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Abstract
This volume contains the papers presented at the Workshop on Learning and Evaluating Recommendations with Impressions
(LERI), held in conjunction with the 17th ACM Conference on Recommender Systems (RecSys 2023). Recommender systems
typically rely on past user interactions as the primary source of information for making predictions. However, although
highly informative, past user interactions are strongly biased. Impressions, on the other hand, are a new source of information
that indicate the items displayed on screen when the user interacted (or not) with them, and have the potential to impact the
field of recommender systems in several ways. Early research on impressions was constrained by the limited availability
of public datasets, but this is rapidly changing and, as a consequence, interest in impressions has increased. Impressions
present new research questions and opportunities, but also bring new challenges. Several works propose to use impressions
as part of recommender models in various ways and discuss their information content. Others explore their potential in
off-policy-estimation and reinforcement learning. Overall, the interest of the community is growing, but efforts in this
direction remain disconnected. Therefore, one of the aims of the LERI workshop is to bring the community together.
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1. Motivation
In the early days of research on recommender systems,
predictions were primarily based on past user interac-
tions and user or item features. However, with advance-
ments in technology, the scope and complexity of recom-
mender systems have increased and new sources of data
(such as context, knowledge-bases, and sequence struc-
ture) have emerged, driving the field forward and creating
thriving sub-fields. Nevertheless, past user interactions
remain the most potent and comprehensive source of pre-
dictive power. Despite this, observed interactions are a
sparse and strongly biased source of information, which
has significant implications for both learning from user
actions and evaluating the quality of recommendations
offline [1].

Recently, a source of information that was previously
almost unavailable to the wider research community has
emerged with the potential to impact the field in numer-
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ous ways: impressions. Impressions [2, 3, 4, 5, 6] refer to
the items displayed on the screen when a user interacts
(or not) with them and are the product of the whole rec-
ommendation engine [7, 5, 8]. Impressions constitute a
nuanced and intricate data source that raises novel re-
search questions, opportunities, and challenges. These
may have profound implications for how recommender
systems are conceptualized, trained, and evaluated.

Impressions took longer than ratings and interactions
to cross the corporate boundary towards wider research
availability [9, 10, 11, 12]. This started to happen eventu-
ally: early examples include the ACM RecSys Challenge
in 2016, 2017 and 2019 [13, 14, 15], where the released
datasets included impression data. Until recently, re-
search was still limited by the lack of datasets, this was
because the datasets released as part of the RecSys chal-
lenges are usually non redistributable and focus on very
specific and narrow applications, while only very few
other datasets were publicly available. This is rapidly
changing and most of the available datasets including
impressions have been published in the last few years:
e.g., ContentWise Impressions [7], MIND [16], FINN.no
Slates [5], Pandor [17], Ali-CCP [18], Alimama [19],
Cross-shop Combo [20], In-Shop Combo [20], Kwai FAIR
System [21], Kwai FAIR Experiment [21]. With the emer-
gence of these new datasets, studying the use of impres-
sions has become a more accessible topic for research.
However, despite the increasing research interest, the ef-
forts devoted to studying the use of impressions are still
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limited and fragmented. Therefore, one of the core aims
of the LERI workshop is to bring together and consolidate
the community working on this topic.

1.1. Status of Research, Challenges and
Opportunities

Some works have already tried to use impressions to build
better recommendation models in various ways: [22, 23,
24, 25, 26, 27] use impression data to compute features,
re-ranking, sampling and to learn biases. Furthermore
[28, 29, 30, 31, 32, 33, 34] apply neural or deep-learning
models including impressions. Most of these papers have
been published in the last two years in conferences such
as SIGIR, KDD, WWW and RecSys.

Among the new research opportunities opened by im-
pressions, being able to distinguish between the items
that the user observed and did not observe could allow
to provide better assumptions on how to label missing
interactions. Some studies consider impressions to be
a positive interaction signal, while others view them as
negative signals [8].

Impressions also provide a direction for research that
could help to bridge the gap between algorithms and
user experience, two sides of recommender systems that
are often studied independently of each other. For in-
stance, continuously recommending the same item may
lead to user fatigue [25], resulting in reduced user satis-
faction with the system and wasted recommendations.
By using impressions, recommender systems can better
understand how users interact with the system and, thus,
provide recommendations that improve user experience
and engagement.

A further direction of research is in the evaluation
of recommendation models. It is known that the past
user interactions are a highly biased data source [1] and
impressions, which represent the real behavior of the
recommendation engine that acts as the intermediary be-
tween the user and the available catalogue, could allow
to better identify those biases. The community is also ex-
ploring new methods for the evaluation of recommender
systems, such as off-policy estimation (OPE) [35, 36, 37]
and simulation environments [38] some of which already
use impressions [39].

