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Abstract
Deploying collaborative robots in manufacturing presents diverse challenges. Rapid adaptability to the
environment while ensuring user safety and engagement is paramount. Existing human-aware task se-
quencing solutions often lack explicit risk modeling and management. International standards emphasize
severity, exposure, and avoidance as critical risk factors. To enhance intelligent risk awareness control,
we propose integrating multiple risk factors into task sequencing models. This forms the basis for a
cutting-edge planning framework-backed risk-aware task sequencing system. Our approach’s evaluation
across various scenarios showcases its efficacy and adaptability to diverse risk levels. Experimental
results show a positive equilibrium between productivity and safety, achieving both high throughput
and low operator risk.
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1. Introduction

The use of cobots in manufacturing environments allows for automating demanding, hazardous,
and repetitive tasks boosting the flexibility of manufacturing processes. Nevertheless, task
coordination between humans and robots remains a critical issue for productivity. Human-Robot
Collaboration (HRC) entails challenging safety issues as collaborative environments involve
tight proximity between robots and human workers raising multiple challenges [2]. In order to
endow collaborative robots (cobots) with the ability to quickly adapt their behaviors to the actual
state of the environment and keep the user safe and engaged in the interaction, some human-
aware task sequencing solutions have been proposed (e.g., [3]) where risk management is often
not explicitly modeled. In this work, we propose a novel risk-aware model for human-robot
coordination considering the main risk factors highlighted in international robotic standards
(ISO 10218, ANSI-RIA R15.06-2012) to provide amore detailed representation of risks overcoming
a flat description based on a single value expressing severity and probability, which may not

IPS-RCRA-SPIRIT 2023: Italian Workshop on Planning and Scheduling, RCRA Workshop on Experimental evaluation of
algorithms for solving problems with combinatorial explosion, and SPIRIT Workshop on Strategies, Prediction, Interaction,
and Reasoning in Italy. November 7-9th, 2023, Rome, Italy [1]
∗Corresponding author.
Envelope-Open ale.bonini2@stud.uniroma3.it (A. Bonini); cialdea@ing.uniroma3.it (M. Cialdea Mayer); amedeo.cesta@cnr.it
(A. Cesta); andrea.orlandini@cnr.it (A. Orlandini); alessandro.umbrico@cnr.it (A. Umbrico)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ale.bonini2@stud.uniroma3.it
mailto:cialdea@ing.uniroma3.it
mailto:amedeo.cesta@cnr.it
mailto:andrea.orlandini@cnr.it
mailto:alessandro.umbrico@cnr.it
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


capture the nuances hidden in a production scenario. Our model includes five flexible and
general risk factors that can be applied to any HRC context. We also present a software prototype
planner to reason over the different risk factors entailed by the execution of collaborative tasks
and synthesize safe and efficient collaborative task plans. Specifically, we model HRC task
assignment problems as human-aware task planning problems. A task planning system then
generates task plans implementing sequences of actions to accomplish predefined production
objectives [3]. This entails building a flexible temporal plan that transforms the initial state of a
system into a desired goal state. AI planning algorithms utilize domain knowledge and search
techniques to efficiently explore the space of possible plans to identify the most feasible solution.
This model informs a heuristic-based search that optimizes task assignment by considering a
multi-objective perspective based on safety and efficiency. The designed heuristics allow the
planner to find safe plans without compromising the efficiency of HRC productions. Its most
important feature involves evaluating the risk of a situation by taking into account what robots
and humans are doing at the same time. We evaluated our planner with other strategies in
simulated environments demonstrating improved task assignments, effectively balancing safety
and efficiency.

2. State of the art

In HRC, ANSI-RIA R15.06-2012 standard is an adoption of pre-existing robot safety standards
such as ISO 10218 which focuses on providing HRC cell designers with appropriate guidelines
to help them improve the safety of collaborative cells. It provides some of the safety measures
that should be used to ensure a safe collaborative environment, such as safety stop, hand
guiding, speed and separation monitoring, power and force limiting. The main risk factors
in the standards, ranked by importance, are severity, exposure, and avoidance. These factors
provide a more detailed representation of risk compared to the flat values based on severity
and probability. By taking into account these factors, a comprehensive assessment of risk level
can be conducted, resulting in categorizations such as negligible, low, medium, high, and very
high. Standards provide suggestions also on how using these factors during the design of an
HRC cell to reduce the risks. Focusing on a robot control perspective, safety measures are about
assigning tasks to the robot and controlling its motions in order to reduce the risk of collisions
with the operator while keeping a low cycle time.

