
Semantic Web Services Challenge 2008

Synthesizing the Mediator with jABC/ABC

Tiziana Margaria
Chair of Service and Software Engineering, Universität Potsdam (Germany)

margaria@cs.uni-potsdam.de

Marco Bakera, Harald Raffelt, Bernhard Steffen
Chair of Programming Systems, TU Dortmund (Germany)
{marco.bakera, harald.raffelt, steffen}@cs.uni-dortmund.de

Abstract. In this paper we show how to apply a tableau-based software com-
position technique to automatically generate the mediator’s service logic. This
uses an LTL planning (or configuration) algorithm originally embedded in the
ABC and in the ETI platforms. The algorithm works on the basis of the existing
jABC library of available services (SIB library) and of an enhanced description
of their semantics given in terms of a taxonomic classification of their behaviour
(modules) and abstract interfaces/messages (types).

1 The SWS Challenge Mediator

The ongoing Sematic Web Service Challenge [19] proposes a number of increasingly
complex scenarios for workflow-based service mediation and service discovery. We use
here the technology presented in [10] to synthesise a process that realizes the commu-
nication layer for the Challenge’s initial mediation scenario.

In this scenario, a customer (technically, a client) initiates a Purchase Order Request
specified by a special message format (RosettaNet PIP3A4) and waits for a correspond-
ing Purchase Order Confirmation according to the same RosettaNet standard. The seller
however does not support this standard. Its backend system or server awaits an order in a
proprietary message format and provides appropriate Web Services to serve the request
in the proprietary format. As client and server here speak different languages, there is a
need for a mediation layer that adapts both the data formats and also the granularity.

Of course we can easily define the concrete process within our jABC modelling
framework, as we have shown in the past [11, 6, 7].

To provide a more flexible solution framework, especially to accommodate later
declarative specification changes on the backend side or on the data flow, we synthe-
size the whole mediator using the synthesis technology introduced in [10]. We proceed
here exactly along the lines already presented in that paper.

In the following, we show in Sect. 2 how to use the SLTL synthesis methodology to
generate the mediator workflow based on a knowledge base that expresses the semantics



Fig. 1. The SWS Challenge Mediator Type Taxonomy

Fig. 2. The SWS Challenge Mediator Module Taxonomy

of the concrete types from the SWS mediator scenario, then in Sect. 3 we add a more
business-level-like abstraction to the knowledge base,

and in Sect. 4 we show how this leads to a looser solution, and how this solution can
be stepwisely refined towards the first solution by adding business-level knowledge to
the problem definition, in a declarative way. Sect. 5 describes how to work with the syn-
thesis tool. Finally, Sect. 6 discusses related work and Sect. 7 draws some conclusions
and sketches ongoing work.

2 The Concrete Mediator Workflow

2.1 Abstract Semantics: Taxonomies for Modules and Types

Table 1 shows the modules identified within the system. They represent at the seman-
tic level the collection of basic services available for the mediator. In order to pro-
duce a running solution as demonstrated in Stanford in November they are then bound
(grounded) to the concrete SIBs that in the jABC constitute the running services. How



module name input type output type description
Mediator Maps RosettaNet messages to the backend

startService {true} PurOrderReq Receives a purchase order request message

obtCustomerID PurOrderReq SearchString Obtains a customer search string from the req. message

createOrderUCID CustomerObject CustomerID Gets the customer id out of the customer object

buildTuple OrderID Tuple Builds a tuple from the orderID and the POR

sendLineItem Tuple LineItem Gets a LineItem incl. orderID, articleID and quantity

closeOrderMed SubmConfObj OrderID Closes an order on the mediator side

confirmLIOperation OrderConfObj PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

searchCustomer SearchString CustomerObject Gets a customer object from the backend database

createOrder CustomerID OrderID Creates an order

addLineItem LineItem SubmConfObj Submits a line item to the backend database

closeOrderMoon OrderID TimeoutOut Closes an order on the backend side

confRefLineItem Timeout orderConfObj Sends a conf. or ref. of a prev. subm. LineItem

Table 1. The SWS mediation Modules

this happens is sketched in [17].

This information about the single modules is complemented by simple ontologies that
express in terms of is-a and has-a relations properties over the types and the modules
of the scenario. We call these relations Taxonomies. The taxonomies regarding the me-
diation scenario are shown in Fig. 1 (Type Taxonomy) and Fig. 2 (Module Taxonomy).

