A Generic Corporate Ontology Lifecycle
Markus Luczak-Rösch and Ralf Heese

Motivation

Although recent ontology engineering methodologies might be well thought out, we miss an adequate support for the economic-driven needs of companies and a context-dependent point of view. Corporate settings are characterized by a complex IT infrastructure, which provides various contents, such as documents or databases (domain context). Ontologies, as knowledge representation artifact in this setting, should respect the agility of the evolving knowledge of the whole context.

Corporate Ontology Engineering Settings

- Central allowance and control of the conceptualization
- Existing rules and workflows for employees
- Limited availability of domain experts for engineering tasks
- Trust in semantic annotations

The Corporate Ontology Lifecycle

1. **Creation/Selection/Purchase**
 - Start the knowledge acquisition and conceptualization.
 - Evolve existing ontologies, or commission a contractor to develop an ontology.

2. **Validation**
 - Validate the conceptualization against the objectives.

3. **Population**
 - Record formal statements about users feedback and behaviour.
 - Process for instance generation from structured, semi-structured and unstructured data runs up.

4. **Deployment**
 - Analyze feedback information respecting internal inconsistencies and effects to the currently used ontology version.
 - Evaluate the current ontology version for evolution.

5. **Feedback Tracking**
 - Record formal statements about users feedback and behaviour.
 - Ontology deployment for usage.

6. **Usage**
 - Publish formal statements about users feedback and behaviour.
 - Analyze feedback information respecting internal inconsistencies and effects to the currently used ontology version.

7. **Evaluation**
 - Evaluate the current ontology version for evolution.

8. **Evolve the ontology.**

Vision and Outlook

We aim at an extension of this approach towards an innovative architecture for ontology lifecycle management in corporate contexts. This architecture is carried by an ontology versioning mechanism, which makes use of an innovative knowledge tracking model to facilitate cost-effective, agile knowledge evolution. The lifecycle is designed to allow a cost-benefit-estimation in the forefront of each engineering iteration. A cost-benefit-estimation model for this purpose will be developed in the future.

www.corporate-semantic-web.de