HRC-oriented works usually focus on general design issues (see, e.g., [4, 5]) and on sub-
problems such as scheduling human and robot actions (e.g., [6, 7]), or cooperative planning
at a symbolic level (e.g., [8, 9]). Several works have investigated novel models and planning
paradigms to enhance human awareness and realize more effective and safe robot behaviors in
collaborative settings [10, 11]. A central aspect is the capability of enriching a symbolic task
planning level with geometric information suitable to reason about spatial qualities of planned
motions. The work [12] although not strictly correlated with human-robot interaction, shows
an interesting combination of task and motion planning suitable to improve task planning
with geometric reasoning and plan feasible motion trajectories. The interesting aspect of
this approach is the pursuit of a “shared perspective” allowing task planners to reason on
more realistic (geometry-aware) models. This is especially relevant in HRC where an explicit



reasoning on the qualities of robot motions is crucial to enable safer and more effective behaviors.
The study [13] supports modeling multi-agent decision problems for human-aware task

allocation. It uses a hierarchical task planning formalism to reason about structured decom-
position and combined behaviors of multiple agents (e.g., human and robot) working together
towards shared objectives (e.g., a production task [14]). However, this approach lacks explicit
consideration of time constraints and action durations, limiting the effectiveness of generat-
ing optimal collaborative plans in terms of cycle time. The work [8] advances human-aware
optimization by considering stochastic human dynamics. It creates a hierarchical model from
single-agent demonstrations to capture task temporal relationships and prevent spatial con-
flicts in robot actions. Notably, this work combines safety and efficiency to improve planning
decisions. The study [15] also combines stochastic human occupancy data in hierarchical
collaborative modeling. It addresses task allocation, enabling robots to consider time constraints
and human behavior for safe, efficient trajectory planning. The approach achieves a balance
between safety and efficiency based on the agents’ occupancy volumes. Another work [3]
enhances simultaneous human-robot behaviors using a synergy matrix for parallel tasks. It
employs a multi-objective planning formalism that successfully balances optimization and
minimizes delays due to potential human-robot collisions. The study [16] introduces a new
sequencing planning algorithm that optimizes cycle time while considering resource and safety
constraints. Notably, it provides detailed safety reasoning by including constraints related to
assembly/disassembly components.

In manufacturing-oriented methods, [17] optimizes the ergonomics of the human worker by
using an online workflow scheduler. [18] and [19] proposed a TAMP framework for planning
and executing tasks using first-order logic graphs. A contingent-based approach was proposed
in [20], and [21] to deal with uncertainty on the outcome of actions. Although the mentioned
works effectively address human-robot interaction issues, none of them rely on an explicit model
of risk supporting parametrized reasoning about safety. The majority of the works dealing
with safety mainly consider the expected spatial occupancy of human workers to make safer
decisions about robot actions. Namely, such works mainly focus on deciding which tasks are
assigned to the robot taking into account expected spatial requirements to reduce the expected
cycle time. A finer-grained model of the risk and collaboration dynamics could instead support
more detailed decisions taking into account also how to execute robot tasks in order to mitigate
potential risks.

The novel contribution of our work thus concerns the design of a detailed risk-aware model of
collaborative tasks, based on existing safety standards, and the development of a multi-objective
optimization approach to HRC. To the best of our knowledge, this is the first work investigating
the use of a risk model extracted from safety standards within a multi-objective task planning
framework. More specifically, task and motion planning rely on a timeline-based framework,
called PLATINUm [22, 23]. PLATINUm complies with the formal characterization proposed
in [24] which takes into account temporal uncertainty, and has been successfully applied in
real-world manufacturing scenarios [15, 3].