This information is expressed in a Prolog-like fashion in a concrete knowledge base
which feeds then the synthesys algorithm.

2.2 The Concrete Knowledge Base

The synthesis tool takes as input a textfile with the definitions of the taxonomies (mod-
ule and type taxonomy), the module descriptions, and some documentation. The first
line of the file declares a name for the knowledge base:

$program(sws_challenge).

The file contains statements (one per line) of facts in the following three forms:

– tax(type, output, customerObject).
– tax(module, mediator, sendLineItem).
– module(searchCustomer, searchString, customerObject).

The two first statements show how to specify the type and module taxonomy:

– The first line declares customerObject as a subtype of the output type.
– The second line declares module sendLineItem to be a mediator module.



The third statement form is used to specify the relation between input and output
types for particular modules. It describes the module definition as already presented in
Table 1: the searchCustomer module takes a searchString as input type and
produces a customerObject output type.

This way it is possible to concisely represent the taxonomies of Fig. 1 and 2 as well
as the module description of Table 1 in one single file.

2.3 Semantic Linear-time Temporal Logic

The loose specification language supported by the synthesis is the Semantic Linear-time
Temporal Logic (SLTL)[14], a temporal (modal) logic comprising the taxonomic spec-
ifications of types and activities. This lifts the classical treatment of types and activities
in terms of actions and propositions to a semantical level in a way typical today in the
context of the semantic Web.

Definition 1 (SLTL).

The syntax of Semantic Linear-time Temporal Logic (SLTL) is given in BNF format by:

Φ ::= type(tc) | ¬Φ | (Φ ∧ Φ) | <ac> Φ | G(Φ) | (ΦUΦ)

where tc and ac represent type and activity constraints, respectively, formulated as

taxonomy expressions.

SLTL formulas are interpreted over the set of all legal coordination sequences, i.e.
alternating type correct sequences of types and activities1, which start and end with
types. The semantics of SLTL formulas is now intuitively defined as follows2:

– type(tc) is satisfied by every coordination sequence whose first element (a type)
satisfies the type constraint tc.

– Negation ¬ and conjunction ∧ are interpreted in the usual fashion.

– Next-time operator <> :
<ac> Φ is satisfied by coordination sequences whose second element (the first ac-
tivity) satisfies ac and whose continuation3 satisfies Φ. In particular, <tt> Φ is sat-
isfied by every coordination sequence whose continuation satisfies Φ.

– Generally operator G:
G(Φ) requires that Φ is satisfied for every suffix4 satisfies Φ.

1 During the description of the semantics, types and activites will be called elements of the
orchestration sequence.

2 A formal definition of the semantics can be found online.
3 This continuation is simply the coordination sequence starting from the third element.
4 According to the difference between activity and type components, a suffix of a coordination

sequence is any subsequence which arises from deleting the first 2n elements (n any natural
number).



Fig. 3. (a) The synthesised SWS mediator (standard) and (b) Using loose types: the new solution

– Until operator U:
(ΦUΨ) expresses that the property Φ holds at all type elements of the sequence, un-
til a position is reached where the corresponding continuation satisfies the property
Ψ . Note that ΦUΨ guarantees that the property Ψ holds eventually (strong until).

The definitions of continuation and suffix may seem complicated at first. However,
thinking in terms of path representations clarifies the situation: a subpath always starts
with a node (type) again. Users should not worry about these details: they may simply
think in terms of pure activity compositions and not care about the types, unless they
explicitly want to specify type constraints.

The online introduction of derived operators supports a modular and intuitive for-
mulation of complex properties.

2.4 Declarative LTL Specification for the Concrete Mediator

For the mediator, we look for a workflow (a service coordination) that satisfies the
following requirement:

The mediator service should produce a Purchase Order Confirmation.

The corresponding formal specification formulated in SLTL is simple: we need to start
the service (module startService) and reach the result PurOrderCon (a type). We



may simply write: (startService < PurOrderCon) where the symbol < de-
notes a derived operator meaning before or preceeds and is defined as

f1 < f2=df F(f1 ∧ F(f2))

The jABC process model shown in Fig. 3(a) resembles very closely the expected re-
quired solution.

If we adopt the very fine granular model of the types shown in Table 1, a natural
choice given the SWS Challenge problem description, this is in fact the only solution.