1.2. Workshop Description
The Workshop on Learning and Evaluating Recommen-
dations with Impressions focuses on all aspects related
to leveraging impression data to build and evaluate a
recommendation engine. The goal is to both help to coa-
lesce researchers exploring the use of impressions from
different perspectives, as well as foster increased interest
from the community for this new and still largely un-
derexplored topic that has the potential of impacting the

field in several ways. The workshop aims to provide a
venue for researchers and practitioners to come together
in order to: (i) share experience and lessons learned; (ii)
identify key challenges in the area; (iii) build a common
mental model and conceptual framework for thinking
and researching on the use of impressions; (iv) identify
emerging topics and new opportunities. The workshop
also aims to lay bridges between practitioners and aca-
demics, encourage a wider availability of impression data
sources and leverage industry’s experience to guide and
inform academic research.

1.3. Workshop Topics
Conceptual framework: definition of “impression”,

role of impressions in the recommendation task
definition, user action attribution to impressions,
prediction and causation, closed vs. open loops;

Recommendation models: new learning approaches
taking advantage of impression data, impressions
in label data, loss functions, model topologies;

Model training: data preprocessing, sampling, parti-
tioning, hyperparameter tuning with impres-
sions;

Evaluation: evaluation methodology and metrics, im-
pact on offline evaluation bias;

User modeling: new models considering user behavior
in face of impressed items;

Reinforcement learning and off-policy estimation:
offline vs. online setting, impressions in RL and
OPE;

Datasets: collection of new datasets with impressions
from different domains, user interfaces, applica-
tions;

User Studies: how the user behavior is impacted by
the composition of impressions, impact of user
fatigue, etc.;

Theory: theoretical aspects in the use of impressions for
recommender systems, both in the development
of new and improved recommender systems and
in their evaluation;

Perspectives: new perspectives on existing problems
that could benefit or just change by adding im-
pressions as a new variable, as well as old chal-
lenges that can be now tackled from new angles,
and new challenges that derive from the use of
impressions.



1.4. Workshop Organization
The workshop has been organized by:

Maurizio Ferrari Dacrema: Professor at Politecnico
di Milano. His research interests include recom-
mender systems evaluation and quantum comput-
ing. He has been local organization chair at the
12th Italian Information Retrieval Workshop.1

Pablo Castells: Professor at Universidad Autónoma de
Madrid (UAM) and Amazon scholar. His research
interests include recommender systems evalu-
ation, algorithmic and experimental bias, and
beyond-accuracy perspectives. He has organized
six RecSys workshops in areas such as evalua-
tion and experimentation, novelty and diversity,
and industry applications; as well as workshops
and tutorials at SIGIR, WSDM and The Web Con-
ference. He has served in the RecSys organizing
committee in different roles including PC co-chair
in 2016, and served as PC co-chair and general
co-chair of SIGIR in 2021 and 2022 respectively.

Justin Basilico: Netflix. He has been an Industry co-
chair at RecSys 2022 and 2023, he has coorganized
the 2020 and 2021 International Workshop on
Industrial Recommendation Systems at KDD, and
the 2022 REVEAL workshop at RecSys. He also
coorganizes the annual Netflix Personalization,
Recommendation, and Search (PRS) workshop.

Paolo Cremonesi: Professor at Politecnico di Milano
and co-Founder of ContentWise. His research in-
terests include recommender systems and quan-
tum computing. He has served in the organi-
zation of scientific meetings in different roles,
including program chair of ACM iTVX in 2013,
and general co-chair of ACM RecSys in 2016. He
serves in the RecSys steering committee since
2017.

The proceedings have been curated by:

Fernando Benjamín Pérez Maurera: Ph.D. candi-
date in Information Technology at Politecnico
di Milano. His research interests include
recommender systems evaluation and algo-
rithmic design; specifically, impression-aware
recommender systems.

2. Related Prior Workshops
We are not aware of any prior workshop that focused
on the topic of impressions itself. However, the use of

1https://recsyspolimi.github.io/iir2022/

impressions has been connected to the following other
workshops:

Causality, Counterfactuals, Sequential Decision–
Making & Reinforcement Learning for Rec-
ommender Systems (RecSys 2022) the work-
shop did not discuss primarily impressions but
the topic of off-policy estimation is connected to
the availability of information on the real user
preferences and on the bias introduced by the rec-
ommendation engine which could be estimated
using impressions.

