, 24, 25].

In the simplest instantiation of the model, there are a sender and a receiver with a common
prior over a finite set of states of nature. The sender publicly commits to a signaling scheme,
which is a randomized mapping from states of nature to signals being sent to the receiver. Then,
the sender observes the realized state of nature, and they send a signal to the receiver following
the signaling scheme. The receiver observes the signal, computes their posterior distribution
over states, and selects an action maximizing their expected utility. The sender and the receiver
obtain a payoff which is a function of the receiver’s action, and of the realized state of nature.
An optimal signaling scheme for the sender is one maximizing their expected utility.

The study of Bayesian persuasion from a computational perspective was initiated by Dughmi
and Xu [26], and the original model was later extended to more complex settings such as games
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with multiple receivers [27, 14, 28]. A key question that has emerged is whether computational
techniques can be used to ease some of the assumptions made in the original model by Kamenica
and Gentzkow [3]. Two main lines of research have emerged: one is aimed at developing robust
algorithms that can bypass the common-prior assumption [29, 30], and the other is focused on
the robustness of persuasion when the sender is unaware of the receiver’s goals [31, 32, 33].

This work follows the second perspective, and studies the online Bayesian persuasion frame-
work introduced by Castiglioni et al. [31, 34], where the sender repeatedly faces a receiver
whose type is unknown and chosen adversarially at each round from a finite set of types.

We start by describing a general no-regret algorithm for online learning against an oblivious
adversary with a finite number of possible loss functions. We use this algorithm to provide
a tight 𝑂̃(𝑇 1/2) regret upper bound in the setting with one receiver and partial feedback,
improving over the 𝑂̃(𝑇 4/5) rate by Castiglioni et al. [31]. This result also improves the best
known bound of 𝑂̃(𝑇 2/3) for online learning in repeated Stackelberg games provided by Balcan
et al. [35]. Then, we show that our general framework can be applied to obtain the first no-regret
guarantees under partial feedback in the multi-receiver setting introduced by Castiglioni et al.
[32]. In particular, we provide a tight 𝑂̃(𝑇 1/2) regret bound under the assumption the set of
possible type profiles of the receivers is known beforehand by the sender. In each of these
settings, our no-regret algorithms may suffer from exponential per-iteration running time, as
expected from known hardness results for the online Bayesian persuasion settings [31]. In the
last part of the paper, we provide the first no-regret algorithms for online Bayesian persuasion
with guaranteed polynomial per-iteration running time. We do that by considering the type
reporting framework introduced by Castiglioni et al. [36], where the sender can commit to a
menu of signaling schemes, and then let the receivers choose their preferred signaling scheme
depending on their private types. In such a setting, we provide a 𝑂(𝑇 1/2) regret upper bound for
the single-receiver setting. Moreover, by designing a general procedure based on the follow the
regularized leader algorithm, we show that it is possible to achieve the same rate of convergence
with polynomial-time per-iteration time complexity also in the multi-receiver setting, when
receivers have binary actions and the utility of the sender is specified by a function of receivers’
actions that is either supermodular or anonymous.

The main motivation for introducing the reduction from online problems with finite number of
losses to online linear optimization was to solve online Bayesian persuasion problems. However,
this result finds applicability in other settings such as learning in security games and bidding in
combinatorial auctions.

Learning in security games [35] extends classic (one-shot) security games (see, e.g., [37]) by
introducing the problem of learning a no-regret strategy for the defender against a sequence
of attackers that is adversarially selected. In this model, at each round 𝑡, the defender chooses
a strategy 𝑥𝑡, which is a distribution over 𝑁 targets. Then, an attacker of type 𝑑𝑡 ∈ 𝐷 best
responds to such a strategy and the defender experiences a loss of 𝐿𝑑𝑡(𝑥𝑡). Our reduction yields
a 𝑂̃(poly(𝐷)

√
𝑇 ) regret bound under partial feedback, which improves the previously-known

regret bound given by Balcan et al. [35], which is of order 𝑂(poly(𝑁𝐷)𝑇 2/3).
Another application of our framework is bidding in repeated combinatorial auctions [38].

In these auctions the action space is combinatorial and, therefore, exponentially large. Our
reduction to online linear optimization gives a 𝑂̃(poly(𝐷)

√
𝑇 ) bound for this problem under

partial feedback.
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