3. Experiments and Evaluation

We realize a task planning system based on a framework already successfully applied in manu-
facturing scenarios [22, 3]. We implemented a RiskAssessmentPlanner with a customized search
strategy determining the most promising and safe options to achieve production goals and
applying a pareto optimization to balance between safety and efficiency [3]. We consider an
experimental scenario inspired by an EU research project (https://www.sharework-project.eu)
in which a human and a robot collaborate to build a mosaic [3]. The experiment considers a
scenario based on a series of Pick-And-Place operations with a robot and a human collaborating
to sort a set of cubes from a common working area into separated heaps, based on the cube’s
material of different material, i.e., foam, wood, and hot metal cubes, with an increasing intrinsic
risk. Each task can be carried out considering three different trajectories and with three increas-
ing speed levels, influencing risk accordingly. Also, we consider human operators with two
levels of experience (skilled or not skilled). For each task, we defined a set of precompiled values
associated with risk parameters representing an estimation of risk in the considered scenario.

To assess our search strategy, we implement other planners with different heuristics: giving
priority to safety (RiskSearchStrategy), i.e., aiming to minimize safety and not performance;
giving priority to makespan (MakespanStrategy), i.e., aiming to minimize makespan and not
considering safety; a ”classical” depth-first strategy (PlannerSearchStrategy). We vary different
scenarios varying the amount of shared tasks between humans and robots and a different number
of shared cubes. We consider human operators with high experience or with no experience.
This allows us to see how the planners react to every combination of parameters. We consider
several plan variations, each tested for all strategies and run 5 times per variation, for a total of
160 runs. Tests were performed on a workstation with a Ryzen 3600 CPU and 16 GB RAM.

Our approach enables the planner to make more informed decisions in task allocation and it
consistently keeps the risk level low and, whenever possible, significantly enhances efficiency.
Though our planner assigns tasks considering the assessed risk and, when feasible, it manages
to reduce the risk of collisions. Finally, the planner provides a good trade-off between safety and
efficiency reducing the risk of collisions and entailing the highest possible efficiency. The DFS
Planner is the fastest as it is only concerned with plan suitability and is not aware of safety or
efficiency. Other strategies have similar behavior with RiskPlanner being the one suffering the
most from a higher amount of shared cubes. Indeed, a higher shared amount of boxes entails
working with a much higher branching factor taking more time to find a solution.

In Figure 1, the scatter plot illustrates how each strategy balances risk and efficiency. Data
points are categorized by expertise and shared values. The significant aspect is the right side,
indicating RiskAssessmentPlanner’s consistent superiority in safety over MakespanPlanner,
while being faster than both Planner and RiskPlanner. For less experienced humans, RiskAssess-
mentPlanner acknowledges the heightened risk, producing safer yet slower plans in response.

4. Discussion and Conclusions

In general, the new risk model allows diverse perspectives in planning systems. Interestingly, in
certain experiments, the basic DFS Planner matches the RiskAssessmentPlanner in safety, e.g.,



Figure 1: Scatterplot of risk and makespan grouped by expertise and shared tasks

with 6 tasks for experienced workers, and is even safer (though less efficient) for inexperienced
workers. This outcome is not entirely unexpected. Although our approach enhances flexibility,
optimizing efficiency and safety without compromise remains a challenge, aiming for a trade-off
between the two. Indeed, RiskAssessmentPlanner slightly sacrifices safety for better efficiency.
Nonetheless, DFS Planner tends to show lower collaboration levels (averaging 5.4 tasks out of 6
assigned to the robot regardless of type). This discrepancy arises because DFS Planner’s risk is
less impacted by an inexperienced operator who contributes very little (averaging 20-time units
compared to the robot’s 80).Moreover, despite having a higher risk value, RiskAssessmentPlanner
still performs better in terms of collision prevention and task assignment. Therefore, safety
levels might appear comparable in plans but there are substantial differences in both average
and peak risks. RiskAssessmentPlanner excels in collision handling and task allocation. DFS
Planner maintains low risk by mostly assigning tasks to the robot (i.e. limiting collaboration).
RiskAssessmentPlanner prioritizes effective task allocation and collision management, even if it
means sacrificing efficiency, especially in constrained scenarios.
Integrating diverse risk factors into task sequencing models enables intelligent risk-aware

control in human-robot collaboration (HRC). This leverages a state-of-the-art planning frame-
work for risk-aware task sequencing. Our approach showcased efficacy and adaptability across
varied simulations, achieving a favorable productivity-safety equilibrium. In future steps, we
plan to validate our method in real collaborative setups and incorporate real-time user feedback.
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