ACM RecSys Challenge Workshop (RecSys 2019,
2017 and 2016) the workshop did not discuss pri-
marily impressions but the data available during
the challenge included impressions and therefore
some of the papers described how the teams used
them.

RecSys workshops on recommender systems
evaluation: Evaluation has been a recurring
workshop topic at RecSys: workshops such as
RUE 2012, RepSys 2013, REDD 2014, SimuRec
2021 have focused on offline evaluation method-
ology, metrics, reproducibility, bias, and datasets,
among many other important elements and issues
in recommender system evaluation. As far as the
proposers are aware (as co-organizers of these
past workshops), impressions were not addressed
or discussed in that scope so far.

3. Program Committee
The following is a list of the program committee: An-
tonio Ferrara (Politecnico di Bari), Claudio Pomo
(Politecnico di Bari), Daniele Malitesta (Politecnico di
Bari), David Massimo (Free University of Bolzano), Fer-
nando Benjamín Pérez Maurera (Politecnico di Mi-
lano), Marco de Gemmis (Università degli Studi di Bari
Aldo Moro), Marco Polignano (Università degli Studi di
Bari Aldo Moro), Maurizio Ferrari Dacrema (Politec-
nico di Milano), Nicolò Felicioni (Politecnico di Milano),
Olivier Jeunen (ShareChat), Pengjie Ren (Shandong
University), Vito Walter Anelli (Politecnico di Bari).

4. Timeline
The following is the timeline of LERI:

• Paper submission deadline: August 10th, 2023

• Author notification: August 28th, 2023

• Camera-ready version deadline: September 10th,
2023

• Workshop (at RecSys 2023): September 19th, 2023

https://mauriziofd.github.io/
https://castells.github.io
https://paolocremonesi.faculty.polimi.it/
https://github.com/fernandobperezm
https://recsyspolimi.github.io/iir2022/


5. Workshop Program
The workshop program was articulated as follows.2

Keynote by Jiangwei Pan: “Recommendation Mod-
eling with Impression Data at Netflix”. The keynote dis-
cussed how impression data is used to build recommender
models at Netflix, focusing in particular on which issues
arise when using impressions to train a recommendation
model at scale in a two-pass architecture, where impres-
sions can be useful to perform a more fine-grained rank-
ing. Furthermore, the keynote discussed how repeated
impressions affect the user behavior, their correspond-
ing long-term value and the issue of performing enough
item exploration without negatively affecting the user
satisfaction.3

Accepted Papers:

• [40] Impression-Informed Multi-Behavior Recom-
mender System: A Hierarchical Graph Attention
Approach; Dong Li; Divya Bhargavi; Vidya Sagar
Ravipati

• [41] Characterizing Impression-Aware Recom-
mender Systems; Fernando Benjamín Pérez Mau-
rera; Maurizio Ferrari Dacrema; Pablo Castells;
Paolo Cremonesi

• [42] Effects of Human-curated Content on Diversity
in PSM: ARD-M Dataset; Marcel Hauck; Ahtsham
Manzoor; Sven Pagel

• [43] Formulating Video Watch Success Signals for
Recommendations on Short Video Platforms; Srijan
Saket; Sai Baba Reddy Velugoti; Rishabh Mehro-
tra

• [44] Offline Evaluation using Interactions to De-
cide Cross-selling Recommendations Algorithm for
Online Food Delivery; Manchit Madan

• [45] Contextual Position Bias Estimation Using
a Single Stochastic Logging Policy; Giuseppe Di
Benedetto; Alexander Buchholz; Ben London;
Matej Jakimov; Yannik Stein; Jan Malte Licht-
enberg; Vito Bellini; Matteo Ruffini; Thorsten
Joachims

• [46] Incorporating Impressions to Graph-Based Rec-
ommenders; Fernando Benjamín Pérez Maurera;
Maurizio Ferrari Dacrema; Pablo Castells; Paolo
Cremonesi

2https://recsyspolimi.github.io/leri2023/
3https://www.slideshare.net/JiangweiPan/
recommendation-modeling-with-impression-data-at-netflixpptx

Panel Discussion: Moderated by Paolo Cremonesi
with panelists Jiangwei Pan (Netflix), Arnab Bhadury
(YouTube) and Srijan Saket (Sharechat). The discussion
focused on the challenges to conduct research on the use
of impressions outside companies, due to the highly con-
textual nature of impression data and the strong connec-
tion of their information content to the specific domain
and user interface. The panelists also discussed the use-
fulness of impressions in multimedia recommendation
where it is difficult to obtain good metadata and content
can have a short shelf-life, meaning impressions can be
useful to provide more information in a shorter amount
of time.
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