In this setting, we use abstract type names in the taxonomy to model de facto al-
most the concrete operational semantics: we distinguish for instance an OrderID from
an OrderConfObject, modelling the described application domain at the concrete
level of datatypes and objects - a direct rendering of what happens at the XML level, or
for programs in the memory and in the heap. This is however already a technical view,
and it corresponds to lifting the concrete, programming-level granularity of data to the
semantic level: the resulting ontology is as concrete as the underlying program.

This is however not the intention of Service Orientation, nor of the semantic web:
the idea there is to decouple the business-level view (captured at the semantic level)
from the technical view of a specific implementation, in order to allow a coarser de-
scription of business-level workflows and processes that then must be concretized and
grounded to a running implementation. In the following we show how this can be done,
also including automatic synthesis.

3 Abstract Semantics: Using Abstraction and Constraints

For a specifier and definer of the business domain it is much more realistic to say
that the modules concerned with orders work on an Order type, which is a business-
level abstraction for order-related objects and records, and to leave the distinctions to a
problem-specific refinement of the desired solutions via constraints added at need.

For the abstract semantics we work on the taxonomies. The taxonomy design and
module specification decides here the balance between concreteness and flexibility
(looseness). In this specific case, we change the definition of the modules that deal
with orders as shown in Tab. 2: they now operate on the abstract Order type. We can
be as concrete, or as abstract and generic as we wish, and choose the suitable descrip-
tion level driven by the semantics or application domain modelling. This abstraction
determines how much flexibility we build in into our solutions. At the one extreme we
can have very specific types, as fine granular as a description in terms of structural oper-
ational semantics [12]. In this case, solutions are type-determined, and basically render
the concrete labelled transition system underlying the manually programmed solution
as in Fig. 3(a). At the other extreme one could also model the process structure solely
by means of temporal constraints. However, most flexible is a hybrid approach which
combines loose taxonomies and module descriptions with temporal constraints in order
to arrive at an adequate specification formalism.

No matter the choice, the algorithm covers the whole spectrum, leaving it free to the
application domain designer to determine where to be precise and where to be loose,
leaving space for exploring alternatives and tradeoffs.



module name input type output type description
Mediator Maps RosettaNet messages to the backend

buildTuple Order Tuple Builds a tuple from the orderID and the POR

closeOrderMed SubmConfObj Order Closes an order on the mediator side

confirmLIOperation Order PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

createOrder CustomerID Order Creates an order

closeOrderMoon Order TimeoutOut Closes an order on the backend side

confRefLineItem Timeout Order Sends a conf. or ref. of a prev. subm. LineItem

Table 2. The SWS Mediation Modules with abstract Order

4 A Loose Solution, and its Declarative Refinement

4.1 The base case

If we now solve the planning problem with the modified module description and the
original goal, we obtain a much shorter solution, shown in Fig. 3(b). This is due to
the fact that these module specifications now refer to the abstract type Order. As a
consequence, closeOrderMoon is a suitable direct successor of createOrder. This
solution corresponds to a degenerate workflow where an empty order is sent.

4.2 Refinement1: Nonempty Orders

Since in the normal case orders contain items, the business expert needs to be more
precise in the specification of the solution, adding knowledge by means of SLTL con-
straints. If one just knows that the items are referred to via the LineItem type, one may
simply refine the goal as follows:
(startService < LineItem < PurOrderCon)

This way, we have added as additional intermediate goal the use of a LineItem type.
Accordingly, at least one of the modules {addLineItem, sendlineItem} must appear
in the required minimal workflow. We see the result in Fig. 4(a): this solution coincides
with the previous one till the createOrder module, then the type mediator buildTu-
ple is added, after which sendLineItem satisfies the intermediate goal. The remaining
constraint at that point is simply the reaching of the final type PurOrderCon, which is
done by generating the sequence CloseOrderMediator followed by CloseOrder.

This solution however corresponds only to the first Web service realizing the medi-
ator. There is in fact a subsequent second service that realizes the confirmation part of
the mediator.

4.3 Refinement2: Confirmed Nonempty Orders

To obtain this part as well, we have to additionally specify that we need to see a confir-
mation, e.g. as confRefLineItem module:



Fig. 4. (a) Adding a LineItem: the new solution and (b) Adding a Confirmation: the complete
loose solution

(startService < LineItem <
confRefLineItem <PurOrderCon)

This generates the solution of Fig. 4(b), which includes also the rest of the sequence
shown in Fig. 3(a).

5 How to work with the Synthesis Tool

The synthesis tool takes as input the text file containing the knowledge base: the module
and type taxonomy, the module descriptions, and some documentation for the integrated
hypertext system. It is steered from the ABC GUI. There, users can input the SLTL
formulas that describe the goal and can ask for different kinds of solutions. The tool
produces a graphical visualization of the satisfying plans (module compositions), which
can be executed, if the corresponding module implementations are already available, or
they can be exported for later use.

The knowledge basis implicitly describes the set of all legal executions. We call it
configuration universe, and it contains all the compatible module compositions with
respect to the given taxonomies and to the given collection of modules. Fig. 5 shows
the configuration universe that emerges when simply taking the atomic, concrete in-
put/output types.



Fig. 5. The Configuration Universe

5.1 Specifying Solution Types

Users never see the configuration universe. They have a number of simple options to
state which kind of solutions they would like to have displayed.

– minimal solutions denotes plans that achieve the goal without repetition of config-
urations. In particular, this excludes cycles.

– shortest solutions returns the set of all minimal plans that are also shortest, mea-
sured in number of occurring steps.

– one shortest solution returns the first shortest plan satisfying the specification.
– all solutions returns all the satisfying solutions, which includes also cyclic ones.

Minimal plans generated for our working example are shown in Fig. 6. Since these
plan descriptions are directed acyclic graphs, it is rather simple to select and execute
one plan.

The typical user interaction foresees a successive refinement of the declarative spec-
ification by starting with an initial, intuitive specification, and asking typically for short-
est or minimal solutions, and using the graphical output for inspection and refinement.

This is exactly what we did in Sect. 3, where we used abstract types to enlarge the
solution space and then tightened successively the LTL specification by adding salient
characteristics that yield a good declarative characterization of the desired solutions.



Fig. 6. The Minimal Solutions

6 Related Approaches

Our approach was introduced 1993 ins [15, 4] and applied in [16, 9] and [18] to syn-
thesize Statecharts, CAD design processes, and heterogeneous verification algorithm
for concurrent systems, respectively. The idea of LTL guided process composition has
later been taken up by others: Bacchus and Kabanza [1]extensively discuss their tech-
nique that implements a first order extension of LTL, Mandell and McIlraith use LTL
in the context of BPEL compositions [8], and Falcarin et al. [20] use LTL as a starting
point for their compositions, transforming single LTL formulas to finite state automata,
then composing them to a global specification, and finally finding the correct shortest
solutions as the acyclic accepting paths in that automaton.



Concerning the relation with planning, the state variables in an LTL formula are
directly fluents: their value changes from state to state along the process, and the for-
mulas describe mutual dependencies naturally and compactly. In this sense, there is a
close kinship between the temporal logic mentality and event calculus [13] or logics for
timing diagrams [3]: all three describe what is true at what time, associating the evolu-
tion of time with a succession of states, and offering a well chosen set of operators to
express dependencies between temporal variables along possible paths within models.
The fundamental advantages of LTL guided synthesis over planning are the following:

– the guidance it allows is process driven and not state driven. Therefore the control
it offers can in general depend on the entire history of predecessors, and not only
on the current state. This is extremely efficient in focussing the search, resulting in
small memory usage and quick execution.

– it is decoupled from the (internal) state of a solver/planner: the search control in-
formation relates exclusively to properties of the domain knowledge, not on any
information on the internal state of an algorithm, which is often the case for plan-
ning techniques in order to capture and encode the relevant history aspects (what
is enabled, what is true, etc.) that govern the correct chaining of transitions, i.e. the
temporal/causal/precedence aspects. In contrast, a user of our technique does not
need to know anything about the algorithm underlying the solver/planner.

7 Conclusions

We have applied the automatic tool composition feature of the ABC/ETI platform as
a synthesis tool for the mediator. Our LTL-based synthesis approach is not restricted
to compute one solution, but it may compute all (shortest/minimal) solutions, with the
intent to provide maximum insight into the potential design space.

In future we plan to investigate various forms of synthesis approaches in order
to compare their application profiles. In particular, we are interested in comparing
game-based methods which work via synthesis of winning strategies with the described
tableau-based methods, that construct a linear model as a result of proof construction.
We also plan to enhance the user-friendliness in terms of graphical support for the
declarative specifications, for example by means of the Formula Builder [5] and by
the use of patterns [2].

References

1. F. Bacchus and F. Kabanza. Using temporal logics to express search control knowledge for
planning. Artificial Intelligence, 116(1-2):123 – 191, 2000.

2. M. Dwyer and J.Corbett G. Avrunin. Specification Patterns Website. http://patterns.
projects.cis.ksu.edu/.

3. Kathi Fisler. Toward diagrammability and efficiency in event-sequence languages. STTT,
Int. J. on Software Tools for Technology Transfer, 8(4-5):431–447, 2006.

4. B. Freitag, B. Steffen, T. Margaria, and U. Zukowski. An approach to intelligent software
library management. In Proc. 4th Int. Conf. on Database Systems for Advanced Applications
(DASFAA ’95), National University of Singapore, Singapore, 1995.



5. S. Jörges, T. Margaria, and B. Steffen. Formulabuilder: A tool for graph-based modelling
and generation of formulae. In Proc. ICSE’06, May 2006.

6. C. Kubczak, T. Margaria, B. Steffen, and S. Naujokat. Service-oriented mediation with
jeti/jabc: Verification and export. In Worksh. on Service Composition & SWS Challenge,
part of WI-IAT’07, the IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, November 2007,
Stanford (CA), volume ISBN-10: 0-7695-3028-1. IEEE CS, 2007.

7. C. Kubczak, T. Margaria, C. Winkler, and B. Steffen. An approach to discovery with miaam-
ics and jabc. In Worksh. on Service Composition & SWS Challenge, part of WI-IAT’07, the
IEEE/ WIC/ ACM Int. Conf. on Web Intelligence, November 2007, Stanford (CA), volume
ISBN-10: 0-7695-3028-1. IEEE CS, 2007.

8. Daniel J. Mandell and Sheila A. McIlraith. Adapting bpel4ws for the semantic web: The
bottom-up approach to web service interoperation. In Proc. ISWC2003, Sundial Resort,
Sanibel Island, FL (USA), LNCS N.2870, 2003, pp. 227 - 241, Springer Verlag, 2003.

9. T. Margaria and B. Steffen. Backtracking-free design planning by automatic synthesis in
metaframe. In Proc. FASE’98, Lisbon(P), LNCS, Springer Verlag, 1998.

10. T. Margaria and B. Steffen. LTL guided planning: Revisiting automatic tool composition in
ETI. In SEW: 31st Annual Software Engineering Workshop. IEEE Computer Society Press,
March 2007.

11. T. Margaria, C. Winkler, C. Kubczak, B.Steffen, M. Brambilla, D. Cerizza S. Ceri, E. Della
Valle, F. Facca, and C. Tziviskou. The sws mediator with webml/webratio and jabc/jeti: A
comparison. In Proc. ICEIS’07, 9th Int. Conf. on Enterprise Information Systems, Funchal
(P), June 2007.

12. G.D. Plotkin. a structural approach to operational semantics. Journal of Logic and Alge-
braic Programming.

13. M. Shanahan. The event calculus explained. In LNAI (1600):409-430. Springer Verlag,
1999.

14. B. Steffen, T. Margaria, and A. Claßen. heterogeneous analysis and verification for dis-
tributed systems. SOFTWARE: Concepts and Tools, 17(1):13–25, 1996.

15. B. Steffen, T. Margaria, and B. Freitag. Module configuration by minimal model construc-
tion. In Tech. rep. MIP 9313, Universität Passau, Passau (D), 1993.

16. B. Steffen, T. Margaria, and M. von der Beeck. Automatic synthesis of linear process models
from temporal constraints: An incremental approach. In Proc. AAS’97, ACM/SIGPLAN Int.
Workshop on Automated Analysis of Software, Paris (F),(affiliated to POPL’97), pp. 127-
141., 1997.

17. B. Steffen and P. Narayan. full lifecycle support for end-to-end processes. IEEE Computer,
40(11):64–73, Nov., 2007.

18. Bernhard Steffen, Tiziana Margaria, and Ralf Nagel. Remote Integration and Coordination
of Verification Tools in jETI. In Proc. ECBS 2005, 12th IEEE Int. Conf. on the Engineering
of Computer Based Systems, pages 431–436, Greenbelt (USA), April 2005. IEEE Computer
Soc. Press.

19. SWS Challenge Workshops: Website. http://sws-challenge.org/wiki/index.php/Workshops.
20. J. Yu, J. Han, Y. Jin, and P. Falcarin. Synthesis of service compositions process models from

temporal business rules.


